JPH04170352A - Fiber reinforced inorganic hardenable composition and production thereof - Google Patents

Fiber reinforced inorganic hardenable composition and production thereof

Info

Publication number
JPH04170352A
JPH04170352A JP29492190A JP29492190A JPH04170352A JP H04170352 A JPH04170352 A JP H04170352A JP 29492190 A JP29492190 A JP 29492190A JP 29492190 A JP29492190 A JP 29492190A JP H04170352 A JPH04170352 A JP H04170352A
Authority
JP
Japan
Prior art keywords
fibers
fiber
inorganic
aspect ratio
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29492190A
Other languages
Japanese (ja)
Other versions
JP2882677B2 (en
Inventor
Tatsutoshi Nakano
中野 龍俊
Hiroyuki Takihana
裕之 瀧華
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP29492190A priority Critical patent/JP2882677B2/en
Publication of JPH04170352A publication Critical patent/JPH04170352A/en
Application granted granted Critical
Publication of JP2882677B2 publication Critical patent/JP2882677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To obtain a fiber reinforced inorg. hardenable compsn. giving a high strength molded body by regulating the water content of reinforcing fibers consisting of specified two kinds of org; fibers having different diameters, mixing the reinforcing fibers with an inorg. hydraulic material and kneading the mixture with water. CONSTITUTION:The water content of reinforcing fibers consisting of thin org. fibers (e.g., nylon fibers) having 100-500 aspect ratio and <=15mum diameter and thick org. fibers having 50-500 aspect ratio and 30-60mum diameter is regulated to 10-50wt.% and the reinforcing fibers are mixed with an inorg. hydraulic material such as Portland cement, aggregate such as silica sand, a weight reducing agent such as perlite, etc. The mixture is then kneaded with water to obtain a fiber reinforced inorg. hardenable compsn. The thick and thin fibers can be uniformly dispersed in the compsn. without damaging.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、所望形状に成形後養生硬化させることにより
繊維強化無機硬化体を製造することができる繊維強化無
機硬化性組成物およびその製造方法に関する。
The present invention relates to a fiber-reinforced inorganic curable composition that can produce a fiber-reinforced inorganic cured body by molding it into a desired shape and curing it, and a method for producing the same.

【従来の技術】[Conventional technology]

従来より無機硬化体を押出成形により製造する場合、先
ず、無機水硬性物質、補強繊維および増粘剤を主成分と
した材料を乾式混合し、これに水を加えてさらに湿式混
合、混練することによって得られた繊維強化無機硬化性
組成物を押出成形し、この成形体を養生硬化させるよう
にしている。 ところが、この方法によって製造する場合、繊維の分散
に効果的な水の量が少ないという成形上の特徴により、
強度上有効な長い繊維や細い繊維を分散させることが困
難であり、これが原因で製品表面の凹凸が激しい、十分
な強度が得られない、成形時に偏流が生じやすい等の問
題が生じていた。 そこで、これらの問題を解消しようと、繊維径18〜5
01n11の有機繊維と繊維径が60〜125−の有機
繊維とを、両者の重量比が8/2〜4/6の範囲になる
ように含有させて衝撃強度が大きく外観に優れた無機押
出成形品を得る方法が、特開昭55−56049号公報
において提案されている。
Conventionally, when producing an inorganic cured product by extrusion molding, first, materials whose main components are an inorganic hydraulic substance, reinforcing fibers, and a thickener are dry mixed, water is added to this, and the mixture is further wet mixed and kneaded. The fiber-reinforced inorganic curable composition obtained is extrusion molded, and the molded body is aged and cured. However, when manufacturing by this method, due to the molding characteristic that the amount of water effective for dispersing the fibers is small,
It is difficult to disperse long fibers and thin fibers that are effective in terms of strength, and this has caused problems such as severe unevenness on the surface of the product, insufficient strength, and tendency to cause drifting during molding. Therefore, in an attempt to solve these problems, we developed a fiber diameter of 18 to 5.
Inorganic extrusion molding with high impact strength and excellent appearance by containing 01n11 organic fibers and organic fibers with fiber diameters of 60 to 125 mm in a weight ratio of 8/2 to 4/6. A method for obtaining this product is proposed in Japanese Patent Application Laid-Open No. 55-56049.

【発明が解決しようとする課M】[Problem M that the invention attempts to solve]

上記公報のようにすれば、確かに太い繊維を使用するこ
とにより衝撃エネルギーの吸収力が向上して耐衝撃性が
増大するのであるが、製品外観とのかねあいで添加量が
限定され十分な繊維本数を混入させることが困難である
。 従って、繊維がマトリックス中に粗く配置されることに
ならざるをえない。それゆえ、落袋衝撃や落球衝撃など
のマクロな耐衝撃性が向上しても、釘打ち時や、切断時
に生じる局部クラックの進展を抑制する効果に乏しいと
言う問題点があった。 一方、繊維本数を稼ぐために、繊維長を短くすると、繊
維径が太いこともあって引き抜は易くなって強度向上が
困難となる。 他方、さらに細い繊維を太い繊維と合わせて良好に混入
すれば、繊維本数が稼げるためマトリックスをより均一
に補強でき、たとえば、釘打ち時や、切断時に生じる局
部クラックの進展をおさえることができ、上記問題が解
消できるのであるが、細い繊維の場合、強度を得ようと
して長くすると、繊維がからまりほぐれ難くなりやすい
ため、分散が困難になる。そこで、からまりを除去する
ために混合時の混合力を上げたり、混合時間を長くすれ
ば、繊維が傷んでしまい、上記公報中にも記載されてい
るように強度が落ちやすいと言う問題がある。 本発明は、このような事情に鑑みて、太い繊維および細
い繊維が良好に分散され、曲げ強度や衝撃強度などの強
度的品質が高く、しかも、釘打ち等の施加工時にクラッ
クが生じにくく製品外観が良好な無機硬化体を得ること
ができる繊維強化無機硬化性組成物およびその製造方法
を提供することを目的としている。
According to the above publication, by using thick fibers, the ability to absorb impact energy is improved and the impact resistance is increased, but the amount of added fibers is limited due to considerations for product appearance. It is difficult to mix the numbers. Therefore, the fibers must be coarsely arranged in the matrix. Therefore, even if the macroscopic impact resistance such as the impact of a dropped bag or a dropped ball is improved, there is a problem in that it is not effective in suppressing the growth of local cracks that occur during nailing or cutting. On the other hand, if the fiber length is shortened in order to increase the number of fibers, the fiber diameter becomes thick, making it easier to pull out and making it difficult to improve the strength. On the other hand, if thinner fibers are properly mixed with thicker fibers, the number of fibers can be increased and the matrix can be reinforced more uniformly. For example, the development of local cracks that occur during nailing or cutting can be suppressed. Although the above problem can be solved, in the case of thin fibers, if they are lengthened to obtain strength, the fibers tend to become entangled and difficult to unravel, making dispersion difficult. Therefore, if you increase the mixing power or lengthen the mixing time to remove the tangles, the fibers will be damaged and the strength will tend to decrease as described in the above publication. be. In view of these circumstances, the present invention has been developed to create a product in which thick fibers and thin fibers are well dispersed, have high strength qualities such as bending strength and impact strength, and are less prone to cracking during processing such as nailing. It is an object of the present invention to provide a fiber-reinforced inorganic curable composition capable of obtaining an inorganic cured product with good appearance and a method for producing the same.

【課題を解決するための手段】[Means to solve the problem]

そこで、本発明者らは、このような目的を達成するため
に、鋭意検討を重ねた結果、細い繊維および太い繊維そ
れぞれの繊維径だけでなく、アスペクト比(繊維長/繊
維径)をある範囲に限定すると、低い混合力で混合して
も分散性がよく、細い繊維も強度劣化することな(分散
できることを見出し本発明を完成するに到った。 すなわち、本発明にかかる繊維強化無機硬化性組成物は
、無機水硬性物質、補強繊維を含む材料を、水と混合、
混練してなる繊維強化無機硬化組成物であって、アスペ
クト比が100以上500以下で繊維径が15−以下、
通常2trm以上の細い有機繊維と、アスペクト比が5
0以上500以下で繊維径が30−以上60−以下の太
い有機繊維とが前記材料中に補強繊維として添加されて
いることを特徴としている。そして、この組成物を得る
にあたり、補強繊維となる繊維材料に10重量%以上5
0重量%以下の水を他の配合物との混合前に予め含水さ
せておくことが好ましい。
Therefore, in order to achieve this purpose, the present inventors have conducted intensive studies and found that not only the fiber diameters of thin fibers and thick fibers, but also the aspect ratio (fiber length/fiber diameter) have been adjusted within a certain range. The present invention has been completed by discovering that even when mixed with a low mixing force, the dispersibility is good and even thin fibers can be dispersed without deteriorating their strength. The composition is made by mixing a material containing an inorganic hydraulic substance and reinforcing fibers with water,
A fiber-reinforced inorganic cured composition obtained by kneading, which has an aspect ratio of 100 or more and 500 or less and a fiber diameter of 15 or less,
Usually thin organic fibers of 2 trm or more and an aspect ratio of 5.
It is characterized in that thick organic fibers having a diameter of 0 to 500 and a fiber diameter of 30 to 60 are added to the material as reinforcing fibers. In order to obtain this composition, at least 10% by weight of 5%
It is preferable to pre-contain 0% by weight or less of water before mixing with other formulations.

【作  用] 所定のアスペクト比に調整された繊維径が15−以下の
細い有機繊維、および、3〇−以上で601!rn以下
の太い有機繊維を補強繊維ととして用いれば、無機水硬
性物質を主成分とする他の配合物と低い混合力によって
混合しても各繊維が絡まることなく、傷つ(ことなく無
機硬化性組成物中に分散できる。 したがって、強度劣化のない多数の細い繊維および太い
繊維が緻密に分散されたものとなる。 また、補強繊維に予め所定量の水を含水させておくこと
により、無機水硬性物質およびその他の配合物との混合
の際、繊維がほぐれやすくなり、低い混合力でも極めて
容易に分散する。 【実 施 例] 以下に、本発明を、その実施例を参照しつつ詳しく説明
する。 本発明において用いられる有機繊維としては、ポリアミ
ド系(アラミド繊維、ナイロン繊維等)ポリエステル系
(ポリエステル繊維等)、ポリアクリロニトリル系(ア
クリル繊維等)、ポリビニルアルコール系(ビニロン繊
維等)、ポリオレフィン系(ポリプロピレン繊維、ポリ
エチレン繊維等)、ポリ塩化ビニル系(ポリ塩化ビニル
繊維等)、ポリ塩化ビニリデン系(ポリ塩化ビニリデン
繊維等)、その他ポリウレタン繊維、ポリフルオロカー
ボン繊維、耐熱性繊維(ポリベンズイミダゾール、ポリ
フェニレントリアゾール、ポリイミド等)等、有機系材
料で製造される繊維ならどれを使用してもよいが、耐ア
ルカリ性の晶からポリアミド系、ポリアクリロニトリル
系、ポリビニルアルコール系、ポリオレフィン系の繊維
が好ましい。 細い繊維の場合、アスペクト比がl’ O0未満である
と、アスペクト比が小さすぎるため繊維が抜は易く補強
効果が弱くなり、500を超えると繊維が絡まりやすく
分散しにくくなる。 太い繊維の場合、繊維径が30IIrn未満であると、
繊維が破断しやすいため衝撃に対する効果が小さくなり
、601!M1を超えると、繊維の単位重量あたりのマ
トリックスとの付着面積が小さくなるので、繊維力弓1
き抜けやすくなる。また、そのアスペクト比が50未満
であると、繊維が引き抜けやすくなり、衝撃に対する効
果が小さくなり、500を超えると、繊維が絡まりやす
くなり、分散が難しく成形性も悪くなる。 細い繊維と太い繊維とは、細い繊維の繊維本数が太い繊
維の繊維本数の5倍から300倍の割合になるように配
合し、その無機硬化性組成物への配合総量は、組成物中
の固形分100重量部に対し10重量部以下とすること
が好ましい。 すなわち、5倍より小さいとクラック防止に対する効果
が小さくなる傾向があり、300倍を超すと、太い繊維
の効果が小さくなる傾向がある。 また、10重量部を超えると、成形性が悪くなる傾向が
ある。 無機水硬性物質とは水と反応して硬化する物質のことで
、特に限定しないが、たとえば、ポルトランドセメント
、スラグセメント、′アルミナセメント、石膏などが挙
げられる。 また、必要に応じて有機繊維以外の繊維、例えば、パル
プ等の植物繊維、ウオラストナイト、アスベスト、チタ
ン酸カリウム、ガラス繊維、などの無機繊維を添加して
もよいし、パーライトなどの無機の軽量化剤、スチレン
ビーズのような有機の軽量骨材、珪砂、フライアッシュ
などの骨材、メチルセルロースなどの増粘剤、成形助剤
、その他の充填剤を添加することができる。 この繊維強化無機硬化性組成物を製造する方法としては
、特に限定されないが、上記の細い繊維および太い繊維
を予め10〜50重量%の含水率に調整したのぢ、無機
水硬性物質を主成分とする他の配合物と、たとえば、ア
イリッヒミキサー等の混合機で混合し、混練機で混練す
る方法が好ましい。 すなわb、予め水を含有させておくことにより繊維がよ
り分散しやすくなり、クラック防止および製品外観の向
上により効果がある。 (実施例1) 細い繊維としての繊維長4胴、繊維径12tnn、アス
ペクト比333のアクリル繊維2重量部、太い繊維とし
ての繊維長10mm、繊維径50−、アスペクト比20
0のポリプロピレン繊維1重量部、普通ポルトランドセ
メント100重量部、フライアッシュ50重量部、増粘
剤としてのメチルセルロース2重量部をアイリッヒミキ
サーに入れ、500rpmで2分間混合した。 この混合物に水30重量部をさらに加え、500 rp
mで2分間混合した。 この混合物を混練機で混練した後真空押出成形機(スク
リュー径100nunφ)を用いて成形し、この成形体
を60℃で12時間蒸気養生して無機硬化体を得た。 (実施例2) 細い繊維を、繊維長1.5 mm、繊維径4!!rn、
アスペクト比375のナイロン繊維1重量部、太い繊維
を、繊維長6uun、繊維径40I!m、アスペクト比
150のビニロン繊維2重量部とした以外は、実施例1
と同様にして無機硬化体を得た。 (実施例3) 細い繊維を、繊維長3mm、繊維径14p、アスペクト
比214のナイロン繊維2重量部、太い繊維を、繊維長
6M、繊維径43Inn、アスペクト比140のポリプ
ロピレン繊維1重量部とした以外は、実施例1と同様に
して無機硬化体を得た。 (実施例4) 他の配合物と混合前に細い繊維および太い繊維の含水率
を30%に調整した以外は、実施例1と同様にして無機
硬化体を得た。 (実施例5) 配合物に2重量部のスチレンビーズを追加した以外は、
実施例1と同様にして無機硬化体を得た。 (比較例1) 補強繊維として繊維長6mm、繊維径50μmのポリプ
ロピレン繊維3重量部のみを配合した以外は、実施例1
と同様にして無機硬化体を得た。 (比較例2) 細い繊維を、繊維長1mm、繊維径14trm、アス゛
 ペクト比71のビニロン繊維2重量部、太い繊維を、
繊維長6 mm、繊維径43−、アスペクト比I40の
ポリプロピレン繊維1重量部とした以外は、実施例1と
同様にして無機硬化体を得た。 (比較例3) 細い繊維を、繊維長10mm、繊維径14−、アスペク
ト比714のビニロン繊維3重量部、太い繊維を、繊維
長6mm、繊維径431!rn、アスペクト比140の
ポリプロピレン繊維1重量部とした以外は、実施例1と
同様にして無機硬化体を得た。 上記実施例1〜5および比較例1〜3によって得られた
無機硬化体を3週間放置し、それぞれについて3週間後
の、1kgの球の落下による衝撃強度、曲げ強度、製品
表面の凹凸形状および切断面に現れたパルプの数を調べ
、各組成の配合割合とともに第1表に示した。 第1表にみるように、実施例1〜5において得られた無
機硬化体は、いずれも強度的に優れ、釘打ち時のクラッ
クの発生もなく、製品表面状態も良好なものであった。 一方、比較例1〜3は、強度、クラック、表面状態のい
ずれかに問題があった。 【発明の効果】 本発明にかかる繊維強化無機硬化性組成物は、以上のよ
うに構成されているので、組成物中に多数の太い繊維お
よび細い繊維が傷つくことなく均一に分散されている。 したがって、この組成物を所望形状に成形し、この成形
体を養生硬化させれば、曲げ強度、衝撃強度に優れてい
ることはもちろんのこと、切断や釘打ちなどの加工施工
時にクラック等が生じにくく、製品外観に優れた繊維強
化無機硬化体を得ることができる。 また、本発明にかかる繊維強化無機硬化性組成物の製造
方法は、以上のように構成されているので、補強繊維と
しての細い繊維および太い繊維をより均一に分散した繊
維強化無機硬化性組成物を得ることができる。 したがって、無機硬化体の強度をより向上させることが
できる。
[Function] Thin organic fibers with a fiber diameter of 15- or less adjusted to a predetermined aspect ratio, and 601 for fiber diameters of 30- or more! If thick organic fibers of rn or less are used as reinforcing fibers, even when mixed with other compounds containing inorganic hydraulic substances as the main component with low mixing force, each fiber will not become tangled and will not be damaged by inorganic hardening. Therefore, a large number of thin fibers and thick fibers are densely dispersed without deterioration of strength.Also, by pre-impregnating the reinforcing fibers with a predetermined amount of water, the inorganic When mixed with hydraulic substances and other formulations, the fibers loosen easily and are very easily dispersed even at low mixing forces. EXAMPLES The invention will be described in more detail below with reference to examples thereof. The organic fibers used in the present invention include polyamide-based (aramid fiber, nylon fiber, etc.), polyester-based (polyester fiber, etc.), polyacrylonitrile-based (acrylic fiber, etc.), polyvinyl alcohol-based (vinylon fiber, etc.), and polyolefin. (polypropylene fiber, polyethylene fiber, etc.), polyvinyl chloride (polyvinyl chloride fiber, etc.), polyvinylidene chloride (polyvinylidene chloride fiber, etc.), other polyurethane fibers, polyfluorocarbon fibers, heat-resistant fibers (polybenzimidazole, Any fiber made from an organic material such as polyphenylene triazole, polyimide, etc. may be used, but polyamide-based, polyacrylonitrile-based, polyvinyl alcohol-based, and polyolefin-based fibers are preferred because of their alkali-resistant crystals.Thin In the case of fibers, if the aspect ratio is less than l' O0, the fibers will be easily pulled out and the reinforcing effect will be weak because the aspect ratio is too small, and if it exceeds 500, the fibers will be easily entangled and difficult to disperse. When the fiber diameter is less than 30IIrn,
Since the fibers are easy to break, the impact resistance is reduced, and 601! If M1 is exceeded, the adhesion area with the matrix per unit weight of the fiber becomes smaller, so the fiber force bow 1
It becomes easier to pass through. Furthermore, if the aspect ratio is less than 50, the fibers will be easily pulled out and the impact resistance will be reduced; if it exceeds 500, the fibers will be likely to get entangled, making it difficult to disperse and poor moldability. Thin fibers and thick fibers are blended in such a way that the number of thin fibers is 5 to 300 times that of thick fibers, and the total amount added to the inorganic curable composition is The amount is preferably 10 parts by weight or less per 100 parts by weight of solid content. That is, if it is less than 5 times, the effect on crack prevention tends to be reduced, and if it exceeds 300 times, the effect of thick fibers tends to be reduced. Moreover, if it exceeds 10 parts by weight, moldability tends to deteriorate. The inorganic hydraulic substance is a substance that hardens by reacting with water, and examples thereof include, but are not limited to, portland cement, slag cement, alumina cement, and gypsum. Furthermore, if necessary, fibers other than organic fibers such as vegetable fibers such as pulp, inorganic fibers such as wollastonite, asbestos, potassium titanate, and glass fibers may be added, and inorganic fibers such as perlite may be added. Lightening agents, organic lightweight aggregates such as styrene beads, aggregates such as silica sand and fly ash, thickeners such as methylcellulose, molding aids, and other fillers can be added. The method for producing this fiber-reinforced inorganic curable composition is not particularly limited, but the above-mentioned thin fibers and thick fibers are adjusted in advance to have a moisture content of 10 to 50% by weight, and the main component is an inorganic hydraulic substance. A preferred method is to mix it with another compound, for example, in a mixer such as an Eirich mixer, and then knead it in a kneader. In other words, b. By pre-containing water, the fibers are more easily dispersed, which is effective in preventing cracks and improving the appearance of the product. (Example 1) Acrylic fiber with a fiber length of 4 as a thin fiber, a fiber diameter of 12 tnn, and an aspect ratio of 333, 2 parts by weight of acrylic fiber as a thick fiber, a fiber length of 10 mm, a fiber diameter of 50, and an aspect ratio of 20
0 polypropylene fibers, 100 parts by weight of ordinary Portland cement, 50 parts by weight of fly ash, and 2 parts by weight of methylcellulose as a thickener were placed in an Eirich mixer and mixed for 2 minutes at 500 rpm. To this mixture was further added 30 parts by weight of water, and the mixture was heated at 500 rpm.
Mix for 2 minutes at m. This mixture was kneaded using a kneader and then molded using a vacuum extrusion molding machine (screw diameter: 100 nunφ), and this molded product was steam-cured at 60° C. for 12 hours to obtain an inorganic cured product. (Example 2) Thin fibers, fiber length 1.5 mm, fiber diameter 4! ! rn,
1 part by weight of nylon fiber with aspect ratio 375, thick fiber, fiber length 6uun, fiber diameter 40I! Example 1 except that 2 parts by weight of vinylon fiber with m and aspect ratio of 150 were used.
An inorganic cured product was obtained in the same manner as above. (Example 3) The thin fibers were 2 parts by weight of nylon fibers with a fiber length of 3 mm, a fiber diameter of 14 p, and an aspect ratio of 214, and the thick fibers were 1 part by weight of polypropylene fibers with a fiber length of 6 M, a fiber diameter of 43 Inn, and an aspect ratio of 140. Except for this, an inorganic cured body was obtained in the same manner as in Example 1. (Example 4) An inorganic cured product was obtained in the same manner as in Example 1, except that the water content of the thin fibers and thick fibers was adjusted to 30% before mixing with other formulations. Example 5 Except that 2 parts by weight of styrene beads were added to the formulation.
An inorganic cured body was obtained in the same manner as in Example 1. (Comparative Example 1) Example 1 except that only 3 parts by weight of polypropylene fibers with a fiber length of 6 mm and a fiber diameter of 50 μm were blended as reinforcing fibers.
An inorganic cured product was obtained in the same manner as above. (Comparative Example 2) The thin fibers were 2 parts by weight of vinylon fibers with a fiber length of 1 mm, a fiber diameter of 14 trm, and an aspect ratio of 71, and the thick fibers were
An inorganic cured body was obtained in the same manner as in Example 1, except that 1 part by weight of polypropylene fibers having a fiber length of 6 mm, a fiber diameter of 43 mm, and an aspect ratio of I40 were used. (Comparative Example 3) Thin fibers were 3 parts by weight of vinylon fibers with fiber length 10 mm, fiber diameter 14-, and aspect ratio 714, and thick fibers were fiber length 6 mm and fiber diameter 431! An inorganic cured product was obtained in the same manner as in Example 1, except that 1 part by weight of polypropylene fibers having an aspect ratio of 140 was used. The inorganic cured products obtained in Examples 1 to 5 and Comparative Examples 1 to 3 were left for 3 weeks, and after 3 weeks, the impact strength, bending strength, and unevenness of the product surface after 3 weeks were determined. The number of pulps appearing on the cut surface was investigated and shown in Table 1 along with the blending ratio of each composition. As shown in Table 1, all of the inorganic cured products obtained in Examples 1 to 5 had excellent strength, no cracks occurred during nailing, and the product surface condition was good. On the other hand, Comparative Examples 1 to 3 had problems with either strength, cracks, or surface condition. Effects of the Invention Since the fiber-reinforced inorganic curable composition according to the present invention is constructed as described above, a large number of thick fibers and thin fibers are uniformly dispersed in the composition without being damaged. Therefore, if this composition is molded into a desired shape and the molded product is cured and hardened, it will not only have excellent bending strength and impact strength, but also prevent cracks during processing such as cutting and nailing. It is possible to obtain a fiber-reinforced inorganic cured product that is difficult to use and has an excellent product appearance. Moreover, since the method for producing a fiber-reinforced inorganic curable composition according to the present invention is configured as described above, the fiber-reinforced inorganic curable composition in which thin fibers and thick fibers as reinforcing fibers are more uniformly dispersed can be produced. can be obtained. Therefore, the strength of the inorganic cured product can be further improved.

Claims (2)

【特許請求の範囲】[Claims] (1)無機水硬性物質、補強繊維を含む材料を、水と混
合、混練してなる繊維強化無機硬化組成物であって、ア
スペクト比が100以上500以下で繊維径が15μm
以下の細い有機繊維とアスペクト比が50以上500以
下で繊維径が30μm以上60μm以下の太い有機繊維
とが前記材料中に補強繊維として添加されていることを
特徴とする繊維強化無機硬化性組成物。
(1) A fiber-reinforced inorganic hardening composition made by mixing and kneading a material containing an inorganic hydraulic substance and reinforcing fibers with water, which has an aspect ratio of 100 to 500 and a fiber diameter of 15 μm.
A fiber-reinforced inorganic curable composition characterized in that the following thin organic fibers and thick organic fibers having an aspect ratio of 50 to 500 and a fiber diameter of 30 μm to 60 μm are added to the material as reinforcing fibers. .
(2)請求項第1項記載の繊維強化無機硬化組成物を得
るにあたり、予め10重量%以上50重量%以下の含水
率に調整された補強繊維を、無機水硬性物質を主成分と
する他の配合物に混合すること特徴とする繊維強化無機
硬化性組成物の製造方法。
(2) In obtaining the fiber-reinforced inorganic cured composition according to claim 1, reinforcing fibers whose water content has been adjusted in advance to a moisture content of 10% by weight or more and 50% by weight or less are mainly composed of an inorganic hydraulic substance. A method for producing a fiber-reinforced inorganic curable composition, which comprises mixing the composition into a blend of
JP29492190A 1990-10-30 1990-10-30 Fiber-reinforced inorganic curable composition and method for producing the same Expired - Fee Related JP2882677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29492190A JP2882677B2 (en) 1990-10-30 1990-10-30 Fiber-reinforced inorganic curable composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29492190A JP2882677B2 (en) 1990-10-30 1990-10-30 Fiber-reinforced inorganic curable composition and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04170352A true JPH04170352A (en) 1992-06-18
JP2882677B2 JP2882677B2 (en) 1999-04-12

Family

ID=17813983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29492190A Expired - Fee Related JP2882677B2 (en) 1990-10-30 1990-10-30 Fiber-reinforced inorganic curable composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP2882677B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010085A1 (en) * 2000-07-28 2002-02-07 Toray Industries, Inc. Concrete-reinforcing fiber
JP2009221053A (en) * 2008-03-17 2009-10-01 Taiheiyo Cement Corp Cement composition
KR100989367B1 (en) * 2010-07-09 2010-10-25 김지훈 A solidification agent composition for soil block
JP2012504540A (en) * 2008-10-02 2012-02-23 レドコ・エス.エー. Fiber-cement product compositions and shaped products obtained therefrom
JP2014091668A (en) * 2012-11-06 2014-05-19 Ohbayashi Corp Cement composition
JP2016107577A (en) * 2014-12-10 2016-06-20 新日鐵住金株式会社 Repair method of facility foundation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010085A1 (en) * 2000-07-28 2002-02-07 Toray Industries, Inc. Concrete-reinforcing fiber
JP2009221053A (en) * 2008-03-17 2009-10-01 Taiheiyo Cement Corp Cement composition
JP2012504540A (en) * 2008-10-02 2012-02-23 レドコ・エス.エー. Fiber-cement product compositions and shaped products obtained therefrom
KR100989367B1 (en) * 2010-07-09 2010-10-25 김지훈 A solidification agent composition for soil block
JP2014091668A (en) * 2012-11-06 2014-05-19 Ohbayashi Corp Cement composition
JP2016107577A (en) * 2014-12-10 2016-06-20 新日鐵住金株式会社 Repair method of facility foundation

Also Published As

Publication number Publication date
JP2882677B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
JPH04170352A (en) Fiber reinforced inorganic hardenable composition and production thereof
JPH04193748A (en) Fiber-reinforced cement composition
JP4372379B2 (en) Short fiber reinforced cement-based extrusion molding material
JPH0465338A (en) Production of carbon fiber reinforced concrete or similar composition
JP2004315251A (en) High strength/high toughness cement compound material and method of manufacturing the same
JPH07291765A (en) Aging method of cement molding
JPH0816020B2 (en) Method for producing inorganic extrudate
JPH04164607A (en) Manufacture of fiber reinforced inorganic cured object
JP3727504B2 (en) Manufacturing method of inorganic board
JPH0218305B2 (en)
JPH04138206A (en) Manufacture of pulp-mixed hydraulic inorganic molded form
JP3378610B2 (en) Manufacturing method of lightweight inorganic products
JP3563145B2 (en) Binding yarn
JPH0516125A (en) Manufacture of light inorganic cured body
JPH04209735A (en) Production of pulp-incorporated inorganic curable composition
JPH01160850A (en) Vinylon fiber and polypropylene film fiber reinforced cement molded article
JPH01308858A (en) Production of carbon fiber-reinforced cement mortar
JPH10114562A (en) Vinylon(r) fiber reinforced lightweight concrete
JP2006213564A (en) Fastening member formed of fiber-reinforced hydraulic hardened composition
JPH04209736A (en) Production of fiber-reinforced inorganic cured form
JPH11245208A (en) Extrusion molding method for cement-molded plate containing fiber
JPH0359025B2 (en)
JPH11116303A (en) Fiber strand
JPH06183797A (en) Cement hardened body and production thereof
JP2004114597A (en) Cement lightweight extrusion molding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees