JPH0416928A - Compensating plate for liquid crystal display element and production thereof - Google Patents

Compensating plate for liquid crystal display element and production thereof

Info

Publication number
JPH0416928A
JPH0416928A JP2122281A JP12228190A JPH0416928A JP H0416928 A JPH0416928 A JP H0416928A JP 2122281 A JP2122281 A JP 2122281A JP 12228190 A JP12228190 A JP 12228190A JP H0416928 A JPH0416928 A JP H0416928A
Authority
JP
Japan
Prior art keywords
liquid crystal
liquid crystalline
fine particles
substrates
high polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2122281A
Other languages
Japanese (ja)
Other versions
JP2959635B2 (en
Inventor
Yasuyuki Takiguchi
康之 滝口
Akihiko Kanemoto
金本 明彦
Haruo Iimura
治雄 飯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2122281A priority Critical patent/JP2959635B2/en
Publication of JPH0416928A publication Critical patent/JPH0416928A/en
Application granted granted Critical
Publication of JP2959635B2 publication Critical patent/JP2959635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

PURPOSE:To obtain the compensating plate which has the film thickness uniform over a large area and for which a liquid crystalline high polymer subjected to orientation control at a high degree is utilized by constituting the compensat ing plate of a pair of substrates subjected to an orientation treatment and a liquid crystalline high polymer film which is clamped between the substrates and is dispersed with fine particles for gap control. CONSTITUTION:This compensating plate is constituted of a pair of the substrates 1, 11 which are subjected to such orientation treatment as to orient the liquid crystalline high polymer in one direction and the liquid crystalline high polymer film dispersed with the fine particles 6 for gap control. Namely, the oriented liquid crystalline high polymer layer 3 is formed between the light transparent substrates 1 and 11 consisting of glass, plastic, etc., and the fine particles 6 for controlling the thickness of the layer 3 are dispersed in the liquid crystalline high polymer layer 3. Retardation is uniform in this way and the twist angle is controlled at the high degree and, therefore, the display of the liquid crystal display element is extremely uniformized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶性高分子を利用した液晶表示素子用補償板
とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a compensation plate for a liquid crystal display element using a liquid crystalline polymer and a method for manufacturing the same.

〔従来の技術及び発明が解決しようとする課題〕液晶は
、電場や磁場、せん断力などの外場によって配向状態が
変化し、これに伴う光学的性質の変化を利用することに
より各種光エレクトロニクスの分野で利用されている。
[Prior art and problems to be solved by the invention] The alignment state of liquid crystals changes depending on external fields such as electric fields, magnetic fields, and shear forces, and by utilizing the accompanying changes in optical properties, various optoelectronic devices can be used. used in the field.

このうち液晶性高分子は低分子液晶に較へて液晶状態で
高粘性であるため、液晶状態で配向させたのち、ガラス
転移点以下しこ冷却することによって液晶の配向状態を
固定化することができるという低分子液晶に見られない
特徴を有している。これを利用して、熱書き込みの光メ
モリーや光学フィルターなどの光エレクトロニクス分野
での応用が試みられている。これらを実現するためしこ
は所望の分子配向を高度に制御するとともに正確な膜厚
制御を行う必要がある。一種の光学フィルターであるス
ーパーツィステッドネマティック(STN)型液晶表示
素子用の色補償板は、STN型液晶表示素子の液晶セル
と偏光板の間に挿入され、液晶セルによって楕円偏光と
なった光を直線偏光に戻すように機能する必要があるが
、この様な機能は液晶性高分子を水平に、かつ、一定の
方向に高い秩序度と均一性を持つて配向させるとともに
、補償板の光学異方性へ〇と膜厚dの積であるレターデ
ーションΔn−dを厳密に制御する必要がある。また、
この様な表示デバイスに用いるためには大面積にわたる
レターデーションの均一性も要求される。
Among these, liquid crystal polymers have higher viscosity in the liquid crystal state than low-molecular liquid crystals, so after being aligned in the liquid crystal state, the alignment state of the liquid crystal is fixed by cooling slightly below the glass transition point. It has a feature not found in low-molecular liquid crystals: the ability to Utilizing this, attempts are being made to apply it to optical electronics fields such as thermal writing optical memory and optical filters. To achieve these goals, it is necessary to highly control the desired molecular orientation as well as accurately control the film thickness. A color compensation plate for a super twisted nematic (STN) type liquid crystal display element, which is a type of optical filter, is inserted between the liquid crystal cell and the polarizing plate of the STN type liquid crystal display element, and converts the light that has become elliptically polarized light by the liquid crystal cell into a straight line. It is necessary to function to return the polarized light, but such a function is necessary to align the liquid crystal polymer horizontally and in a certain direction with a high degree of order and uniformity, and to adjust the optical anisotropy of the compensator. It is necessary to strictly control the retardation Δn−d, which is the product of the film thickness d and the film thickness d. Also,
For use in such display devices, uniformity of retardation over a large area is also required.

低分子液晶の場合、配向制御方法はほぼ確立されている
が、液晶性高分子の場合、十分には確立されていない。
In the case of low-molecular liquid crystals, alignment control methods have almost been established, but in the case of liquid crystalline polymers, they have not been fully established.

液晶性高分子の配向制御の例としては、すり応力のよう
な外力を加える方法、磁場や電場のような外場を与える
方法等が知られているが、これらは大面積の配向制御が
不可能であったり、均一性の点で十分とは言えない。配
向処理を施した基板間の空隙に低分子液晶を注入する方
法をそのまま液晶性高分子に適用した場合には、液晶性
高分子の高粘性のため、注入時の流れに沿って液晶性高
分子が配向してしまい、所望の配向が得られなかったり
、大きな面積になると注入すら困難となる。また、低分
子液晶の場合、ギャップ制御用の微粒子を片側の基板上
に分散させ、対向基板を重ね合わせることによって基板
間のギャップを制御し、それによって液晶層の厚さを均
一に制御する方法が広く用いられているが、この方法を
液晶性高分子に適用した場合にも、注入の困難さに加え
、微粒子によって注入中の液晶性高分子の配向が乱され
てしまい、配向欠陥を生しるという問題もある。
As an example of controlling the orientation of liquid crystalline polymers, methods of applying an external force such as shear stress, and methods of applying an external field such as a magnetic field or electric field are known, but these methods do not allow orientation control over a large area. It cannot be said that it is possible or sufficient in terms of uniformity. If the method of injecting low-molecular-weight liquid crystal into the gap between substrates that has been subjected to alignment treatment is applied directly to liquid crystalline polymers, the liquid crystalline polymer will flow along the injection flow due to the high viscosity of liquid crystalline polymers. If the molecules become oriented and the desired orientation cannot be obtained, or if the area becomes large, even injection becomes difficult. In addition, in the case of low-molecular liquid crystals, there is a method in which fine particles for gap control are dispersed on one substrate, and the gap between the substrates is controlled by overlapping the opposing substrates, thereby controlling the thickness of the liquid crystal layer uniformly. is widely used, but even when this method is applied to liquid crystalline polymers, in addition to the difficulty of injection, the alignment of the liquid crystalline polymer being injected is disturbed by the fine particles, resulting in alignment defects. There is also the issue of marking.

本発明は以上のような従来技術の問題点に鑑みてなされ
たものであり、その目的は、大面積にわたって膜厚が均
一で、高度に配向制御された液晶性高分子を利用した液
晶表示素子用補償板およびその製造方法を提供すること
にある。
The present invention has been made in view of the problems of the prior art as described above, and its purpose is to provide a liquid crystal display element using a liquid crystalline polymer that has a uniform film thickness over a large area and whose alignment is highly controlled. An object of the present invention is to provide a compensator for use in a vehicle and a method for manufacturing the same.

〔課題を解決するための手段及び作用〕上記目的を達成
するため、本発明によれば、液晶性高分子を一方向に配
向させるような配向処理の施された一対の基板と、該基
板間に挾持されたギャップ制御用の微粒子が分散された
液晶性高分子膜とから構成される液晶表示素子用補償板
が提供される。
[Means and effects for solving the problem] In order to achieve the above object, the present invention provides a pair of substrates that have been subjected to an alignment treatment that orients liquid crystalline polymers in one direction, and A compensating plate for a liquid crystal display element is provided, which is comprised of a liquid crystal polymer film in which fine particles for gap control are sandwiched between the liquid crystal polymer film and the liquid crystal polymer film in which fine particles for gap control are dispersed.

また、本発明によれば、液晶性高分子を一方向に配向さ
せるような配向処理の施された第一の基板上にギャップ
制御用の微粒子を含む液晶性高分子膜を形成し、液晶性
高分子を配向させた後、同様に配向処理された第二の基
板をその配向処理面が液晶性高分子に密接するように重
ね合わせることを特徴とする液晶表示素子補償板の製造
方法が提供される。
Further, according to the present invention, a liquid crystalline polymer film containing fine particles for gap control is formed on a first substrate that has been subjected to an alignment treatment that aligns liquid crystalline polymers in one direction. Provided is a method for manufacturing a liquid crystal display element compensator, which comprises orienting a polymer and then superimposing a second substrate that has been similarly oriented so that its oriented surface comes into close contact with the liquid crystal polymer. be done.

次に本発明を図面を用いて詳細に説明する。Next, the present invention will be explained in detail using the drawings.

第1図は本発明に係る補償板の構成を示す断面図であり
、ガラス、プラスチック等の透光性基板1.11の間に
配向した液晶性高分子層3が形成されている。液晶性高
分子層3中には該層3の厚さを制御するための微粒子6
が分散されている。
FIG. 1 is a sectional view showing the structure of a compensator according to the present invention, in which an oriented liquid crystal polymer layer 3 is formed between transparent substrates 1.11 made of glass, plastic, etc. Fine particles 6 are included in the liquid crystal polymer layer 3 to control the thickness of the layer 3.
are distributed.

第2図は本発明に係る補償板の製造工程を模式%式% まず、ガラス、プラスチック等の基板lに配向処理層2
を形成する。配向処理の方法としては、ポリイミド、ポ
リエーテルイミド、ポリアミドイミド、ポリエステルイ
ミド、ポリアミド、ポリエステル、ポリビニルアルコー
ル、ポリアクリロニトリル等の高分子被膜を形成後、ラ
ビング処理をする方法、アルコキシシラン、有機チタネ
ートなどの有機金属化合物などの塗膜またはその熱処理
膜をラビング処理する方法、酸化珪素などの斜め蒸着法
などを例示することができる。またプラスチック基板を
直接ラビング処理することによって配向処理することも
可能で、この場合、配向処理層2は不要となる。
FIG. 2 schematically shows the manufacturing process of the compensator plate according to the present invention.
form. Orientation treatment methods include forming a polymer film of polyimide, polyetherimide, polyamideimide, polyesterimide, polyamide, polyester, polyvinyl alcohol, polyacrylonitrile, etc., followed by rubbing treatment, or using alkoxysilane, organic titanate, etc. Examples include a method of rubbing a coating film of an organometallic compound or a heat-treated film thereof, and an oblique vapor deposition method of silicon oxide. It is also possible to carry out the alignment treatment by directly rubbing the plastic substrate; in this case, the alignment treatment layer 2 becomes unnecessary.

ついで、配向処理面に液晶高分子を塗布し液晶性高分子
層3を形成する。液晶性高分子にはギャップ制御用の微
粒子6が分散されている。微粒子6としては、ポリスチ
レン、ポリジビニルベンゼン、および両者の共重合体、
ベンゾグアナミン等の高分子化合物の球状微粒子、シリ
カ、酸化ジルコニウムなどの球状微粒子、切断したガラ
スファイバー等が例示できる。微粒子6の粒径は所望の
膜厚により異なるが2〜10声の範囲が一般的である。
Next, a liquid crystal polymer layer 3 is formed by applying a liquid crystal polymer to the alignment-treated surface. Fine particles 6 for gap control are dispersed in the liquid crystalline polymer. The fine particles 6 include polystyrene, polydivinylbenzene, and a copolymer of both;
Examples include spherical fine particles of a polymer compound such as benzoguanamine, spherical fine particles of silica, zirconium oxide, etc., and cut glass fibers. The particle size of the fine particles 6 varies depending on the desired film thickness, but is generally in the range of 2 to 10 tones.

用いることのできる液晶性高分子はサーモトロピックな
液晶性高分子であり構造は特に限定されないが、例えば
ポリエステル、ポリエステルアミド、ポリカーボネート
、ポリエーテル等で主鎖に液晶性残基を有する下記構造
の主鎖型液晶性高分子ニ ーe11−X”8A1−X2)− Xl、X2: −Cm−、−CONH−、−0CO−、
−# 等性高分子: A1: 4H2Th、 −+c)12C82%、 −(
CH,CH2(h。
The liquid crystalline polymer that can be used is a thermotropic liquid crystalline polymer, and its structure is not particularly limited. Chain type liquid crystal polymer knee e11-X”8A1-X2)-Xl, X2: -Cm-, -CONH-, -0CO-,
-# Isopolymer: A1: 4H2Th, -+c)12C82%, -(
CH, CH2 (h.

C)13 M2ニーPh−Ph−R3,−()Ph−Ph−R3,
−Ph−cOO−Ph−R’ 、−0−Ph−CO[)
−Ph−R3゜↓ 整数を表わす。) あるいはビニル系高分子、ポリシロキサンなどで側鎖に
液晶性残基を有する下記構造の側鎖型液晶(但し、R″
はアルキル基、アルコキシ基、ハロゲン原子、ニトロ基
又はシアノ基であり、nはO〜18の整数を表わす。) などを例示することができる。液晶性高分子は単独でま
たは混合して用いられる。液晶性高分子中に光学活性基
を導入したり、光学活性な化合物を添加することもでき
る。
C) 13 M2 knee Ph-Ph-R3, -()Ph-Ph-R3,
-Ph-cOO-Ph-R', -0-Ph-CO[)
-Ph-R3゜↓ Represents an integer. ) Or a side chain type liquid crystal with the following structure having a liquid crystalline residue in the side chain using vinyl polymer, polysiloxane, etc. (However, R''
is an alkyl group, an alkoxy group, a halogen atom, a nitro group or a cyano group, and n represents an integer of 0 to 18. ) can be exemplified. Liquid crystalline polymers may be used alone or in combination. It is also possible to introduce an optically active group into the liquid crystalline polymer or add an optically active compound.

塗布法としては微粒子を混練した液晶性高分子を、ガラ
ス転移点以上の温度で直接塗布する方法、または溶媒中
に液晶性高分子を溶解させるとともに、微粒子を分散さ
せた塗布液を塗布または印刷する方法を用いることがで
きる。膜厚の均一性と制御のしやすさおよび分散の均一
性の点で後者を特に好ましく用いる。液晶性高分子の溶
媒としては、用いる液晶性高分子の種類、重合度等によ
って異なるが1通常下記の物より選ばれる。
The coating method is to directly apply a liquid crystalline polymer mixed with fine particles at a temperature above the glass transition point, or to dissolve the liquid crystalline polymer in a solvent and apply or print a coating liquid in which fine particles are dispersed. A method can be used. The latter is particularly preferably used in terms of uniformity of film thickness, ease of control, and uniformity of dispersion. The solvent for the liquid crystalline polymer varies depending on the type of liquid crystalline polymer used, degree of polymerization, etc., but is usually selected from the following.

クロロホルム、ジクロロエタン、テトラクロロエタン、
トリクロロエチレン、テトラクロロエチレン、オルソジ
クロロベンゼンなどのハロゲン系炭化水素、フェノール
、0−クロロフェノール、クレゾールなどのフェノール
系溶媒、ジメチルホルムアミド、ジメチルアセトアミド
、ジメチルスルホキシドなどの非プロトン性極性溶媒、
テトラヒドロフラン、ジオキサン等のエーテル系溶媒お
よびこれらの混合溶媒。
Chloroform, dichloroethane, tetrachloroethane,
Halogenated hydrocarbons such as trichlorethylene, tetrachlorethylene, and orthodichlorobenzene; phenolic solvents such as phenol, 0-chlorophenol, and cresol; aprotic polar solvents such as dimethylformamide, dimethylacetamide, and dimethylsulfoxide;
Ether solvents such as tetrahydrofuran and dioxane, and mixed solvents thereof.

溶液濃度は塗布法、高分子の粘性、目的とする膜厚等に
より異なるが、通常は2〜50wt%の範囲で使用され
、好ましくは5〜30すし%の範囲で使用される。微粒
子の添加量は塗布法及び分散量に依存する。好ましい分
散量は1平方画当り数個〜200個程度であり、塗布法
にスピンコード法を用いた場合の好ましい添加量は1威
あたり20−300個程度である。塗布法としてはスピ
ンコード法、ロールコート法、グラビアコート法、ディ
ッピング法、スクリーン印刷法などを採用できる。液晶
性高分子を塗布後、溶媒を乾燥して除去し、液晶性高分
子が液晶性を示す温度で熱処理して液晶性高分子を配向
させる。
The solution concentration varies depending on the coating method, the viscosity of the polymer, the desired film thickness, etc., but is usually used in the range of 2 to 50 wt%, preferably in the range of 5 to 30 wt%. The amount of fine particles added depends on the coating method and the amount of dispersion. A preferable amount of dispersion is about several to 200 particles per square image, and a preferable addition amount when a spin code method is used as the coating method is about 20 to 300 particles per square image. As a coating method, a spin code method, a roll coating method, a gravure coating method, a dipping method, a screen printing method, etc. can be adopted. After coating the liquid crystalline polymer, the solvent is removed by drying, and the liquid crystalline polymer is aligned by heat treatment at a temperature at which the liquid crystalline polymer exhibits liquid crystallinity.

この様に本発明では液晶性高分子の片面のみを配向層と
接触させ、他方は外気に接触させている。
In this way, in the present invention, only one side of the liquid crystalline polymer is brought into contact with the alignment layer, and the other side is brought into contact with the outside air.

かりに5両側を配向層と接触させると十分な配列は行わ
れない。これは、液晶性高分子が低分子液晶に較べて高
粘性であるため、配向層と接触することによって配向膜
界面の流動性が大きく低下してしまう結果、分子の再配
列が行われにくいものと考えられる。本発明では配向膜
界面が1つてあるため、容易に再配列がおこり、均一配
向が起こり易い。また、液晶性高分子の配向は、微粒子
が分散された状態で行われ、このとき液晶性高分子はほ
とんど流動しない。そのため、微粒子が原因となる配向
欠陥はほとんど生じない。
However, if both sides of the film are brought into contact with the alignment layer, sufficient alignment will not occur. This is because liquid crystal polymers have a higher viscosity than low-molecular liquid crystals, so when they come into contact with the alignment layer, the fluidity at the interface of the alignment film is greatly reduced, making it difficult for molecules to rearrange. it is conceivable that. In the present invention, since there is one alignment film interface, rearrangement easily occurs and uniform alignment is likely to occur. Further, the alignment of the liquid crystalline polymer is performed in a state in which the fine particles are dispersed, and at this time, the liquid crystalline polymer hardly flows. Therefore, orientation defects caused by fine particles hardly occur.

液晶性高分子を配向させるときの温度は、液晶性高分子
のガラス転移点以上で、かつ液晶性高分子の等方性液体
への転移温度より低いことが必要である。配向膜の界面
効果による配向を助ける意味でポリマーの粘性は低い方
がよく、したがって温度は高い方がよいが、あまり高い
とコストの増大と作業性の悪化を招き好ましくない。−
船釣には50℃〜300℃の範囲が好ましい。
The temperature when orienting the liquid crystalline polymer needs to be higher than the glass transition point of the liquid crystalline polymer and lower than the transition temperature of the liquid crystalline polymer to an isotropic liquid. The lower the viscosity of the polymer, the better, in order to aid the alignment due to the interfacial effect of the alignment film, and therefore the higher the temperature, but if the temperature is too high, it will increase the cost and deteriorate workability, which is undesirable. −
For boat fishing, a temperature range of 50°C to 300°C is preferable.

以上のようにして得られた液晶性高分子膜はモノドメイ
ン配向した優れた配向性を有しているが、塗布法である
ため厚さ分布は避けられず、所望の厚みに対して0.5
%以下の面精度を得ることは困難である。本発明におい
ては一旦、液晶性高分子を基板上で配向させた後、第1
図のように他の配向処理の施された第二の基板11を重
ね合わせることにより、ギャップ剤の粒径にほぼ等しい
高精度のギャップ制御を可能にするものである。なお、
この際、微粒子6の粒径と塗膜の厚さはほぼ等しいこと
が必要である。粒径が大きい場合には気泡の混入を生じ
、また小さい場合には微粒子を混入させた効果が失われ
る。
The liquid crystalline polymer film obtained as described above has excellent monodomain orientation, but since it is a coating method, thickness distribution is unavoidable, and the desired thickness is 0.5%. 5
It is difficult to obtain a surface accuracy of less than %. In the present invention, after the liquid crystalline polymer is once aligned on the substrate, the first
By overlapping the second substrate 11 that has been subjected to another orientation treatment as shown in the figure, it is possible to control the gap with high precision, which is approximately equal to the particle size of the gap agent. In addition,
At this time, it is necessary that the particle size of the fine particles 6 and the thickness of the coating film are approximately equal. If the particle size is large, air bubbles will be mixed in, and if the particle size is small, the effect of mixing fine particles will be lost.

第二の基板11はガラス、プラスチック等の透光性のも
のであり、その液晶性高分子と接触する面には液晶性高
分子をほぼ水平にかつ一方向に配列させるための配向処
理が施されている。配向処理の方法は第一の基板1につ
いて述へた方法を用いることができる。配向処理の方向
は、所望のねじれ角ωによって決まる第二の基板面に接
する液晶性高分子の所望の配列方向にほぼ等しく設定す
る。
The second substrate 11 is made of a light-transmitting material such as glass or plastic, and the surface in contact with the liquid crystal polymer is subjected to an alignment treatment to align the liquid crystal polymer almost horizontally and in one direction. has been done. The method described for the first substrate 1 can be used for the alignment treatment. The direction of the alignment treatment is set approximately equal to the desired alignment direction of the liquid crystalline polymer in contact with the second substrate surface, which is determined by the desired twist angle ω.

第二の基板11を重ね合わせたのち、液晶性高分子が液
晶相をとる温度に再度加熱し、一定時間保持するととに
よって、第二の基板11に接する液晶性高分子の分子を
第二の基板11の配向処理方向に揃えることができる。
After the second substrate 11 is superimposed, the liquid crystal polymer molecules in contact with the second substrate 11 are heated again to a temperature at which the liquid crystal polymer takes a liquid crystal phase and held for a certain period of time. It can be aligned in the orientation treatment direction of the substrate 11.

すなわち、第一の基板1上においてねしれ角が面内分布
を有していたとじても、第二の基板11の配向規制によ
って全面的に均一なわじれ角が得られる。ωと、両基板
1,11の配向処理方向の成す角とはおおむね等しいか
、または同者の差が概ね180°の整数倍であることが
特に好ましい。この条件からのずれが大きくなると、液
晶分子の再配列が困難となりドメイン分割を生じ易くな
る。許容されるずれ角は概ね45°以下で、好ましくは
30°以下、特に好ましくは20’以下である。
That is, even if the torsion angle has an in-plane distribution on the first substrate 1, a uniform torsion angle can be obtained over the entire surface by regulating the orientation of the second substrate 11. It is particularly preferable that ω and the angle formed by the orientation treatment direction of both substrates 1 and 11 are approximately equal, or the difference between them is approximately an integral multiple of 180°. If the deviation from this condition becomes large, it becomes difficult to rearrange the liquid crystal molecules, and domain division is likely to occur. The permissible deviation angle is approximately 45° or less, preferably 30° or less, particularly preferably 20' or less.

本発明では液晶性高分子は一旦、片面のみが配向膜に配
列し易い状態で第一の配向処理がなされ、その後、液晶
性高分子の再配列に必要な動きが小さい条件で両面から
の界面規制が働くため、容易にねじれ角が高精度で制御
されたモノドメイン配向が得ら九るという特徴がある。
In the present invention, the liquid crystal polymer is first aligned in a state in which only one side is easily aligned with the alignment film, and then the interface from both sides is subjected to the condition that the movement necessary for rearrangement of the liquid crystal polymer is small. Because of the regulation, it is easy to obtain a monodomain orientation with a highly precisely controlled twist angle.

得られた配向状態は、ガラス転移点以下に急冷すること
により保持されるので、きわめて安定である。
The obtained orientation state is maintained by rapid cooling below the glass transition point and is therefore extremely stable.

本発明において液晶性高分子にねじれ構造を導入するに
は、液晶性高分子としてコレステリック液晶相を呈する
ものを用い九ばよい。コレステリック液晶相を呈する液
晶性高分子は前述のようにネマティック相を呈する液晶
性高分子中に光学活性基を導入するか、光学活性な物質
を添加すればよい。この場合、液晶性高分子は配向膜面
では配向処理の方向に配列し、厚み方向に自然ピッチに
相当するねじれ角、すなわち自然ピッチをPo、膜厚を
d、ねじれ角をωとしたときにω:360 X d/P
In order to introduce a twisted structure into a liquid crystalline polymer in the present invention, it is sufficient to use a liquid crystalline polymer exhibiting a cholesteric liquid crystal phase. A liquid crystalline polymer exhibiting a cholesteric liquid crystal phase may be obtained by introducing an optically active group into a liquid crystalline polymer exhibiting a nematic phase as described above, or by adding an optically active substance to the liquid crystalline polymer exhibiting a nematic phase. In this case, the liquid crystalline polymer is aligned in the direction of the alignment treatment on the alignment film surface, and has a twist angle corresponding to the natural pitch in the thickness direction, that is, when the natural pitch is Po, the film thickness is d, and the twist angle is ω. ω: 360 x d/P
.

(°)なるねしれ角を形成する。Forms a torsion angle of (°).

[実施例〕 次に本発明の詳細な説明するが、本発明はここに例示の
実施例に限定されるものてはない。
[Examples] Next, the present invention will be described in detail, but the present invention is not limited to the examples illustrated herein.

(実施例) ガラス基板上に日立化成製のポリイミドワニスPIQを
スピンコード法で約1000人の厚さに塗布し、ついで
270 ’Cで焼成してポリイミド膜を形成した。
(Example) Polyimide varnish PIQ manufactured by Hitachi Chemical was coated on a glass substrate to a thickness of about 1,000 mm using a spin code method, and then baked at 270'C to form a polyimide film.

ついでポリイミド膜上をテトロン植毛布で一方向にこす
り、ラビング処理を行った。
Next, the polyimide film was rubbed in one direction with a Tetron flocked cloth to perform a rubbing treatment.

下記式aの繰返し単位を持つネマティック液晶性ポリシ
ロキサン系液晶性高分子と下記式すの繰返し単位を持つ
光学活性基を有するポリシロキサン系液晶性高分子をフ
ェノール/テトラク口ロエタン混合溶媒(重量比50 
: 50)に25重量2となるように溶解させた。高分
子aと高分子すの割合は3:l(重量比)とした。この
溶液にさらに粒径4.5卯のジビニルベンゼンの球体を
溶液1−当り0.2■の割合で添加し、超音波分散を行
った。
A nematic liquid crystal polysiloxane liquid crystal polymer having a repeating unit of the following formula a and a polysiloxane liquid crystal polymer having an optically active group having a repeating unit of the following formula a were mixed in a mixed solvent of phenol/tetrachloroethane (weight ratio 50
: 50) to a weight of 25% and 2% by weight. The ratio of polymer a to polymer s was 3:l (weight ratio). Further, divinylbenzene spheres having a particle size of 4.5 μm were added to this solution at a rate of 0.2 μm per 1 μm of the solution, and ultrasonic dispersion was performed.

(ch :コレステリル) この溶液を先の配向膜上にスピンコード法により塗布し
、ついで70’Cで真空乾燥した後、高分子aがネマテ
ィック相を呈する170℃で30分熱処理を行った。こ
の状態で室温に急冷し、膜厚的4.6Rで約220°ね
じれた配向固定化された液晶性高分子膜が得られた。ジ
ビニルベンゼン球体の分散密度は1平方m当り約10個
であった。
(ch: Cholesteryl) This solution was applied onto the above alignment film by a spin code method, and then vacuum dried at 70'C, followed by heat treatment at 170C for 30 minutes at which polymer a exhibits a nematic phase. In this state, the liquid crystalline polymer film was rapidly cooled to room temperature, and a liquid crystalline polymer film having a film thickness of 4.6R and a fixed orientation twisted by about 220° was obtained. The dispersion density of divinylbenzene spheres was approximately 10 per square meter.

ついて、同様の配向処理を施した第二のガラス基板を、
ラビング方向が220°の角度をなすように真空中で配
向膜面が液晶性高分子に接するように重ね、再度170
℃で30分間熱処理を行った。そして室温に急冷するこ
とにより本発明の補償板とした。この補償板の配向組織
を観察したところ、モノドメインな均一配向であり、ね
じれ角は22o°で、らせん軸は基板に対して垂直方向
であった。レターデーションΔn−dは0.82/Ia
であった。
Then, a second glass substrate that had been subjected to the same orientation treatment was
Layer the alignment films in vacuum so that the rubbing direction makes an angle of 220° and the surface of the alignment film is in contact with the liquid crystal polymer.
Heat treatment was performed at ℃ for 30 minutes. The compensator plate of the present invention was then rapidly cooled to room temperature. When the orientation structure of this compensator was observed, it was found to be a monodomain uniform orientation, the twist angle was 22°, and the helical axis was perpendicular to the substrate. Retardation Δn-d is 0.82/Ia
Met.

150mm X 150nnの補償板においてねしれ角
の分布は全くなく、膜厚の分布は0.2pm以下できわ
めて優れた均一性を示した。
In the compensating plate of 150 mm x 150 nn, there was no distribution of torsion angle at all, and the distribution of film thickness was 0.2 pm or less, showing extremely excellent uniformity.

〔発明の効果〕〔Effect of the invention〕

本発明の液晶表示素子用補償板は、レターデーションが
均一でねじれ角も高度に制御されているため、液晶表示
素子の表示をきわめて均一にすることができる。また、
液晶性高分子膜が基板の間に挾まれているために信頼性
が高い。
Since the compensation plate for liquid crystal display elements of the present invention has uniform retardation and highly controlled twist angle, it is possible to make the display of the liquid crystal display element extremely uniform. Also,
High reliability because the liquid crystal polymer film is sandwiched between the substrates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る液晶表示素子用補償板の構成を示
す断面図、第2図は第1図の補償板の製造工程を示す図
である。 1・・第一の基板 3・・液晶性高分子層 6・微粒子 11  第二の基板 特許出願人 株式会社 リ  コ
FIG. 1 is a sectional view showing the structure of a compensating plate for a liquid crystal display element according to the present invention, and FIG. 2 is a diagram showing the manufacturing process of the compensating plate of FIG. 1. 1. First substrate 3. Liquid crystalline polymer layer 6, fine particles 11 Second substrate patent applicant Rico Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)液晶性高分子を一方向に配向させるような配向処
理の施された一対の基板と、該基板間に挾持されギャッ
プ制御用の微粒子が分散された液晶性高分子膜とから構
成される液晶表示素子用補償板。
(1) It is composed of a pair of substrates that have been subjected to an alignment treatment that orients liquid crystal polymers in one direction, and a liquid crystal polymer film that is sandwiched between the substrates and has fine particles for gap control dispersed therein. Compensation plate for liquid crystal display elements.
(2)液晶性高分子を一方向に配向させるような配向処
理の施された第一の基板上にギャップ制御用の微粒子を
含む液晶高分子膜を形成し、液晶性高分子を配向させた
後、同様に配向処理された第二の基板をその配向処理面
が液晶性高分子に密接するように重ね合わせることを特
徴とする液晶表示素子用補償板の製造方法。
(2) A liquid crystal polymer film containing fine particles for gap control was formed on a first substrate that had been subjected to an alignment treatment to align the liquid crystal polymer in one direction, and the liquid crystal polymer was aligned. A method for manufacturing a compensating plate for a liquid crystal display element, which comprises: thereafter superimposing a second substrate that has been similarly oriented so that its oriented surface is in close contact with the liquid crystal polymer.
JP2122281A 1990-05-11 1990-05-11 Compensator for liquid crystal display element and method of manufacturing the same Expired - Fee Related JP2959635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2122281A JP2959635B2 (en) 1990-05-11 1990-05-11 Compensator for liquid crystal display element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2122281A JP2959635B2 (en) 1990-05-11 1990-05-11 Compensator for liquid crystal display element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0416928A true JPH0416928A (en) 1992-01-21
JP2959635B2 JP2959635B2 (en) 1999-10-06

Family

ID=14832081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2122281A Expired - Fee Related JP2959635B2 (en) 1990-05-11 1990-05-11 Compensator for liquid crystal display element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2959635B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155320A (en) * 1998-11-19 2000-06-06 Nec Corp Active matrix liquid crystal display device
WO2002050581A1 (en) * 2000-12-20 2002-06-27 Dai Nippon Printing Co., Ltd. Circularly polarized light extraction optical element and method of manufacturing the optical element
JP2002189124A (en) * 2000-12-20 2002-07-05 Dainippon Printing Co Ltd Optical element extracting circularly polarized light, method for manufacturing the same, polarized light source device and liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155320A (en) * 1998-11-19 2000-06-06 Nec Corp Active matrix liquid crystal display device
WO2002050581A1 (en) * 2000-12-20 2002-06-27 Dai Nippon Printing Co., Ltd. Circularly polarized light extraction optical element and method of manufacturing the optical element
JP2002189124A (en) * 2000-12-20 2002-07-05 Dainippon Printing Co Ltd Optical element extracting circularly polarized light, method for manufacturing the same, polarized light source device and liquid crystal display device
US6862073B2 (en) 2000-12-20 2005-03-01 Dai Nippon Printing Co., Ltd. Circularly-polarized-light extracting optical element and process of producing the same

Also Published As

Publication number Publication date
JP2959635B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
JP2651870B2 (en) Substrate with liquid crystalline polymer thin film and method for manufacturing the same
Patel et al. A reliable method of alignment for smectic liquid crystals
JPH039325A (en) Orienting method for liquid crystalline high polymer
KR100731224B1 (en) Stabilized Liquid Crystal Alignment Structure with Pre-Tilt Angle and Display Devices Containing the Same
US5147682A (en) Method for orienting a liquid crystal polymer
CN110662789B (en) Composition, polymer, liquid crystal aligning agent, liquid crystal alignment film and manufacturing method thereof, phase difference plate, polarizing plate and liquid crystal element
KR101769011B1 (en) Method of Preparing Coating Layer of Lyotropic Chromonic Liquid Crystal for Multi-Domain Liquid Crystal Alignment
US5674575A (en) Liquid crystal aligning film and liquid crystal display device using it
JP2767836B2 (en) Ferroelectric liquid crystal device
US5523128A (en) Liquid crystal display device
JPH0416928A (en) Compensating plate for liquid crystal display element and production thereof
JPH0416919A (en) Optical phase plate
JP2897139B2 (en) Liquid crystal polymer alignment control method
Toko et al. Characteristics of liquid crystal display fabricated by alignment transcription method
JPH0416914A (en) Method for controlling orientation of liquid crystalline high polymer
KR0148406B1 (en) Lcd element
US5576077A (en) Retardation layer having thin glass substrates
JP2646281B2 (en) Substrate with liquid crystalline polymer thin film
KR0185213B1 (en) Polyester main chain liquid crystal polymer compounds and lcd using it
JPH0416927A (en) Method for controlling orientation of liquid crystalline high polymer
JP2585835B2 (en) Liquid crystal display device
JPH04243228A (en) Liquid crystal element
JPS61186932A (en) Liquid crystal element
JP2628096B2 (en) Liquid crystal display device
JPH0412324A (en) Color liquid crystal display element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees