JPH04169708A - Low-nox burner - Google Patents

Low-nox burner

Info

Publication number
JPH04169708A
JPH04169708A JP2291941A JP29194190A JPH04169708A JP H04169708 A JPH04169708 A JP H04169708A JP 2291941 A JP2291941 A JP 2291941A JP 29194190 A JP29194190 A JP 29194190A JP H04169708 A JPH04169708 A JP H04169708A
Authority
JP
Japan
Prior art keywords
combustion
flame
air
stage
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2291941A
Other languages
Japanese (ja)
Other versions
JPH07101084B2 (en
Inventor
Kazuhiko Koizumi
和彦 小泉
Tasaburo Eto
江藤 太三郎
Isamu Koyama
勇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2291941A priority Critical patent/JPH07101084B2/en
Priority to KR1019910019061A priority patent/KR960002791B1/en
Publication of JPH04169708A publication Critical patent/JPH04169708A/en
Publication of JPH07101084B2 publication Critical patent/JPH07101084B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/24Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • F23D14/24Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other at least one of the fluids being submitted to a swirling motion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)

Abstract

PURPOSE:To contrive suppression of NOx formation, by supplying combustion air in two stages, using first-stage combustion air for combustion in a reducing atmosphere, and supplying second-stage combustion air at positions arranged alternately with positions for a self-recirculating gas on a circle so that string form oxidizing combustion regions and non-string form reducing combustion regions are formed alternately with each other. CONSTITUTION:Combustion air is fed from a blower l into a wind box 2. A portion of the combustion air passes through a regulatable damper 3, and is put into a swirl flow by a stabilizer 5 provided at the tip of a nozzle chamber 4, to be ejected into a furnace 6. An oil is pressurized by an oil pump 7, and is fed through an oil pipe 8 to be sprayed from a nozzle 9 as fine particles, which are mixed with the swirling combustion-air flow, whereby combustion is started. Second-stage combustion air is fed through a gap between an outer casing 10 and an inner tube 11, and is divided at a front wall 12 of an inducing nozzle 17 into a plurality of portions. The portions are ejected through chambers 13 toward air ports 14, and are mixed with a reducing atmosphere to perform blue-flame combustion, forming string form a plurality of oxidizing combustion regions in the furnace 6. A portion of the resultant combustion gas performs self-circulation while releasing heat, and enters a circulating gas inlet port 16, to be blown again into the furnace 6 through a gas outlet port 20.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は大気汚染の原因となるNOXを抑制する低NO
Xバーナに関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is a low NO
This relates to an X burner.

(従来技術) バーナにおけるN○ス抑制燃焼技術はa)排ガス再循環
方式、b)2段燃焼方式及びC)分割火炎方式触媒燃焼
方式がしられている。
(Prior Art) As the NOx suppression combustion technology in burners, a) an exhaust gas recirculation method, b) a two-stage combustion method, and C) a split flame catalytic combustion method are known.

(a)の排ガス再循環方式は、第7図に示すように煙道
aを分岐させた再循環通路すで排ガスを再循環させる方
式である。この方式は、次のような利点及び欠点をもっ
ている。
The exhaust gas recirculation system (a) is a system in which the exhaust gas is recirculated through a recirculation passage in which the flue a is branched, as shown in FIG. This method has the following advantages and disadvantages.

1)再循環ガス温度が300℃前後と低い場合は、最も
有効確実なNOX抑制技術であると言われている。
1) It is said that this is the most effective and reliable NOx suppression technology when the recirculation gas temperature is as low as around 300°C.

これに対し第8図の符号Cで示すごとき燃焼ガス自己循
環方式は、循環ガスの温度が1000〜1300℃と高
温であるため、NOX抑制の効果が少く酸素分圧が下が
るために燃焼は不安定となる。燃焼ガス自己再循環方式
は簡単であるが、現段階の技術では効果はあまり期待で
きない。
On the other hand, in the combustion gas self-circulation system shown by symbol C in Fig. 8, the temperature of the circulating gas is as high as 1000 to 1300°C, so the NOx suppression effect is small and the oxygen partial pressure decreases, resulting in no combustion. It becomes stable. Although the combustion gas self-recirculation method is simple, it is not expected to be very effective with current technology.

2)排ガス再循環方式は新鮮燃焼空気(○、=21%)
に排ガス(02=3〜8%)を空気100に対し排ガス
20前後を混合するため(o2=1s〜19%)となり
燃焼室容積を(10〜16%)大きくする必要がある。
2) Exhaust gas recirculation method uses fresh combustion air (○, = 21%)
In order to mix around 20 parts of exhaust gas (02 = 3 to 8%) to 100 parts of air (02 = 1s to 19%), it is necessary to increase the combustion chamber volume (10 to 16%).

3)排ガス再循環方式は設備費据付面積が大きく、10
0 X 10’Kcal/ h以下の熱設備では割高と
なる。
3) Exhaust gas recirculation method requires large equipment cost and installation area;
Heat equipment with a capacity of 0 x 10'Kcal/h or less is relatively expensive.

次に(b)の二段燃焼方式(第9図及び第10図参照)
には、次のような問題がある。
Next, (b) two-stage combustion method (see Figures 9 and 10)
has the following problems:

1)第10図の如き一段目酸化炎燃焼と二段目還元炎燃
焼はガス或は100 X 10’Kcal/ h以下の
油バーナでは実施できるが、100XI○4Kcal/
h以下の油バーナでは構造上燃焼ポート部のスペースが
大となり実用的でない。
1) The first stage oxidizing flame combustion and the second stage reducing flame combustion as shown in Fig. 10 can be carried out with a gas or oil burner of 100 X 10'Kcal/h or less, but 100XI○4Kcal/
An oil burner with a capacity of less than h is impractical because the combustion port requires a large space due to its structure.

2)第9図の如き一段目還元炎燃焼と二段目酸化炎燃焼
はガスバーナでは実施できるが油バーナでは煤の発生を
起しやすい。
2) The first-stage reducing flame combustion and the second-stage oxidizing flame combustion as shown in FIG. 9 can be performed with a gas burner, but oil burners tend to generate soot.

又一段目還元炎燃焼時の熱放散が充分できない場合は、
火炎温度が低下しないま一段目還元炎燃焼に移るためN
OX抑制にならない。
Also, if heat dissipation during the first stage reduction flame combustion is not sufficient,
The N
Does not suppress OX.

3)二段燃焼方式はバーナ炎口が自由に設計でき取付面
スペースのある大型バーナでは比較的に装着し易いが、
小型バーナは燃焼ポートの寸法に制約があり、装着スペ
ースも少い場合は問題がある。
3) The two-stage combustion method allows the burner flame port to be freely designed and is relatively easy to install on large burners with sufficient mounting surface space.
Small burners have restrictions on the dimensions of their combustion ports, which poses problems if the installation space is small.

4)複数の油ノズルを設置する場合、同一平面では装置
できるが、燃焼方向軸に前後しての装着は無理がありト
ラブルの原因となる。
4) When installing multiple oil nozzles, it is possible to install them on the same plane, but it is unreasonable to install them in front and behind the combustion direction axis, which may cause trouble.

さらに(c)の分割火炎方式(濃淡燃焼方式)(第11
図〜第13図参照)は、第11図の如くニアリッチ炎と
油すッチ炎の組合せで、 1)大型油バーナ、ガスバーナでは複数個のノズルを採
用して比較的に自由に分割火炎を作ることができるが、
ガンタイプバーナはバーナ炎口が直径165II11以
上となる1 0’ OX 10 ’Kcal/ h以下
では設計上複数個のノズルを装着し燃焼量を個別に変化
させて分割火炎(濃淡燃焼)(第13図)を作るには難
点がある。
Furthermore, (c) split flame method (concentration combustion method) (11th
Figures 13) are a combination of near-rich flame and oil-stain flame as shown in Figure 11. 1) Large oil burners and gas burners use multiple nozzles to split flames relatively freely. It can be made, but
For gun type burners, when the burner mouth has a diameter of 165II11 or more and is less than 10' OX 10' Kcal/h, multiple nozzles are installed in the design and the combustion amount is individually varied to create a split flame (concentration combustion) (No. 13). There are some difficulties in creating the figure.

又2)燃料側ではなく空気側の供給方法を工夫して分割
火炎を作ることは可能で、又燃料側で分割火炎を工夫す
るより経済性が高い。さらり、I分割火炎は火炎を一条
として束ね熱放散を効率よく行え火炎温度を抑えてNO
Xを抑制することができる。
2) It is possible to create split flames by devising a supply method on the air side rather than on the fuel side, and it is more economical than creating split flames on the fuel side. The smooth, I-split flame bundles the flames into a single ray and efficiently dissipates heat, suppressing the flame temperature and reducing NO
X can be suppressed.

(発明が解決しようとする課題) 本発明による低NOXバーナは分割火炎方式と自己再循
環方式を組合せ、油ノズルで分割火炎を形成するための
燃焼空気及び再循環ガスの新規な供給方法を提供し、火
炎温度が1300”Cを越えるのは条状酸化炎燃焼領域
の一部であり、NOXの生成を僅少に抑えることができ
るようにすること、又Noを還元する条状還元炎燃焼領
域がNO発生部と近接し拡散によって、生成したNOX
を還元する機能をもつためにNOXの生成は最少限にお
さえることができる低NOXバーナを提供することを目
的とする。
(Problems to be Solved by the Invention) The low NOX burner according to the present invention combines a split flame method and a self-recirculation method, and provides a new method for supplying combustion air and recirculation gas to form a split flame with an oil nozzle. However, the part where the flame temperature exceeds 1300"C is a part of the combustion region with a striped oxidizing flame, so it is necessary to suppress the generation of NOx to a small extent, and the combustion region with a striped reducing flame that reduces NO. comes close to the NO generating part and diffuses, resulting in NOX generated
An object of the present invention is to provide a low NOX burner that can minimize the generation of NOX due to its ability to reduce NOX.

(課題を解決するための手段) 燃焼空気を二段に分けて供給し、一段目を還元雰囲気で
燃焼し、二段目の空気を自己再循環ガスと円周上に交互
に配列して供給し、条状酸化燃焼領域と非条状還元燃焼
領域を交互に構成し、遠心的に拡がる環状の還元燃焼気
流の中で分割火炎を形成するようにし、前記条状酸化炎
燃焼領域で燃焼が完了し、残存する空気は条状還元炎燃
焼領域へ拡散し、酸素分圧の低い状況で緩慢な燃焼を行
わせる。交互に構成される条状酸化燃焼気流、条状還元
燃焼気流は一つの気流の束と見做される。
(Means for solving the problem) Combustion air is supplied in two stages, the first stage is combusted in a reducing atmosphere, and the second stage air is supplied alternately with self-recirculating gas on the circumference. The striped oxidation combustion region and the non-striated reduction combustion region are arranged alternately to form split flames in the centrifugally expanding annular reduction combustion airflow, and combustion occurs in the striped oxidation flame combustion region. Once completed, the remaining air diffuses into the strip-reducing flame combustion region, causing slow combustion under conditions of low oxygen partial pressure. The striped oxidation combustion airflow and the striped reduction combustion airflow that are alternately configured are regarded as one bundle of airflow.

この燃焼気流束は次第に慣性を失い減速し燃焼を完了す
るが、一部は火炎の外周よりバーナの循環ガス吸入口へ
と自己循環する。又一部は火炎中心部に生じる負圧部へ
流入する循環流となるようにした。
This combustion air flux gradually loses its inertia and decelerates to complete combustion, but a portion of it self-circulates from the outer periphery of the flame to the circulating gas inlet of the burner. In addition, a part of the flow is made to flow into the negative pressure section generated at the center of the flame as a circulating flow.

(実施例) 図面に基いて説明する。第1図で燃焼空気は送風機1よ
りウィンドボックス2に入り、その一部は調節可能なダ
ンパ3を経てノズル室4の先端に設けたスタビライザ5
によってゆるい旋回流となり火炉6内に噴出する。油は
油ポンプ7によって昇圧され油管8を通りノズル9より
微細な粒子に噴霧され、旋回する燃焼空気流と混合し燃
焼を開始する。ダンパ3を介して供給する一段目燃焼空
気量は全燃焼空気量の15〜40%で還元雰囲気(酸欠
燃焼)を形成する。
(Example) An explanation will be given based on the drawings. In Fig. 1, combustion air enters a wind box 2 from a blower 1, and a part of it passes through an adjustable damper 3 and a stabilizer 5 installed at the tip of a nozzle chamber 4.
As a result, it becomes a gentle swirling flow and is ejected into the furnace 6. The oil is pressurized by the oil pump 7, passes through the oil pipe 8, is sprayed into fine particles from the nozzle 9, mixes with the swirling combustion air stream, and starts combustion. The amount of first-stage combustion air supplied via the damper 3 is 15 to 40% of the total amount of combustion air to form a reducing atmosphere (oxygen-deficient combustion).

二段目の燃焼空気は外筒10と内筒11の隙間を通って
インジュースノズル17の前壁12で空気は複数に分か
れて室13より空気口14へ向って噴出し、還元雰囲気
と混合して火炉6内で複数の条状酸化炎燃焼領域を形成
し青炎で燃焼する。
The combustion air in the second stage passes through the gap between the outer cylinder 10 and the inner cylinder 11, and is divided into a plurality of parts at the front wall 12 of the in-juice nozzle 17, and is ejected from the chamber 13 toward the air port 14, where it mixes with the reducing atmosphere. A plurality of strip-shaped oxidation flame combustion areas are formed in the furnace 6, and combustion occurs with blue flame.

この燃焼ガスの一部は放熱し乍ら自己循環して循環ガス
吸込口16より入り循環ガス吹出口2゜より再び火炉6
内に吹出す。17は循環ガス吸込口16を負圧として燃
焼ガスの循環を容易にするためのインジュースノズルで
ある。点火トランス18は点火電極19の先端部に高圧
電気を送り電気火花によって混合気流に点火させる。
A part of this combustion gas self-circulates while dissipating heat, enters the circulating gas inlet 16 and returns to the furnace 6 from the circulating gas outlet 2°.
It squirts inside. Reference numeral 17 is an in-juice nozzle for applying negative pressure to the circulating gas suction port 16 to facilitate circulation of combustion gas. The ignition transformer 18 sends high-voltage electricity to the tip of the ignition electrode 19 to ignite the air mixture with an electric spark.

循環ガスの吹出口20は円周上に複数個設けられ(第2
図)、空気口14と交互に隣接して環状に配設されてい
る。従って燃焼空気流(02=21%)と循環ガス流(
02=2%)は交互に条状となって吹出し、一段目の還
元雰囲気(第5図A参照)を包囲する形となるが、燃焼
に関与するのは直進する燃焼空気流゛と混合する領域で
、循環ガス流と混合する領域では酸欠状態で油粒子は高
温にさらされて更にガス化は促進されるが燃焼には至ら
ない、即ち、形成される火炎は第6図の如く複数の条状
分割火炎となり、火炎の熱放射は容易かつ急速に行なわ
れるのでNOXの発生を抑制することができる。
A plurality of circulating gas outlets 20 are provided on the circumference (second
), they are arranged in a ring shape alternately adjacent to the air ports 14. Therefore, the combustion air flow (02=21%) and the circulating gas flow (
02 = 2%) is blown out alternately in strips, surrounding the first stage reducing atmosphere (see Figure 5 A), but what is involved in combustion is mixing with the combustion air flow that advances straight. In the region where it mixes with the circulating gas flow, the oil particles are exposed to high temperatures in an oxygen-deficient state, further promoting gasification but not leading to combustion. In other words, multiple flames are formed as shown in Figure 6. Since the flame is divided into stripes, heat radiation from the flame is carried out easily and rapidly, and the generation of NOx can be suppressed.

(作用) 従来の分割火炎方式の低NOXバーナは複数個の油ノズ
ルを設けて火炎を分割しているが、火炎の方向性をもた
すため棒状の火炎となり、燃焼空気との混合が悪く過剰
空気は30%以上を必要としていた。又低空気比で燃焼
を行えば(過剰空気20%以下)煤が発生するため、分
割火炎方式の低NOXバーナの低酸素燃焼には制約があ
る。
(Function) Conventional split flame type low NOX burners are equipped with multiple oil nozzles to split the flame, but because the flame is directional, the flame becomes rod-shaped and mixes poorly with the combustion air. Excess air was required to be 30% or more. Furthermore, if combustion is performed at a low air ratio (excess air of 20% or less), soot will be generated, so there are restrictions on the low oxygen combustion of the split flame type low NOx burner.

本発明の低NOXバーナは分割火炎方式と自己再循環方
式を組合せ、かつ初段階燃焼で油粒子の蒸発気化機構を
もつバーナで1個の油ノズルで先づ還元炎を形成して噴
霧粒子を蒸発気化して油ガス状となった還元雰囲気流に
燃焼空気及び再循環ガスを交互に配列、供給して条状の
酸化燃焼領域、還元燃焼領域を形成する分割火炎方式の
バーナである。
The low NOX burner of the present invention is a burner that combines a split flame method and a self-recirculation method, and has a mechanism for evaporating oil particles in the initial stage of combustion.It first forms a reducing flame with one oil nozzle and generates atomized particles. This burner is a split flame type burner that alternately arranges and supplies combustion air and recirculated gas to a reducing atmosphere flow that has been evaporated into oil and gas to form a strip-shaped oxidation combustion region and a reduction combustion region.

分割火炎方式では燃料リッチ、空気リッチのゾーンを作
り濃淡燃焼と呼ばれるNOX低減化の方式であるが5本
発明のバーナでは燃焼過程の初段階で油粒子を蒸発気化
した濃密な還元雰囲気を遠心的に拡散し、燃焼空気と再
循環ガスを交互に配列供給して酸化燃焼と還元燃焼の条
状領域を燃焼火炎面で形成させる方式であるから低空気
比(過剰空気15%)で煤の発生は全く零で、NOX低
減率60%を実現することができた。因みに3万Kca
l/h温水ボイラによる実権テストでNOX無対策バー
ナでNOX値88ppm○2=O%換算をこの低NOX
バーナを使用してNOX値32ppmO2=O%換算、
NOX低減率64%の驚異的な実績をあげた(ちなみに
東京都低NOX機器認定基準値ハ80 PpH+02 
= 0%換算である)。
In the split flame method, fuel-rich and air-rich zones are created to reduce NOx, which is called concentrated combustion.5 However, in the burner of the present invention, in the initial stage of the combustion process, the dense reducing atmosphere in which oil particles are evaporated is centrifuged. This method generates soot at a low air ratio (excess air 15%) by supplying combustion air and recirculating gas alternately to form striped areas of oxidative combustion and reductive combustion on the combustion flame surface. was completely zero, and we were able to achieve a NOX reduction rate of 60%. By the way, 30,000Kca
In a practical test using an l/h hot water boiler, the NOx value was 88ppm with a NOx-free burner.
Using a burner, NOX value 32ppm O2 = O% conversion,
Achieved an astonishing NOX reduction rate of 64% (by the way, the Tokyo Metropolitan Government's low NOX equipment certification standard value ha80 PpH+02)
= 0% conversion).

又本発明のバーナは全燃焼空気量の15〜40%を一段
目燃焼空気としてノズル室4よりスタビライザ5を介し
て旋回導入し、油ノズル9より噴霧された微細な油粒子
と混合させ、点火し、還元雰囲気を形成しスタビライザ
5からの旋回空気の慣性によって遠心方向に拡散する。
In addition, in the burner of the present invention, 15 to 40% of the total amount of combustion air is swirled into the nozzle chamber 4 via the stabilizer 5 as the first stage combustion air, mixed with fine oil particles sprayed from the oil nozzle 9, and ignited. Then, a reducing atmosphere is formed, and the inertia of the swirling air from the stabilizer 5 causes the air to diffuse in the centrifugal direction.

この間燃焼生成熱は油粒子の蒸発・気化に費やされるた
めに火炎温度は1200℃を越えることはない。
During this time, the heat produced by combustion is used for evaporation and vaporization of oil particles, so the flame temperature does not exceed 1200°C.

さらに二段目燃焼空気口14と再循環ガス吹出口20は
隣接して交互に複数個設置されている。
Further, a plurality of second-stage combustion air ports 14 and recirculation gas blow-off ports 20 are arranged adjacently and alternately.

空気口14より噴出する燃焼空気は一段目の還元雰囲気
ガス流と混合拡散して条状の酸化炎を形成して急速に燃
焼する。再循環ガス吹出口20から吹出す再循環ガスと
混合する一段目の還元雰囲気ガス流は再循環ガスの保有
熱、及び条状酸化炎よりの熱によって気化され高温ガス
流となるか、酸欠雰囲気のために燃焼を継続できない状
態で条状酸化炎に追従するが、条状酸化炎の燃焼未期に
至って残存の空気と拡散して三段目の緩慢な燃焼(第6
図参照)を行い燃焼は完了する。
The combustion air ejected from the air port 14 mixes with the first-stage reducing atmosphere gas flow and diffuses to form a strip-shaped oxidation flame, which is rapidly combusted. The first-stage reducing atmosphere gas stream mixed with the recirculating gas blown out from the recirculating gas outlet 20 is either vaporized by the heat retained in the recirculating gas and the heat from the striped oxidizing flame and becomes a high-temperature gas stream, or becomes an oxygen-deficient gas stream. It follows the linear oxidation flame in a state where combustion cannot continue due to the atmosphere, but when the combustion of the linear oxidation flame reaches its premature stage, it spreads with the remaining air and starts the third stage of slow combustion (sixth stage).
(see figure) and combustion is completed.

(効果) 本発明による燃焼方式は燃焼空気を二段に分けて供給し
、一段目還元雰囲気で燃焼し、二段目の空気を分割し自
己再循環ガスと交互に配列して供給し、遠心的に拡がる
還元雰囲気流の中で条状に酸化燃焼領域と還元燃焼領域
を交互に構成して分割火炎を形成する。条状酸化燃焼領
域の燃焼未期に至って、残存する空気は還元燃焼領域へ
拡散し、緩慢な燃焼を完了するが、その未期には環状の
燃焼気流は次第にエナーシャを失い減速し一部は火炎の
外周部よりバーナの循環吸込口へ還流し、−部は火炎の
中心部に生じる負圧部へ流入する循環流となって火炎中
心部に発生するNOX抑制に寄与する。
(Effects) The combustion method according to the present invention supplies combustion air in two stages, the first stage burns in a reducing atmosphere, the second stage air is divided and supplied alternately with self-recirculating gas, and centrifugal The oxidizing combustion region and the reducing combustion region are arranged alternately in a strip shape in a reducing atmosphere flow that spreads across the area to form divided flames. When combustion in the striped oxidation combustion region reaches its final stage, the remaining air diffuses into the reduction combustion region and completes slow combustion. The flow flows back from the outer periphery of the flame to the circulation suction port of the burner, and the - part becomes a circulating flow that flows into the negative pressure section generated at the center of the flame, contributing to suppression of NOx generated at the center of the flame.

この燃焼方式により、火炎温度が1300℃を越えるの
は条状酸化燃焼領域の一部であり、NOXの生成を僅少
に抑えることができる。又N○を還元する条状還元燃焼
領域がNoを生成する条状酸化燃焼領域と併流しており
、その拡散によって生成したNOXを還元する機能をも
つためにNOXの生成は更に最少限におさえることがで
きる。
With this combustion method, the flame temperature exceeds 1300° C. only in a part of the strip-shaped oxidation combustion region, and the generation of NOX can be suppressed to a small level. In addition, the strip-shaped reduction combustion region that reduces N○ flows in parallel with the strip-shaped oxidation combustion region that generates No, and has the function of reducing NOX generated by its diffusion, so the generation of NOX can be further minimized. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する低NOXバーナの断面図
。 第2図は第1図のn−n矢視断面図。 第3図は第1図の■矢視図。 第4図は第3図の■矢視断面図。 第5図は本発明方法による燃焼状態を示す図。 第6図は第1図の左側面図。 第7図と第8図は公知燃焼ガス自己循環方式の説明図。 第9図と第10図は公知二段燃焼方式の説明図。 第11図乃至第13図は公知分割火炎方式の説明図。 図において; 1 送風機     2 ウィンドボックス3 ダンパ
     4 ノズル室 5 スタビライザ  6 火炉 7 油ポンプ    8 油管 9 ノズル     10  外筒 11  内筒      12  前壁13  室  
     14  空気口16  循環ガス吸込口 1フ  インジュースノズル 18  点火トランス  19  点火電極20  ガ
ス吹出口 以上
FIG. 1 is a sectional view of a low NOx burner implementing the method of the present invention. FIG. 2 is a sectional view taken along the line nn in FIG. 1. Figure 3 is a view in the direction of the ■ arrow in Figure 1. FIG. 4 is a sectional view taken along the arrow ■ in FIG. FIG. 5 is a diagram showing combustion conditions according to the method of the present invention. FIG. 6 is a left side view of FIG. 1. FIGS. 7 and 8 are explanatory diagrams of a known combustion gas self-circulation system. FIG. 9 and FIG. 10 are explanatory diagrams of a known two-stage combustion system. 11 to 13 are explanatory diagrams of a known split flame method. In the figure: 1 Blower 2 Wind box 3 Damper 4 Nozzle chamber 5 Stabilizer 6 Furnace 7 Oil pump 8 Oil pipe 9 Nozzle 10 Outer cylinder 11 Inner cylinder 12 Front wall 13 Chamber
14 Air port 16 Circulating gas inlet 1 Fin Juice nozzle 18 Ignition transformer 19 Ignition electrode 20 Gas outlet or above

Claims (1)

【特許請求の範囲】[Claims] 燃焼空気を二段に分けて供給し、一段目還元雰囲気で燃
焼し、二段目の空気と自己再循環ガスとを円周上に交互
に配列して供給することにより遠心的に拡散する一段目
の環状の還元雰囲気を包囲して条状酸化燃焼領域と条状
還元非燃焼領域を交互に構成して分割火炎を形成するよ
うにし、前記条状酸化燃焼領域の燃焼の未期には、残存
する空気は還元燃焼領域へ拡散し、三段目の緩慢な燃焼
を完了し、その未期には環状の火炎は次第に慣性を失い
減速すると同時に一部は火炎の外周部よりバーナ循環吸
入口へ環流し、一部は火炎の中心部に生じた負圧部へ流
入する循環流となるようにした低NO_Xバーナ。
Combustion air is supplied in two stages, the first stage burns in a reducing atmosphere, and the second stage air and self-recirculating gas are alternately arranged and supplied on the circumference in one stage, which diffuses centrifugally. A strip-shaped oxidizing combustion region and a strip-shaped reducing non-combustion region are alternately formed surrounding the annular reducing atmosphere to form a divided flame, and when the combustion in the strip-shaped oxidizing combustion region is not yet completed, The remaining air diffuses into the reduction combustion area and completes the third stage of slow combustion, and before that stage, the annular flame gradually loses its inertia and decelerates, and at the same time, a portion of the flame reaches the burner circulation inlet from the outer periphery of the flame. A low NO_X burner with a circulating flow that flows back to the flame and partially flows into the negative pressure area generated in the center of the flame.
JP2291941A 1990-10-31 1990-10-31 Low NOx burner Expired - Lifetime JPH07101084B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2291941A JPH07101084B2 (en) 1990-10-31 1990-10-31 Low NOx burner
KR1019910019061A KR960002791B1 (en) 1990-10-31 1991-10-29 Burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2291941A JPH07101084B2 (en) 1990-10-31 1990-10-31 Low NOx burner

Publications (2)

Publication Number Publication Date
JPH04169708A true JPH04169708A (en) 1992-06-17
JPH07101084B2 JPH07101084B2 (en) 1995-11-01

Family

ID=17775443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2291941A Expired - Lifetime JPH07101084B2 (en) 1990-10-31 1990-10-31 Low NOx burner

Country Status (2)

Country Link
JP (1) JPH07101084B2 (en)
KR (1) KR960002791B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630618U (en) * 1992-08-31 1994-04-22 サンレー冷熱株式会社 Low NOx oil burner
CN110566961A (en) * 2019-10-29 2019-12-13 深圳市佳运通电子有限公司 Central flame-stabilizing combustion head for low-nitrogen combustor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101307795B1 (en) * 2012-11-14 2013-09-25 김지원 Combustion air flow centrifugation by area using combustion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244808A (en) * 1975-10-07 1977-04-08 Asahi Glass Co Ltd Method of changing composition of molten glass
JPS5585805A (en) * 1978-12-20 1980-06-28 Babcock Hitachi Kk Low nox burner device
JPH0232531A (en) * 1988-07-22 1990-02-02 Mitsubishi Electric Corp Semiconductor processing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244808A (en) * 1975-10-07 1977-04-08 Asahi Glass Co Ltd Method of changing composition of molten glass
JPS5585805A (en) * 1978-12-20 1980-06-28 Babcock Hitachi Kk Low nox burner device
JPH0232531A (en) * 1988-07-22 1990-02-02 Mitsubishi Electric Corp Semiconductor processing equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630618U (en) * 1992-08-31 1994-04-22 サンレー冷熱株式会社 Low NOx oil burner
CN110566961A (en) * 2019-10-29 2019-12-13 深圳市佳运通电子有限公司 Central flame-stabilizing combustion head for low-nitrogen combustor
CN110566961B (en) * 2019-10-29 2021-03-23 深圳市佳运通电子有限公司 Central flame-stabilizing combustion head for low-nitrogen combustor

Also Published As

Publication number Publication date
KR920008406A (en) 1992-05-28
KR960002791B1 (en) 1996-02-26
JPH07101084B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
JP3312152B2 (en) Low NOx combustion
US9869469B2 (en) Combustion burner and boiler including the same
US5685242A (en) Pulverized coal combustion burner
RU2442929C1 (en) Method of reduction of nitrogen oxides in the boiler working with dispenced carbon where internal combustion type burners are used
CA1042339A (en) Pollutant reduction with selective gas stack recirculation
JPH01305206A (en) Burner
JP2791029B2 (en) Pulverized coal burner
JP2004190981A (en) Combustion device and wind box
JPH04169708A (en) Low-nox burner
US20230014871A1 (en) Radiant wall burner
CN105953219B (en) Flameless combustion apparatus
CN205825009U (en) Flameless combustion apparatus
JP6732960B2 (en) Method for burning fuel and boiler
CN220017365U (en) Low nitrogen combustion head of flue gas inner loop
JP3059289B2 (en) Low nitrogen oxide boiler equipment
JPH085019A (en) Oil burner
JPS6021607Y2 (en) Premix combustion burner
JPS60218505A (en) Burner
JP2951868B2 (en) Fire tube boiler with a combustor in the fire tube group
JPH0688609A (en) Exhaust gas-burning gas burner
JPS6115363Y2 (en)
SU1280271A1 (en) Burner
JP3667837B2 (en) Burner
JPS5919842Y2 (en) combustion burner
JPS6350570Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 15

EXPY Cancellation because of completion of term