JPH0416929B2 - - Google Patents

Info

Publication number
JPH0416929B2
JPH0416929B2 JP57162501A JP16250182A JPH0416929B2 JP H0416929 B2 JPH0416929 B2 JP H0416929B2 JP 57162501 A JP57162501 A JP 57162501A JP 16250182 A JP16250182 A JP 16250182A JP H0416929 B2 JPH0416929 B2 JP H0416929B2
Authority
JP
Japan
Prior art keywords
capacitor
temperature
temperature fuse
parts
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57162501A
Other languages
Japanese (ja)
Other versions
JPS5951513A (en
Inventor
Mitsumasa Oku
Takeshi Hamabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16250182A priority Critical patent/JPS5951513A/en
Publication of JPS5951513A publication Critical patent/JPS5951513A/en
Publication of JPH0416929B2 publication Critical patent/JPH0416929B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/015Special provisions for self-healing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、あらゆる条件で動作する保安機能を
具備したコンデンサに関する。 従来例の構成とその問題点 従来より、コンデンサ自体に保安機能を付加す
る方法として次の二つがある。その一つは、特公
昭45−14621号公報他にあるコンデンサに温度ヒ
ユーズを内蔵させる方法であり、他の一つは、本
発明者らによつてすでに提案されている電極を分
割する方法である。 しかし、いずれの方法もそれぞれに欠点を持つ
ている。すなわち温度ヒユーズ内蔵のコンデンサ
は、雰囲気温度が異常に上昇した場合等のいわゆ
る熱暴走の場合には温度ヒユーズが溶断して容易
に保安機能が働らくが、一方、温度上昇の少ない
状態での異常な過電圧(直流、交流、直流+交
流、またはパルス電圧)による短時間の破壊の場
合には温度ヒユーズが溶断せず、保安機能が動作
しない場合があるという欠点を有している。また
分割電極構成にしたコンデンサは逆に、過電圧に
よる破壊の場合に容易に保安機能が動作するが、
熱暴走による破壊の場合に動作しにくい欠点を持
つ。 発明の目的 本発明は、樹脂外装金属化フイルムコンデンサ
に関し、特に、交流電圧使用時における信頼性の
高い保安機能付きコンデンサを提供することを目
的とする。 発明の構成 本発明のコンデンサは、誘電体を介して対向す
る電極の少なくとも一方の蒸着電極が複数個に分
割され、かつその分割電極の金属溶射される電極
縁端に沿つて複数の蒸着膜空白部を設けることに
より複数の小電流容量部となし、さらに溶断温度
が80℃から200℃の温度ヒユーズを内蔵した構成
としたものである。 誘電体がプラスチツクフイルムからなるコンデ
ンサ、特にポリエチレンテレフタレート誘電体を
用いたコンデンサは誘電体損失が比較的大きいた
め、過電圧破壊のみならず、熱的要因による破壊
の可能性が一般的に高くなる。このような場合、
何等かの要因である程度過熱した状態で過電圧が
かかつた場合には、低温時とは異なり、放電パル
スエネルギーの小さな部分破壊の現象となり、従
来の温度ヒユーズでは保安動作させるのが困難で
あり、また従来の単なる分割電極のみでは、断路
することも難かしい特殊な破壊状態となるが、分
割電極と共に、複数の小電流容量部を形成するこ
とにより、上記のような条件下でも容易に断路可
能となる。 さらに、複数の小電流容量部とすることによ
り、単一のものに比較して、蒸着膜に対するキズ
や単発の部分破壊などによる偶発的な断路現象を
抑制して、より信頼性の高いコンデンサを構成す
ることとなる。 また、上記コンデンサの構造と温度ヒユーズを
併用することにより、従来の如く、むやみに溶断
温度の低い温度ヒユーズを採用する必要がなくな
り、高温溶断型の温度ヒユーズが使用できるよう
になるため、コンデンサの製造過程の作業性にも
優れると共に、コンデンサの特性面でも安定した
コンデンサが提供できることとなる。 実施例の説明 以下本発明の実施例について説明する。第1
図、第2図、第3図は本発明の各実施例であつ
て、図において、1は後述の分割電極構成をもつ
コンデンサ素子、2a,2bは金属溶射部、3
a,3bはリード線、4はリード線3bの途中に
挿入された温度ヒユーズ、5はコンデンサ素子1
を覆う液体、固体または気体からなる絶縁物であ
る。なお第3図において、6は巻芯ボビンであ
る。 そして温度ヒユーズ4の位置は、第1図のよう
にコンデンサ素子1の外部や、第2図のようにコ
ンデンサ1の内部に位置するのが好ましく、特に
巻回型コンデンサの場合は、第3図のように巻芯
ボビン6の内部に設定するのがよい。このように
することにより、作業上それに特性上優れたコン
デンサを提供することができる。さらに温度ヒユ
ーズ4の溶断温度は、コンデンサの破壊温度等の
検討から80℃から200℃が好ましい。80℃未満で
は作業性やコンデンサの信頼性が低下するため好
ましくなく、200℃を越えると実質的に温度ヒユ
ーズが機能しなくなるため適さない。また過電圧
による破壊に対する保安機能をさらに容易に動作
させるために、次の処理を施こすことができる。
すなわち、少なくとも一方の分割電極の内部に、
金属溶射される電極縁端に沿つて帯状かつ間欠状
に他の蒸着電極部分より電流容量を小さく設定し
た蒸着電極部分を設けることができる。 以下、具体的な実施例を用いて本発明を説明す
る。 ポリエチレンテレフタレート(以下PETと略
記する)フイルム(厚さ6μm)の両面にアルミ
ニウムを真空蒸着することにより電極を設けた。
この時、その片面にマスキングにより、第4図の
ようなパターンを設けて分割電極を構成した。 図において、7はPETフイルム等のプラスチ
ツクフイルム、8は分割されている蒸着電極、9
は電極分割線、10はマージン部、11は蒸着膜
空白部、12は小電流容量部、Aは金属溶射方向
である。またl1=62mm、l2=3mm、l3=33.5mm、l4
=1.5mm、l5=0.5mm、l6=8mm、l7=0.5mmである。 そして上記パターンでは、金属溶射される電極
縁端に沿つて、一連の蒸着膜空白部11を設けて
いるため、この部分の電流容量が他の部分より小
さくなつている。蒸着膜空白部11の大きさは、
0.5mm×8mmの長方形で、0.5mm間隔で並んだ状態
になつている。また蒸着膜抵抗は平均2.5〜
4.5Ω/□であつた。この両面蒸着PETフイルム
と、合わせフイルムにポリプロピレン(以下、
PPと略記する)フイルム(厚さ5μm)を用いて、
巻芯ボビンに重ねて巻回し、容量50μFの巻回型
コンデンサ素子を得た。このコンデンサ素子に金
属溶射を施こし、加熱エージングした。次にリー
ド線付けの際に、片方のリード線の途中に、溶断
温度126℃の温度ヒユーズ(定格電流;10A)を
取り付け、第3図のように巻芯ボビン内に位置さ
せた。次にエポキシ樹脂で外装した後、破壊試験
を実施した。試料は全部で40個作り、試験と試
験に20個ずつ振り分けた。試験とは、室温中
に放置しておいたコンデンサを150℃の熱風恒温
槽に入れ、その直後コンデンサに定格電圧
(230VAC)を課電して、24時間放置し、コンデ
ンサからの発煙や発火を観察する試験である。試
験とは、コンデンサの最高使用温度(65℃)に
設定した熱風恒温槽中で、コンデンサが65℃に達
した後、定格電圧の4倍の電圧(920VAC)を課
電し、1時間放置してコンデンサからの発煙や発
火の状態を観察する試験である。その結果を次の
第1表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a capacitor equipped with a safety function that operates under all conditions. Conventional configurations and their problems Conventionally, there are two methods for adding safety functions to the capacitor itself: One is the method of incorporating a temperature fuse into the capacitor, which is described in Japanese Patent Publication No. 45-14621, and the other is the method of dividing the electrodes, which has already been proposed by the present inventors. be. However, each method has its own drawbacks. In other words, in a capacitor with a built-in temperature fuse, in the event of so-called thermal runaway, such as when the ambient temperature rises abnormally, the temperature fuse will easily melt and the safety function will be activated. In the case of short-term breakdown due to overvoltage (DC, AC, DC+AC, or pulsed voltage), the temperature fuse may not melt and the safety function may not operate. Conversely, a capacitor with a split electrode configuration will easily activate its safety function in the event of breakdown due to overvoltage.
It has the disadvantage of being difficult to operate in the event of destruction due to thermal runaway. OBJECTS OF THE INVENTION The present invention relates to a resin-clad metallized film capacitor, and in particular, an object of the present invention is to provide a highly reliable capacitor with a safety function when using an alternating current voltage. Structure of the Invention In the capacitor of the present invention, at least one vapor-deposited electrode of the electrodes facing each other via a dielectric is divided into a plurality of parts, and a plurality of vapor-deposited film blanks are formed along the edges of the divided electrodes to be metal-sprayed. By providing multiple parts, it becomes multiple small current capacity parts, and it also has a built-in temperature fuse with a melting temperature of 80°C to 200°C. Capacitors whose dielectric material is made of plastic film, especially capacitors using polyethylene terephthalate dielectric material, have a relatively large dielectric loss, so that the possibility of destruction not only due to overvoltage but also due to thermal factors is generally high. In such a case,
If an overvoltage is applied in a state of overheating for some reason, unlike at low temperatures, a phenomenon of partial breakdown with small discharge pulse energy occurs, making it difficult to operate safely with conventional temperature fuses. In addition, with only conventional split electrodes, a special breakdown condition occurs that is difficult to disconnect, but by forming multiple small current capacity parts together with the split electrodes, disconnection is easily possible even under the above conditions. becomes. Furthermore, by having multiple small current capacity parts, compared to a single part, accidental disconnection phenomena such as scratches on the deposited film or single partial breakage can be suppressed, resulting in a more reliable capacitor. It will be configured. In addition, by using the above capacitor structure and a temperature fuse in combination, there is no need to use a temperature fuse with a low melting temperature, as in the past, and a high temperature fuse can be used. This makes it possible to provide a capacitor with excellent workability in the manufacturing process and with stable capacitor characteristics. Description of Examples Examples of the present invention will be described below. 1st
2 and 3 show respective embodiments of the present invention. In the figures, 1 is a capacitor element having a split electrode configuration, which will be described later, 2a and 2b are metal sprayed parts, and 3
a, 3b are lead wires, 4 is a temperature fuse inserted in the middle of the lead wire 3b, 5 is a capacitor element 1
An insulator made of liquid, solid, or gas that covers the In addition, in FIG. 3, 6 is a winding core bobbin. The temperature fuse 4 is preferably located outside the capacitor element 1 as shown in FIG. 1 or inside the capacitor 1 as shown in FIG. It is preferable to set it inside the core bobbin 6 as shown in FIG. By doing so, it is possible to provide a capacitor that is excellent in terms of workability and characteristics. Furthermore, the melting temperature of the temperature fuse 4 is preferably 80°C to 200°C in view of the breakdown temperature of the capacitor. If it is less than 80°C, the workability and reliability of the capacitor will deteriorate, which is undesirable, and if it exceeds 200°C, the temperature fuse will essentially stop functioning, so it is not suitable. Further, in order to more easily operate the safety function against destruction due to overvoltage, the following process can be performed.
That is, inside at least one of the divided electrodes,
Vapor deposition electrode portions having a smaller current capacity than other vapor deposition electrode portions can be provided in a band-like and intermittent manner along the edge of the electrode to be metal sprayed. The present invention will be explained below using specific examples. Electrodes were provided by vacuum-depositing aluminum on both sides of a polyethylene terephthalate (hereinafter abbreviated as PET) film (6 μm thick).
At this time, a pattern as shown in FIG. 4 was provided on one side by masking to form a divided electrode. In the figure, 7 is a plastic film such as PET film, 8 is a divided vapor deposition electrode, and 9 is a plastic film such as PET film.
10 is an electrode dividing line, 10 is a margin portion, 11 is a deposited film blank portion, 12 is a small current capacity portion, and A is a metal spraying direction. Also l 1 = 62mm, l 2 = 3mm, l 3 = 33.5mm, l 4
= 1.5 mm, l 5 = 0.5 mm, l 6 = 8 mm, and l 7 = 0.5 mm. In the above pattern, a series of vapor-deposited film blank parts 11 are provided along the edge of the electrode where metal is sprayed, so the current capacity of this part is smaller than that of other parts. The size of the vapor deposited film blank part 11 is
They are rectangular, 0.5mm x 8mm, and lined up at 0.5mm intervals. Also, the average resistance of the deposited film is 2.5~
It was 4.5Ω/□. This double-sided vapor deposited PET film and the composite film are made of polypropylene (hereinafter referred to as
Using a film (abbreviated as PP) (thickness 5 μm),
This was layered and wound around a core bobbin to obtain a wound capacitor element with a capacitance of 50 μF. This capacitor element was subjected to metal spraying and heat aged. Next, when attaching the lead wires, a temperature fuse (rated current: 10A) with a blowing temperature of 126°C was attached to the middle of one of the lead wires, and was positioned within the core bobbin as shown in Figure 3. Next, after covering with epoxy resin, a destructive test was conducted. A total of 40 samples were made, and 20 were distributed to each test. The test involves placing a capacitor that has been left at room temperature in a 150°C hot air constant temperature bath, immediately applying the rated voltage (230VAC) to the capacitor, and leaving it for 24 hours to check for smoke or ignition from the capacitor. It is an observational test. The test involves placing the capacitor in a hot air constant temperature oven set at the capacitor's maximum operating temperature (65°C), and after the capacitor reaches 65°C, a voltage (920VAC) four times the rated voltage is applied, and the capacitor is left for one hour. This is a test to observe smoke and ignition from the capacitor. The results are shown in Table 1 below.

【表】 この結果、試験、試験ともに、全数、保安
機能が働らき、発煙・発火は皆無であつた。また
試験の試料は全数温度ヒユーズが動作していた
のに対して、試験の試料では、温度ヒユーズは
働らかず、過電圧によるセルフヒーリングのため
に、第4図の小電流容量部12で多数断路して保
安機能が動作しているのがわかつた。 比較のために従来のコンデンサを作成し、破壊
試験を実施した。上記実施例で用いたのと同じ分
割電極構成にしたコンデンサ素子を使い、温度ヒ
ユーズを内蔵しないでエポキシ樹脂外装したコン
デンサを得た。10試料ずつ、試料と試験を実
施した。その結果を次の第2表に示す。
[Table] As a result, the safety function worked in all cases in both tests, and there was no smoke or ignition. In addition, while all of the test samples had temperature fuses operating, in the test sample, the temperature fuses did not work, and many were disconnected in the small current capacity section 12 in Figure 4 due to self-healing due to overvoltage. I found out that the safety features were working. For comparison, we created a conventional capacitor and conducted a destructive test. Using a capacitor element with the same split electrode configuration as used in the above example, a capacitor without a built-in temperature fuse but coated with epoxy resin was obtained. Samples and tests were conducted on 10 samples each. The results are shown in Table 2 below.

【表】 この結果より、このタイプのコンデンサは試験
では保安機能が動作するが、試験では動作し
にくいことがわかる。 一方、分割電極でない従来より一般に用いられ
ている両面ともべた蒸着の両面蒸着PETフイル
ムとPPフイルムを重ねて巻芯ボビンに巻回し、
50μFのコンデンサ素子を作り、金属溶射を施こ
し、加熱エージングした後、リード線付けの際
に、片方のリード線の途中に温度ヒユーズ(溶断
温度126℃)を取り付け、第3図のように巻芯ボ
ビン内に位置させた。次にエポキシ樹脂外装した
後、破壊試験を実施した。その結果を次の第3表
に示す。
[Table] From this result, it can be seen that the safety function of this type of capacitor works during the test, but it is difficult to operate during the test. On the other hand, a double-sided vapor-deposited PET film and a PP film, which are not split electrodes and have been commonly used in the past, with solid vapor deposition on both sides, are layered and wound around a core bobbin.
After making a 50 μF capacitor element, applying metal spraying, and heat aging, when attaching the lead wires, attach a temperature fuse (melting temperature: 126°C) in the middle of one of the lead wires, and wind it as shown in Figure 3. It was located inside the lead bobbin. Next, after covering with epoxy resin, a destructive test was conducted. The results are shown in Table 3 below.

【表】 このタイプのコンデンサは、試験では保安機
能が働らくが、試験では働らかないことがわか
つた。 以上の実施例では巻回型のコンデンサの例を示
したが、これは積層型のコンデンサでもよい。さ
らには、この実施例では、乾式コンデンサの例で
示したが、油浸コンデンサであつてもよい。また
使用する誘電体は、PET、PPの他に、ポリエチ
レン、ポリスチレン、ポリカーボネート、ポリフ
ツ化ビニリデン等の各フイルムや紙を単独で、ま
たは複数種類組み合わせて使用することができ
る。また本実施例では、PETの両面蒸着を用い
たが、これはもちろん片面蒸着フイルムを二枚重
ねた構成であつてもよい。また巻芯ボビンに巻回
するタイプは、この巻芯ボビンは、プラスチツク
の成形品の他に、プラスチツクフイルム、クラフ
ト紙、それにプラスチツクの不織布等を巻回した
ものであつてもよい。 発明の効果 以上のように本発明によれば、あらゆる条件で
動作する優れた保安機能を備えたコンデンサを提
供することができるものであり、その産業性は大
なるものである。
[Table] It was found that this type of capacitor had a safety function that worked in the test, but it did not work in the test. In the above embodiments, a wound type capacitor is shown as an example, but a laminated type capacitor may also be used. Furthermore, although this embodiment uses a dry capacitor as an example, an oil-immersed capacitor may also be used. In addition to PET and PP, the dielectric material used may be polyethylene, polystyrene, polycarbonate, polyvinylidene fluoride, or other films or papers, either alone or in combination. Further, in this embodiment, double-sided deposition of PET was used, but of course a structure in which two single-sided deposited films were stacked may also be used. In addition to the type of winding around a core bobbin, the core bobbin may be made of plastic film, kraft paper, plastic nonwoven fabric, or the like, in addition to a plastic molded product. Effects of the Invention As described above, according to the present invention, it is possible to provide a capacitor having an excellent safety function that operates under all conditions, and its industrial efficiency is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図はそれぞれ本発明
によるコンデンサの各実施例の断面図、第4図は
本発明のコンデンサに用いる蒸着フイルムの一部
の平面図である 1……コンデンサ素子、2a,2b……金属溶
射部、3a,3b……リード線、4……温度ヒユ
ーズ、5……絶縁物、6……巻芯ボビン、7……
誘電体(プラスチツクフイルム等)、8……分割
されている蒸着電極、9……電極分割線、10…
…マージン部、11……蒸着膜空白部、12……
小電流容量部、A……金属溶射方向。
1, 2, and 3 are cross-sectional views of each embodiment of the capacitor according to the present invention, and FIG. 4 is a plan view of a part of the vapor-deposited film used in the capacitor of the present invention. 1...Capacitor element , 2a, 2b...metal sprayed part, 3a, 3b...lead wire, 4...temperature fuse, 5...insulator, 6...core bobbin, 7...
Dielectric material (plastic film, etc.), 8... Divided vapor deposition electrode, 9... Electrode dividing line, 10...
...Margin part, 11... Vapor deposited film blank part, 12...
Small current capacity section, A...Metal spraying direction.

Claims (1)

【特許請求の範囲】 1 誘電体を介して対向する電極の少なくとも一
方の蒸着電極が複数個に分割され、かつ該分割蒸
着電極の金属溶射される電極縁端に沿つて帯状か
つ間欠的に蒸着膜空白部を設けることにより他の
蒸着電極部分より電流容量の小さい複数の小電流
容量部となし、さらに溶断温度が80℃から200℃
の温度ヒユーズを内蔵したことを特徴とするコン
デンサ。 2 コンデンサが巻回型である特許請求の範囲第
1項に記載のコンデンサ。 3 温度ヒユーズが巻回型コンデンサの巻芯ボビ
ン内に位置することを特徴とする特許請求の範囲
第2項に記載のコンデンサ。
[Scope of Claims] 1. At least one of the vapor deposition electrodes facing each other via a dielectric material is divided into a plurality of parts, and the vapor deposition is carried out in a band-like manner and intermittently along the edge of the electrode to be sprayed with metal. By providing a membrane blank area, multiple small current capacity parts with a smaller current capacity than other vapor deposition electrode parts are created, and the fusing temperature is 80°C to 200°C.
A capacitor characterized by having a built-in temperature fuse. 2. The capacitor according to claim 1, wherein the capacitor is of a wound type. 3. The capacitor according to claim 2, wherein the temperature fuse is located within the core bobbin of the wound capacitor.
JP16250182A 1982-09-17 1982-09-17 Condenser Granted JPS5951513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16250182A JPS5951513A (en) 1982-09-17 1982-09-17 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16250182A JPS5951513A (en) 1982-09-17 1982-09-17 Condenser

Publications (2)

Publication Number Publication Date
JPS5951513A JPS5951513A (en) 1984-03-26
JPH0416929B2 true JPH0416929B2 (en) 1992-03-25

Family

ID=15755816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16250182A Granted JPS5951513A (en) 1982-09-17 1982-09-17 Condenser

Country Status (1)

Country Link
JP (1) JPS5951513A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146011A (en) * 1984-08-10 1986-03-06 松下電器産業株式会社 Condenser
JPH03233922A (en) * 1990-02-08 1991-10-17 Matsushita Electric Ind Co Ltd Metallized film capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860264A (en) * 1971-12-03 1973-08-23
JPS5343865A (en) * 1976-09-30 1978-04-20 Matsushita Electric Works Ltd Condenser with protective device
JPS57117226A (en) * 1981-01-14 1982-07-21 Matsushita Electric Ind Co Ltd Metallized film capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860264A (en) * 1971-12-03 1973-08-23
JPS5343865A (en) * 1976-09-30 1978-04-20 Matsushita Electric Works Ltd Condenser with protective device
JPS57117226A (en) * 1981-01-14 1982-07-21 Matsushita Electric Ind Co Ltd Metallized film capacitor

Also Published As

Publication number Publication date
JPS5951513A (en) 1984-03-26

Similar Documents

Publication Publication Date Title
US4434452A (en) Metallized film capacitor
CN111213217B (en) Film capacitor, connection type capacitor, inverter using the same, and electric vehicle
US6631068B1 (en) Segmented metallized film
JP2006286988A (en) Metallization film capacitor
JPH0416929B2 (en)
JP2004200588A (en) Metallized film capacitor
JPH08250367A (en) Metallized film capacitor
JP3935561B2 (en) Metallized film capacitors
JP2005093516A (en) Metallized film capacitor and inverter power source circuit
JPH09283366A (en) Capacitor
JPH0982562A (en) Metallized film capacitor
JP3148596B2 (en) Wound metallized film capacitors
JP5647402B2 (en) Metallized film capacitors
JPH0361326B2 (en)
JPH10312930A (en) Metallized film capacitor
JPS6037612B2 (en) multilayer capacitor
JPH0758658B2 (en) Capacitor with self-protection function
JPS59115510A (en) Oil-immersed metallized film condenser
JPH0227552Y2 (en)
JP2001035742A (en) Metallized film capacitor
JPS5952825A (en) Condenser
JPH0760776B2 (en) Metallized film capacitors
JPH04311017A (en) Dry type high-tension capacitor
JPH09306782A (en) Metallized film capacitor
JPH03211809A (en) Metallized film capacitor