JPH0359025B2 - - Google Patents

Info

Publication number
JPH0359025B2
JPH0359025B2 JP57195243A JP19524382A JPH0359025B2 JP H0359025 B2 JPH0359025 B2 JP H0359025B2 JP 57195243 A JP57195243 A JP 57195243A JP 19524382 A JP19524382 A JP 19524382A JP H0359025 B2 JPH0359025 B2 JP H0359025B2
Authority
JP
Japan
Prior art keywords
hydraulic
reinforcing material
cement
warp
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57195243A
Other languages
Japanese (ja)
Other versions
JPS5988364A (en
Inventor
Tamotsu Ooba
Motomi Nogiwa
Toshitake Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP19524382A priority Critical patent/JPS5988364A/en
Publication of JPS5988364A publication Critical patent/JPS5988364A/en
Publication of JPH0359025B2 publication Critical patent/JPH0359025B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene

Description

【発明の詳細な説明】 本発明は、水硬性物質、例えばセメントや石膏
配合物に補強材を配合してなる水硬性配合物に関
する。 従来、セメントコンクリート、セメントモルタ
ル、石膏等の水硬性物質は剛性、圧縮強度等に優
れているため、建築、土木関係の材料として大量
使用されているが、一方これらの材料は曲げ強
度、靭性等に劣り、またクラツクが発生しやすい
という欠点があるため、実際には配筋、面材の付
設等の補強を行なつた上で実用に供されている。 水硬性物質のこのような欠点、とりわけ靭性お
よび耐クラツク性を改良する目的で、金属製やガ
ラス製あるいは合成樹脂製の短繊維を配合するこ
とも行なわれている。しかしながら、これらは形
状が単純であるので、引張応力や収縮応力が働い
た際に抜けやすく、補強効果が十分でなくなると
いう欠点がある。 本発明者らは、水硬性物質の以上のような現状
にかんがみ、更に靭性の向上した水硬性配合物を
開発すべく鋭意検討の結果、合成樹脂製ネツト状
物質の小片、とりわけ延伸された割繊維の経緯積
層不織布を配合した水硬性物質が本目的に合致す
ることを見出し本発明に到達した。 なお、本発明で使用する用語「靭性」とは、材
料に曲げ応力を与えたときの破壊に至るまでの仕
事量であり、具体的には曲げ試験において得られ
るたわみ一荷重曲線の占める面積、すなわち吸収
エネルギー値として表示される。 本発明の水硬性物質とは、ポルトランドセメン
ト、白色ポルトランドセメント、アルミナセメン
ト、シリカセメント、マグネシアセメント、高炉
セメント、フライアツシユセメント等の水硬性セ
メントおよびこれらのセメントと硅砂との混合
物、石膏、石灰、白亜、セメントモルタル、炭酸
カルシウム、炭酸マグネシウム、水酸化アルミニ
ウム等の無機材料およびそれらの混合物等が挙げ
られる。また、これら水硬性物質には必要に応じ
てパラフイン、ワツクス、熱硬化性の水溶性樹
脂、各種のポリマーエマルジヨン、硬化促進剤、
硬化遅延剤等および砂、骨材、フライアツシユ、
蛭石、パーライト、木片、木毛等の補強充填材を
配合することも差支えない。 本発明に使用される補強材は、基本的には必要
により延伸された合成樹脂製ネツト状物質の小片
であつて、このネツト状物質には合成樹脂割繊維
の経緯積層不織布、回転ダイスを用いて糸条に押
出して斜交、点接着させたネツト(商品名:「ネ
トロン」)、あるいは魚網等に使用されている合成
樹脂製ネツト、高デニールのフイラメントを交差
織成したネツト等が挙げられるが、これらのうち
割繊維の経緯積層不織布が特に好ましい。この不
織布は、第1図に示されているように、合成樹脂
製フイルムを一軸延伸し、細かい切れ目を入れて
連続したスプリツトフアイバー(割繊維)を適度
に拡幅した後、経緯重ね合わせて固定したもので
あつて、実際の商品としては「ワリフ」(商品名、
日本石油化学社製)および「タフベル」(商品名、
鐘紡社製)がある。この不織布に用いられる上記
合成樹脂にはポリエチレン、ポリプロピレン等の
ポリオレフイン系樹脂、ナイロン6、ナイロン66
等のポリアミド系樹脂、ポリエステル系樹脂、ポ
リ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹
脂、ポリビニルアルコール系樹脂等があるが、こ
れらのうち延伸性を有する樹脂が特に好ましい。 この割繊維不織布を本発明の用途に使用した場
合には、次のような長所が得られる。すなわち、
第1は割繊維不織布には経緯に延伸処理が施され
ているので強度が大きく、靭性を大幅に向上させ
ることである。第2は、この不織布には第1図に
示されているように適度に開口があつてこれを通
して水硬性物質同士が手を結び合つて投錨効果が
働くので、補強材を配合した水硬性物質に曲げ応
力や衝撃力を加えた際の補強材のすり抜けがほと
んど防止され、材料の強度を全面的に生かすこと
ができることである。第3は、割繊維不織布の小
片は2次元的構造を有するので、従来の1次元的
構造を有する合成樹脂製単繊維に付帯する水硬性
物質との配合時のからまり合いが発生せず、均一
混合が可能で作業性が向上し、例えば水硬性物質
がコンクリートの場合は慣用のコンクリート混練
用の装置がそのまま使用できることである。第4
は、本発明の不織布には既に商品化されている市
販の不織布を小片にカツトするだけでそのまま使
用できるので、その入手が容易であると同時に、
割繊維不織布製造工程中に発生する耳部のトリミ
ングロスも使用可能で、経済性に優れていること
である。 本発明に使用される合成樹脂製ネツト状物質の
小片は、一般的には広幅長尺のネツト状物質を適
当にカツトして製造する。カツトする形状は正方
形、長方形、円形いずれでもよいが、寸法は、正
方形、円形の場合は一辺または直径は5〜30mmの
範囲が、長方形の場合は短辺は3mm以上、長辺は
50mm以下が好ましい。寸法が上記範囲外になる
と、補強効果の発現が不十分になつたり、水硬性
物質との均一分散が悪化しやすくなる。 合成樹脂製ネツト状物質の使用量には特に限定
はないが、一般的には0.5〜5容量%の範囲が好
ましい。0.5容量%以上では、顕著な補強効果が
得られず、逆に5容量%以上では配合物の粘度が
著しく上昇して均一分散が困難となり、型への充
填が不可能になる場合がある。 以下、実施例、比較例を挙げて本発明を具体的
に説明するが、本発明は実施例に制約されるもの
ではない。 なお、靭性の値は次の方法によつて測定した。
すなわち、4×4×10cmの正四角柱の試験片につ
いて、スパン間100mm、曲げ速度1mm/minで3
点式曲げ試験を行ない、得られたたわみ一荷重曲
線の3mmたわみまでに占める面積を測定する。基
準として補強材無添加(比較例1)の場合の面積
を1とし、補強材添加の場合の面積を相対値とし
て示した。また、本試験は各々5点行ない、その
平均値で示した。 比較例 1 普通ポルトランドセメント100重量部に20メツ
シユのフルイを通過した砂200重量部を混合し、
これに水60重量部を添加して混練りした。この混
練物を4×4×16cmの防蝕のためにポリエチレン
コーテイングしたアルミニウム型枠に充填し、24
時間静置して凝固させた。この凝固物を水中にて
1日間、空気中にて6日間養生した後、曲げ試験
を行ない、得られた結果を表−1に示す。 実施例 1 補強材としてポリエチレン製割繊維不織布(商
品名:「日石ワリフHS24」、日本石油化学社製)
を10mm角にカツトして使用した。比較例1と同様
に、普通ポルトランドセメント100重量部に砂200
重量部を予備混合し、これに上記補強材1容量%
(この容量%は配合物の比重を25、補強材の比重
を0.95として計算した)を添加して十分に混合し
た後、更に水60重量部を添加して混練りした。こ
れを比較例1と同様の方法で凝固、養生した後、
曲げ試験を行なつた。得られた結果を表−1に示
す。 実施例 2〜4 補強材の使用量あるいはカツト寸法を表−1に
示すように変化させた以外は、実施例1と全く同
様に配合、凝固、養生して曲げ試験を行なつた。
得られた結果を表−1に示す。 比較例 2および3 補強材として、長さ3mmのポリプロピレン製の
割繊維(プラスチサイザー社製)を1容量%ある
いは2容量%使用した以外は、実施例1と全く同
様に配合、凝固、養生して曲げ試験を行なつた。
得られた結果を表−1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydraulic formulation comprising a hydraulic material, such as a cement or gypsum formulation, with a reinforcing agent. Conventionally, hydraulic substances such as cement concrete, cement mortar, and plaster have been used in large quantities as materials for construction and civil engineering because they have excellent rigidity and compressive strength. However, on the other hand, these materials have poor bending strength, toughness, etc. Since it has the drawbacks of being inferior in quality and prone to cracks, it is actually put into practical use after reinforcement such as reinforcing bars and the addition of face materials. In order to improve these shortcomings of hydraulic materials, particularly their toughness and crack resistance, short fibers made of metal, glass, or synthetic resin have also been incorporated. However, since these have a simple shape, they tend to come off when tensile stress or shrinkage stress is applied, and the reinforcing effect is insufficient. In view of the above-mentioned current state of hydraulic materials, the inventors of the present invention have conducted intensive studies to develop hydraulic compounds with even improved toughness. The present invention was achieved by discovering that a hydraulic material blended with a nonwoven fabric laminated with fibers satisfies this purpose. The term "toughness" used in the present invention refers to the amount of work required to break when bending stress is applied to a material, and specifically, the area occupied by the deflection-load curve obtained in a bending test. That is, it is displayed as an absorbed energy value. The hydraulic substances of the present invention include hydraulic cements such as portland cement, white portland cement, alumina cement, silica cement, magnesia cement, blast furnace cement, and flyash cement, mixtures of these cements and silica sand, gypsum, lime, Examples include inorganic materials such as chalk, cement mortar, calcium carbonate, magnesium carbonate, aluminum hydroxide, and mixtures thereof. In addition, these hydraulic substances may include paraffin, wax, thermosetting water-soluble resin, various polymer emulsions, curing accelerators,
Hardening retarders, sand, aggregates, fly ash, etc.
There is no problem in blending reinforcing fillers such as vermiculite, perlite, wood chips, and wood wool. The reinforcing material used in the present invention is basically a small piece of a synthetic resin net-like material that has been stretched as necessary. Examples include nets that are extruded into threads and bonded diagonally and dots (product name: ``Netron''), synthetic resin nets used in fishing nets, etc., and nets that are cross-woven with high denier filaments. Of these, split fiber warp-warp laminated nonwoven fabrics are particularly preferred. As shown in Figure 1, this non-woven fabric is made by uniaxially stretching a synthetic resin film, making small cuts to expand the continuous split fibers to an appropriate width, and then stacking them on the warp and warp and fixing them. However, the actual product is "Warif" (product name,
manufactured by Nippon Petrochemical Co., Ltd.) and “Toughbell” (product name,
(manufactured by Kanebosha). The synthetic resins used for this nonwoven fabric include polyolefin resins such as polyethylene and polypropylene, nylon 6, and nylon 66.
Among these, resins having stretchability are particularly preferred. When this split fiber nonwoven fabric is used for the purpose of the present invention, the following advantages can be obtained. That is,
First, since the split fiber nonwoven fabric has been subjected to a stretching process on its warp and weft, it has high strength and significantly improves toughness. Second, as shown in Figure 1, this non-woven fabric has moderate openings through which the hydraulic substances join hands and create an anchoring effect, so hydraulic substances mixed with reinforcing materials This means that the reinforcing material will almost never slip through when bending stress or impact force is applied to it, and the strength of the material can be fully utilized. Thirdly, since the small pieces of split fiber nonwoven fabric have a two-dimensional structure, entanglement does not occur when blending with hydraulic substances that accompany conventional single fibers made of synthetic resin that have a one-dimensional structure. Uniform mixing is possible and workability is improved; for example, if the hydraulic substance is concrete, conventional concrete mixing equipment can be used as is. Fourth
Since the nonwoven fabric of the present invention can be used as it is by simply cutting a commercially available nonwoven fabric into small pieces, it is easy to obtain, and at the same time,
It is also possible to use the trimming loss of the edges that occurs during the split fiber nonwoven fabric manufacturing process, which is excellent in economical efficiency. The small pieces of the synthetic resin net-like material used in the present invention are generally produced by suitably cutting a wide and long net-like material. The shape to be cut may be square, rectangular, or circular, but the dimensions for square or circular shapes are 5 to 30 mm on one side or diameter; for rectangular shapes, the short side is 3 mm or more, and the long side is 5 to 30 mm.
It is preferably 50 mm or less. If the dimensions are outside the above range, the reinforcing effect may not be sufficiently expressed or uniform dispersion with the hydraulic substance may deteriorate. There is no particular limitation on the amount of the synthetic resin net material used, but it is generally preferably in the range of 0.5 to 5% by volume. If it is 0.5% by volume or more, no significant reinforcing effect can be obtained, and if it is more than 5% by volume, the viscosity of the compound increases significantly, making uniform dispersion difficult, and filling into molds may become impossible. The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples. In addition, the toughness value was measured by the following method.
In other words, for a 4 x 4 x 10 cm regular square prism test piece, with a span of 100 mm and a bending speed of 1 mm/min,
A point bending test is carried out, and the area occupied by a deflection of 3 mm on the obtained deflection-load curve is measured. As a reference, the area in the case where no reinforcing material was added (Comparative Example 1) was set as 1, and the area in the case where the reinforcing material was added was shown as a relative value. In addition, this test was conducted for 5 points each, and the average value is shown. Comparative Example 1 100 parts by weight of ordinary Portland cement was mixed with 200 parts by weight of sand passed through a 20-mesh sieve,
60 parts by weight of water was added to this and kneaded. This kneaded material was filled into a 4 x 4 x 16 cm aluminum formwork coated with polyethylene for corrosion protection.
It was allowed to stand for a while to solidify. After curing this coagulated material in water for 1 day and in air for 6 days, a bending test was performed, and the obtained results are shown in Table 1. Example 1 Split fiber nonwoven fabric made of polyethylene as a reinforcing material (product name: "Nisseki Warif HS24", manufactured by Nippon Petrochemicals Co., Ltd.)
was cut into 10 mm square pieces. As in Comparative Example 1, 100 parts by weight of ordinary Portland cement and 200 parts by weight of sand were added.
Pre-mix parts by weight, and add 1% by volume of the above reinforcing material to this.
(This volume % was calculated assuming the specific gravity of the blend to be 25 and the specific gravity of the reinforcing material to be 0.95) was added and thoroughly mixed, and then 60 parts by weight of water was further added and kneaded. After coagulating and curing this in the same manner as Comparative Example 1,
A bending test was conducted. The results obtained are shown in Table-1. Examples 2 to 4 Bending tests were conducted by blending, solidifying, and curing in exactly the same manner as in Example 1, except that the amount of reinforcing material used or the cut dimensions were changed as shown in Table 1.
The results obtained are shown in Table-1. Comparative Examples 2 and 3 Compounding, coagulation, and curing were carried out in exactly the same manner as in Example 1, except that 1% or 2% by volume of polypropylene split fibers (manufactured by Plasticizer Co., Ltd.) with a length of 3 mm were used as the reinforcing material. A bending test was conducted.
The results obtained are shown in Table-1. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に使用する割繊維の経緯積層
不織布の一例の概要図を示す。 1:経スプリツテフアイバー、2:緯スプリツ
トフアイバー、3:開口。
FIG. 1 shows a schematic diagram of an example of a warp-warp laminated nonwoven fabric of split fibers used in the present invention. 1: Longitudinal split fiber, 2: Latitude split fiber, 3: Opening.

Claims (1)

【特許請求の範囲】 1 水硬性物質に、経緯に剛性を有する合成樹脂
製ネツト状物質の小片からなる補強材を配合して
なることを特徴とする水硬性配合物。 2 前記水硬性物質がセメントおよびその配合物
である特許請求の範囲第1項に記載の水硬性配合
物。 3 前記補強材が延伸された割繊維の経緯積層不
織布である特許請求の範囲第1項または第2項に
記載の水硬性配合物。 4 前記補強材の使用量が0.5〜5容量%の範囲
である特許請求の範囲第1項〜第3項のいずれか
に記載の水硬性配合物。
[Scope of Claims] 1. A hydraulic compound characterized in that a reinforcing material consisting of small pieces of a synthetic resin net-like material having rigidity in both directions is blended into a hydraulic material. 2. The hydraulic compound according to claim 1, wherein the hydraulic substance is cement and a compound thereof. 3. The hydraulic compound according to claim 1 or 2, wherein the reinforcing material is a warp-warp laminated nonwoven fabric of stretched split fibers. 4. The hydraulic compound according to any one of claims 1 to 3, wherein the amount of reinforcing material used is in the range of 0.5 to 5% by volume.
JP19524382A 1982-11-09 1982-11-09 Hydraulic blend Granted JPS5988364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19524382A JPS5988364A (en) 1982-11-09 1982-11-09 Hydraulic blend

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19524382A JPS5988364A (en) 1982-11-09 1982-11-09 Hydraulic blend

Publications (2)

Publication Number Publication Date
JPS5988364A JPS5988364A (en) 1984-05-22
JPH0359025B2 true JPH0359025B2 (en) 1991-09-09

Family

ID=16337868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19524382A Granted JPS5988364A (en) 1982-11-09 1982-11-09 Hydraulic blend

Country Status (1)

Country Link
JP (1) JPS5988364A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523331Y2 (en) * 1987-09-21 1993-06-15

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129330U (en) * 1974-08-28 1976-03-03
JPS5450524A (en) * 1977-09-29 1979-04-20 Asahi Chemical Ind Method of making lighttweight foamedd concrete externallwall plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129330U (en) * 1974-08-28 1976-03-03
JPS5450524A (en) * 1977-09-29 1979-04-20 Asahi Chemical Ind Method of making lighttweight foamedd concrete externallwall plate

Also Published As

Publication number Publication date
JPS5988364A (en) 1984-05-22

Similar Documents

Publication Publication Date Title
US4407676A (en) Fiber-reinforced cement and process
DK173206B1 (en) Synthetic fiber for use in reinforcing cement mortar or concrete and cement composition containing the fiber
US4414030A (en) Fiber-reinforced cement, and process
US3591395A (en) Hydraulic cementitious compositions reinforced with fibrillated plastic film
CN111499239A (en) Composite structural material and aggregate therefor
EP0261971A1 (en) Fiber-reinforced cement material and molded article comprising hardened product thereof
US20060276088A1 (en) Profiled Structural Concrete Fiber Material And Building Products Including Same, And Methods
JPS6126510B2 (en)
KR101569273B1 (en) Reinforcing concrete composition comprising fiber using by waste fish net for and method for producing the same
JPH01261250A (en) Admixture for cement concrete and mortar produced by using highly water-absorbing resin
US8142889B2 (en) Reinforcement composition and method thereof
JPH0359025B2 (en)
CA2428684C (en) Reinforcement fiber bundle and production method of such reinforcement fiber bundle
JPH10183473A (en) Bundled yarn
AU2002229641A1 (en) Reinforcement fiber bundle and production method of such reinforcement fiber bundle
EP0152490A1 (en) Improved fibre-reinforced cement and process
JPS60215559A (en) Fiber for cement mortar or concrete reinforcement and product therefrom
JPH04170352A (en) Fiber reinforced inorganic hardenable composition and production thereof
US4544606A (en) Fibrilled polymeric films as reinforcement in manufactured products based on hydraulic binders
RU2001113586A (en) Raw mix for the manufacture of cellular materials and the method of its preparation
JP2574182B2 (en) Extrusion molding method of inorganic plate
JP3841472B2 (en) Porous inorganic molded product
JPH0781994A (en) Mortar composition and executing method for mortar and executing method for sound insulating wall
JPH0127014B2 (en)
JPH0816020B2 (en) Method for producing inorganic extrudate