JP2000155320A - Active matrix liquid crystal display device - Google Patents

Active matrix liquid crystal display device

Info

Publication number
JP2000155320A
JP2000155320A JP10329759A JP32975998A JP2000155320A JP 2000155320 A JP2000155320 A JP 2000155320A JP 10329759 A JP10329759 A JP 10329759A JP 32975998 A JP32975998 A JP 32975998A JP 2000155320 A JP2000155320 A JP 2000155320A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
active matrix
spacer
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10329759A
Other languages
Japanese (ja)
Inventor
Hisashi Kuwata
恒 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10329759A priority Critical patent/JP2000155320A/en
Priority to CN99123956A priority patent/CN1259683A/en
Priority to KR1019990051446A priority patent/KR20000035569A/en
Publication of JP2000155320A publication Critical patent/JP2000155320A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Abstract

PROBLEM TO BE SOLVED: To inhibit abnormal alignment around spacers and to suppress the leakage of light, the reduction of contrast and the occurrence of unevenness in display in a normally black mode by heating a vacant cell to stick organic fine particles as spacers to a TFT substrate and a counter substrate and then sealing a liquid crystal. SOLUTION: Organic fine particles as spacers 15 for maintaining a gap are disposed on a TFT substrate 1 or a counter substrate 2. Fine particles of a polydivinylbenzene or acrylic resin material are suitable for use as the spacers 15. The TFT substrate 1 and the counter substrate 2 are stuck together while holding the spacers 15 between them to assemble a vacant cell. The periphery of the vacant cell is sealed with a sealing material and the cell is heated to stick the spacers 15 to the substrates 1 and 2. The heating temperature is preferably in the glass transition temperature region of the spacers 15. A liquid crystal is then sealed in the cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、IPS方式のアク
ティブマトリックス液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an IPS active matrix liquid crystal display device.

【0002】[0002]

【従来の技術】従来、アクティブマトリクスの液晶表示
装置としてスーパーツイステッドネマテック(STN)
方式やインプレインスイッチング(IPS)方式でノー
マリィブラックモードを採用したものが広く知られてい
る。しかし、黒表示において液晶基板のギャップをコン
トロールするために用いるスペーサの周辺において、異
常配向による光漏れが発生するという問題がある。特
に、この傾向は、横電界を用いて液晶分子を配向させる
IPS方式において顕著であり、またこの異常配向の原
因を取り除くことが困難であった。
2. Description of the Related Art Conventionally, a super twisted nematic (STN) has been used as an active matrix liquid crystal display device.
A method employing a normally black mode in an in-plane switching (IPS) method is widely known. However, there is a problem that light leakage due to abnormal alignment occurs around a spacer used for controlling a gap of a liquid crystal substrate in black display. In particular, this tendency is remarkable in the IPS system in which liquid crystal molecules are aligned using a lateral electric field, and it is difficult to remove the cause of the abnormal alignment.

【0003】STN方式において光漏れを改善する方法
として、特開平6−11719号公報にスペーサを表面
処理することにより、液晶分子の配向状態を規制する方
法についての開示がある。図3に示す平面図を参照して
説明する。
As a method of improving light leakage in the STN mode, Japanese Patent Application Laid-Open No. Hei 6-11719 discloses a method of regulating the alignment state of liquid crystal molecules by subjecting a spacer to a surface treatment. This will be described with reference to the plan view shown in FIG.

【0004】TFT基板とCF(カラーフィルタ)の形
成された対向基板の間のギャップを保持するための有機
微粒子スペーサ(以下スペーサ)15を配置する。ここ
でスペーサ15には、ポリジビニルベンゼン、アクリル
系等の有機系微粒子の表面に疎水性基を有するスペーサ
を用いている。この時、スペーサ15の表面に疎水処理
がされているため、スペーサの表面張力による液晶分子
のスペーサ15の外周に沿った配向が起きにくく、液晶
層16は各基板のラビング方向である画素電極と平行に
液晶分子が配向し、そのため明点、暗点の消去が可能と
なり光漏れ防止に効果がある。
An organic fine particle spacer (hereinafter, spacer) 15 for holding a gap between a TFT substrate and a counter substrate on which a CF (color filter) is formed is disposed. Here, as the spacer 15, a spacer having a hydrophobic group on the surface of organic fine particles such as polydivinylbenzene and acrylic is used. At this time, since the surface of the spacer 15 has been subjected to the hydrophobic treatment, alignment of the liquid crystal molecules along the outer periphery of the spacer 15 due to the surface tension of the spacer hardly occurs, and the liquid crystal layer 16 is in contact with the pixel electrode in the rubbing direction of each substrate. The liquid crystal molecules are aligned in parallel, so that bright spots and dark spots can be eliminated, which is effective in preventing light leakage.

【0005】しかしながら、この時スペーサ15の表面
が疎水性基であることから、スペーサ15と配向膜表面
との接着力が上がらず、偏光板貼り付け等の工程による
基板への外圧や基板の搬送等による振動によりスペーサ
15が移動し、配向膜との摩擦によりスペーサに静電気
が帯電する。静電気が帯電したスペーサ15からは放射
状に電気力線が発せられるため、スペーサ15周辺の液
晶分子は電気力線の影響を受け、図3に示すように広範
囲に渡って配向異常を起こし、黒表示の光漏れによるコ
ントラストの低下や表示のムラが発生する。
However, at this time, since the surface of the spacer 15 is a hydrophobic group, the adhesive force between the spacer 15 and the surface of the alignment film does not increase. The spacers 15 move due to vibrations caused by the above-mentioned operations, and the spacers are charged with static electricity by friction with the alignment film. Since the lines of electric force are emitted radially from the spacers 15 charged with static electricity, the liquid crystal molecules around the spacers 15 are affected by the lines of electric force, causing abnormal alignment over a wide area as shown in FIG. The light leakage causes a decrease in contrast and uneven display.

【0006】また、特開平07−333621号公報に
おいては、TN方式、あるいはSTN方式の液晶基板に
おいて異常配向を抑える技術として、末端アルキル基ま
たは末端アシル基構造の疎水性基及び末端OH基を有す
る親水性基の両方を兼ね備えた微粒子からなる液晶表示
用スペーサについての開示がなされている。本公報によ
れば、例えば通電中に液晶の異常配向が発生し、通電時
間とともにその異常配向の範囲が拡大することについて
の記載があり、この現象の原因として、当号公報の発明
者は、液晶分子とスペーサの表面間の相互作用に起因す
るものとの推定している。
In Japanese Patent Application Laid-Open No. 07-333621, as a technique for suppressing abnormal alignment in a liquid crystal substrate of the TN mode or the STN mode, a hydrophobic group having a terminal alkyl group or terminal acyl group structure and a terminal OH group are provided. There is disclosed a liquid crystal display spacer composed of fine particles having both hydrophilic groups. According to this publication, for example, there is a description that abnormal orientation of the liquid crystal occurs during energization, and the range of the abnormal orientation expands with energization time. It is presumed to be due to the interaction between the liquid crystal molecules and the surface of the spacer.

【0007】しかしながら、IPS方式の場合は、液晶
分子が、TFT基板に対してほぼ平行に配列するように
設計されており、偏光板の貼り付け工程等の外圧が加わ
りスペーサの移動があっただけで異常配向が発生してし
まう。したがって、特開平07−333621号公報に
開示されているように、単にスペーサ表面の官能基の種
類を調整し、液晶分子との親和性の改善をはかり相互作
用を抑えるのみでは、スペーサの移動を抑えることがで
きず、結果的にはIPS方式における異常配向を抑え、
良好な表示特性を得るまでには到らないのである。
However, in the case of the IPS system, the liquid crystal molecules are designed so as to be arranged substantially parallel to the TFT substrate, and only the spacer moves due to an external pressure applied in a process of attaching a polarizing plate or the like. Causes abnormal orientation. Therefore, as disclosed in Japanese Patent Application Laid-Open No. 07-333621, merely adjusting the type of functional group on the spacer surface to improve the affinity with the liquid crystal molecules and suppress the interaction does not allow the movement of the spacer. It cannot be suppressed, and as a result, the abnormal orientation in the IPS method is suppressed,
This is not enough to obtain good display characteristics.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記のよう
な問題に鑑み、スペーサ周辺での異常配向を抑え、ノー
マリィブラックモードでの光漏れ、コントラストの低
下、表示ムラを抑えたIPS方式のアクティブマトリッ
クス液晶表示装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention suppresses the abnormal orientation around the spacer, and suppresses light leakage in a normally black mode, reduced contrast, and reduced display unevenness. It is an object of the present invention to provide an active matrix liquid crystal display device.

【0009】[0009]

【課題を解決するための手段】本発明は、TFT基板上
に、画素電極及び共通電極の両方を有するIPS方式の
アクティブマトリックス液晶表示装置であって、前記T
FT基板とこのTFT基板に対向する対向基板を、有機
微粒子スペーサを介して貼り合わせた空セルを作製した
後、この空セルを加熱処理することにより、前記有機微
粒子スペーサを前記TFT基板及び前記対向基板に固着
し、次いで液晶を前記TFT基板と前記対向基板との間
に封入して作製したアクティブマトリックス液晶表示装
置に関する。
According to the present invention, there is provided an active matrix liquid crystal display device of the IPS type having both a pixel electrode and a common electrode on a TFT substrate.
After forming an empty cell in which an FT substrate and an opposing substrate opposing the TFT substrate are bonded via an organic fine particle spacer, the empty cell is subjected to a heat treatment so that the organic fine particle spacer is bonded to the TFT substrate and the opposing substrate. The present invention relates to an active matrix liquid crystal display device manufactured by fixing a liquid crystal to a substrate and then sealing the liquid crystal between the TFT substrate and the counter substrate.

【0010】特にIPS方式においては、先に述べたよ
うに偏光板の貼り付け工程等の外圧が加わりスペーサの
移動があっただけで異常配向が発生してしまう。したが
って、スペーサの表面と液晶分子との相互作用について
ののみの改善では、課題を解決するには到らない。
In particular, in the IPS system, as described above, an abnormal orientation is generated only by the movement of the spacer due to the application of the external pressure in the step of attaching the polarizing plate or the like. Therefore, improvement of only the interaction between the surface of the spacer and the liquid crystal molecules cannot solve the problem.

【0011】本発明者は、鋭意検討を行った結果、有機
系の微粒子スペーサを用いた場合においては、このスペ
ーサが加熱により基板上に設けられた配向膜に固着する
ことを見出し、本発明に到った。
As a result of diligent studies, the present inventor has found that when an organic fine particle spacer is used, this spacer is fixed to an alignment film provided on a substrate by heating. It has arrived.

【0012】この固着とは、液晶封入後の偏光板の貼り
付け工程、運送時、実使用時にスペーサが移動しない程
度に付着していれば十分であり、化学的結合、物理的結
合を問わない。
[0012] This fixation is sufficient if the spacers are adhered to such an extent that the spacers do not move during the sticking step of the polarizing plate after enclosing the liquid crystal, during transportation, and during actual use, regardless of chemical bonding or physical bonding. .

【0013】具体的には、スペーサを散布し、TFT基
板と対向基板を一定のギャップをもって貼り合わせた
後、液晶封入前の空セルの状態で加熱を行う。この際、
加熱の温度としては、有機微粒子スペーサのガラス転移
温度付近またはそれ以上の温度が好ましい。この温度に
おいて、スペーサの表面分子の再配列が起こり、配向膜
の表面に対してより安定な状態となり、より強固な分子
間力を発現するため、結果的にスペーサと配向膜との間
で比較的強固な固着力が発現するのである。また、上限
の温度としては、配向膜であるポリイミド等の熱分解が
始まる温度より低温の250℃以下であることが好まし
い。
Specifically, after the spacers are scattered and the TFT substrate and the opposing substrate are bonded with a certain gap, heating is performed in an empty cell state before the liquid crystal is filled. On this occasion,
The heating temperature is preferably a temperature near or higher than the glass transition temperature of the organic fine particle spacer. At this temperature, rearrangement of the surface molecules of the spacer occurs, and the spacer becomes more stable with respect to the surface of the alignment film, and develops a stronger intermolecular force. As a result, a comparison between the spacer and the alignment film occurs. A strong fixing force is developed. The upper limit temperature is preferably 250 ° C. or lower, which is lower than the temperature at which thermal decomposition of the alignment film such as polyimide starts.

【0014】本願発明におけるガラス転移温度領域と
は、有機微粒子スペーサを構成する有機ポリマーの状態
が、ガラス状態でもなく、またゴム状態でもない転移状
態を示す温度領域を意味する。通常用いられる有機微粒
子スペーサは、ポリジビニルベンゼンを主鎖骨格とする
ポリジビニルベンゼン系の材料、あるいはアクリル酸ま
たはアクリル酸エステルを重合したアクリル樹脂系の材
料であり、100〜150℃で加熱処理を行うことが好
ましい。
The glass transition temperature range in the present invention means a temperature range in which the state of the organic polymer constituting the organic fine particle spacer is in a transition state that is neither a glass state nor a rubber state. The usually used organic fine particle spacer is a polydivinylbenzene-based material having polydivinylbenzene as a main chain skeleton, or an acrylic resin-based material obtained by polymerizing acrylic acid or acrylate, and is subjected to heat treatment at 100 to 150 ° C. It is preferred to do so.

【0015】加熱時間については、有機微粒子スペーサ
が固着する程度の長さで行う必要があり、配向膜や有機
微粒子の材質により適宜実験により求め設定できる。例
えば、有機微粒子スペーサが、ポリジビニルベンゼン系
あるいはアクリル樹脂系の材料で、配向膜がポリイミド
の場合は、例えば130℃以上150℃以下で2時間程
度が適当である。
The heating time needs to be long enough to fix the organic fine particle spacer, and can be determined by experiment as appropriate depending on the material of the alignment film and the organic fine particles. For example, when the organic fine particle spacer is a polydivinylbenzene-based or acrylic resin-based material and the alignment film is polyimide, for example, a temperature of 130 ° C. or more and 150 ° C. or less for about 2 hours is appropriate.

【0016】有機微粒子スペーサが、その表面に親水性
基が有するのは、本発明においては好ましい態様であ
る。これは、第一に本発明は、表面に親水性基を有する
ことにより、配向膜との分子間相互作用が向上し、固着
力が増大するためである。また第二に、親水性基の導入
により静電気そのものが発生しにくくなるためである。
In a preferred embodiment of the present invention, the organic fine particle spacer has a hydrophilic group on its surface. This is firstly because the present invention has a hydrophilic group on the surface, thereby improving the intermolecular interaction with the alignment film and increasing the fixing force. Second, the introduction of a hydrophilic group makes it difficult to generate static electricity itself.

【0017】[0017]

【発明の実施の形態】本発明のアクティブマトリックス
液晶表示装置の一実施形態について、図1に示す断面図
と図2に示す平面図を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the active matrix liquid crystal display device of the present invention will be described with reference to the sectional view shown in FIG. 1 and the plan view shown in FIG.

【0018】まずTFT基板側の製造方法について説明
する。ガラス等の透明な基板1上にCr、ITO等の金
属の単層、もしくは多層膜からなるゲート電極5、共通
電極11をスパッタリングとフォトレジスト工程により
形成する。このように本発明のアクティブマトリックス
液晶表示装置は、ゲート電極と共通電極が両方ともTF
T基板の側に形成されたいわゆるIPS方式のアクティ
ブマトリックス液晶表示装置である。
First, a method of manufacturing the TFT substrate will be described. On a transparent substrate 1 such as glass, a gate electrode 5 and a common electrode 11 made of a single layer or a multilayer film of a metal such as Cr or ITO are formed by sputtering and a photoresist process. As described above, in the active matrix liquid crystal display device of the present invention, both the gate electrode and the common electrode
This is a so-called IPS active matrix liquid crystal display device formed on the side of the T substrate.

【0019】その上層に、酸化シリコン、窒化シリコン
の2層からなるゲート絶縁膜6をCVDにより形成す
る。更に、アモルファスシリコン(a−Si、n+a−
Si)からなる半導体層9をCVDとフォトレジスト工
程により上層に形成し、かつCr、ITO等の金属の単
層、もしくは多層膜からなるドレイン電極7、画素電極
8をスパッタリングとフォトレジスト工程により形成す
る。ここまでの工程により、ドレイン配線とゲート配
線、及びその交点に存在するスイッチング素子が形成さ
れる。
A gate insulating film 6 composed of two layers of silicon oxide and silicon nitride is formed thereon by CVD. Further, amorphous silicon (a-Si, n + a-
A semiconductor layer 9 made of Si) is formed as an upper layer by a CVD and a photoresist process, and a drain electrode 7 and a pixel electrode 8 made of a single layer or a multilayer film of a metal such as Cr and ITO are formed by a sputtering and a photoresist process. I do. Through the steps so far, the drain wiring and the gate wiring and the switching element existing at the intersection thereof are formed.

【0020】次に、アクリル、ベンゾシクロブテンポリ
マー、ポリシラザン化合物等の有機膜、または窒化シリ
コン等の無機膜からなる単層、もしくは多層の絶縁膜1
0及びポリイミドからなる有機膜(不図示)を積層す
る。
Next, a single-layer or multilayer insulating film 1 made of an organic film such as an acryl, benzocyclobutene polymer, polysilazane compound, or an inorganic film such as silicon nitride.
An organic film (not shown) made of O and polyimide is laminated.

【0021】次に対向側に配置される対向基板につい
て、その構成を説明する。ガラス等の透明な基板2上に
は、カーボンブラック、酸化金属等の遮光材を混合した
アクリル、ポリイミド化合物等の有機膜をスピンコーテ
ィングと焼成により形成する。またはCr等の金属の単
層、もしくは多層膜からなる金属膜をスパッタリングに
より形成する。かつこれらの膜をフォトレジスト工程に
よりブラックマトリクス12を形成する。上層には、カ
ラー表示を行う場合、色層13が形成される。次に、透
明膜からなるオーバーコート層14を形成する。オーバ
ーコート層14は透過光を遮蔽し表示面積を低減させな
いために、アクリル、ポリイミド等の透明な有機膜をス
ピンコーティングと焼成で形成するのが望ましい。この
基板の最上層には、ポリイミド等の有機膜からなる配向
膜(不図示)を形成する。
Next, the configuration of the opposing substrate disposed on the opposing side will be described. On a transparent substrate 2 made of glass or the like, an organic film such as an acryl or polyimide compound mixed with a light-shielding material such as carbon black or metal oxide is formed by spin coating and baking. Alternatively, a single-layer or multilayer metal film of a metal such as Cr is formed by sputtering. The black matrix 12 is formed from these films by a photoresist process. When color display is performed, a color layer 13 is formed in the upper layer. Next, an overcoat layer 14 made of a transparent film is formed. The overcoat layer 14 is preferably formed by spin-coating and baking a transparent organic film of acrylic, polyimide, or the like so as to block transmitted light and not reduce the display area. On the uppermost layer of this substrate, an alignment film (not shown) made of an organic film such as polyimide is formed.

【0022】次にこのTFT基板及び対向基板ともに画
素電極と平行な方向にラビング等の配向処理を行う。
Next, both the TFT substrate and the counter substrate are subjected to an alignment treatment such as rubbing in a direction parallel to the pixel electrodes.

【0023】次に、TFT基板1上もしくは対向基板2
上にギャップを保持するための有機微粒子スペーサ15
を配置する。ここでスペーサ15には、例えばポリジビ
ニルベンゼン系、アクリル樹脂系材料のものを好適に用
いることができる。
Next, on the TFT substrate 1 or the counter substrate 2
Organic fine particle spacer 15 for holding a gap above
Place. Here, as the spacer 15, for example, a polydivinylbenzene-based or acrylic resin-based material can be suitably used.

【0024】さらに、このスペーサが表面に水酸基、カ
ルボン酸、スルホン酸またはアミノ基のいずれかの親水
性基を1種または複数有することにより、配向膜に対す
る固着力が増し、一層異常配向を防ぐことが可能となる
ため、より好適なスペーサとして用いることができる。
このようなスペーサは、親水性基を有するモノマーとジ
ビニルベンゼンまたはアクリル酸類とを共重合させた
り、すでに合成された有機微粒子スペーサをカップリン
グ処理する等の方法により作製されたものが市販されて
いる。
Further, when the spacer has one or more kinds of hydrophilic groups such as hydroxyl group, carboxylic acid, sulfonic acid and amino group on the surface, the fixing force to the alignment film is increased and the abnormal alignment is further prevented. Is possible, so that it can be used as a more suitable spacer.
Such spacers are commercially available as those produced by a method of copolymerizing a monomer having a hydrophilic group with divinylbenzene or acrylic acid, or by coupling an already synthesized organic fine particle spacer. .

【0025】このようにスペーサの表面に親水性基が存
在することにより、配向膜との極性基どうしによる分子
間力、さらには水素結合が発現し、より固着力が増す。
さらに、極性基の存在により、スペーサ自身が静電気そ
のものが発生しにくくなるといった利点が挙げられる。
By the presence of the hydrophilic group on the surface of the spacer as described above, an intermolecular force and a hydrogen bond between polar groups with the alignment film are developed, and the fixing force is further increased.
Further, there is an advantage that the presence of the polar group makes it difficult for the spacer itself to generate static electricity itself.

【0026】このスペーサを挟む形で、TFT基板及び
対向基板を貼り合わせ、空セルの組立を行う。さらにシ
ーリング材で空セルの周囲をシールする。このシーリン
グ工程においては、加熱処理を伴うが、TFT基板、対
向基板、シーリング材間の熱膨張率のミスマッチングに
より、シーリング材で囲まれた部分の中央部のギャップ
が増加する方向に変形するため、シーリング工程におけ
る加熱処理では、スペーサは配向膜に固着しない。通常
の実工程においては、生産性を考慮し、TFT基板と対
向基板を貼り合わせたパネルは、複数セルの多面取りに
なっており、特にこのような多面取りの場合、シーリン
グ工程によって変形する傾向が強く、スペーサはさらに
配向膜に固着しにくい。
The TFT substrate and the counter substrate are bonded together with the spacer interposed therebetween, and an empty cell is assembled. Further, the periphery of the empty cell is sealed with a sealing material. In this sealing step, heat treatment is involved, but due to a mismatch in the coefficient of thermal expansion between the TFT substrate, the counter substrate, and the sealing material, the central portion of the portion surrounded by the sealing material is deformed in a direction to increase the gap. In the heat treatment in the sealing step, the spacer does not adhere to the alignment film. In a normal actual process, in consideration of productivity, a panel in which a TFT substrate and a counter substrate are bonded has a multi-panel layout of a plurality of cells. Particularly in the case of such a multi-panel layout, the panel tends to be deformed by a sealing process. , And the spacer is more difficult to adhere to the alignment film.

【0027】シーリング工程の後に、スペーサを固着す
るための加熱処理を行う。この際、多面取りのパネルに
おいては、個々の空セルへの切り離しを行ってから加熱
処理を行う。またこの加熱処理は、液晶注入の直前に行
うのが最も効果的である。
After the sealing step, a heat treatment for fixing the spacer is performed. At this time, in the multi-panel panel, heat treatment is performed after separation into individual empty cells. This heat treatment is most effectively performed immediately before liquid crystal injection.

【0028】この加熱処理の温度としては、有機微粒子
スペーサのガラス転移温度領域がもっとも好ましく、こ
の温度範囲では有機微粒子スペーサの表面分子の再配列
が起こり、配向膜との関係で、もっとも安定な状態で固
着するため、そのため固着力が大きい。また、熱処理温
度自体は比較的低温で行うことができるため、セルを構
成する部材の熱膨張率差による応力集中も起きにくく、
セルの信頼性も向上する。
The temperature of the heat treatment is most preferably in the glass transition temperature region of the organic fine particle spacer. In this temperature range, rearrangement of the surface molecules of the organic fine particle spacer occurs, and the most stable state in relation to the alignment film. Therefore, the fixing force is large. In addition, since the heat treatment temperature itself can be performed at a relatively low temperature, stress concentration due to a difference in the coefficient of thermal expansion of the members constituting the cell hardly occurs,
Cell reliability is also improved.

【0029】ガラス転移温度領域より高い温度では、有
機微粒子スペーサはゴム状態となり、スペーサ表面分子
の再配列自体は発現するため、一定の固着力は確保でき
る。さらに、温度を挙げた場合、配向膜自体が熱分解始
めるので、250℃以上に上げることはできない。
At a temperature higher than the glass transition temperature range, the organic fine particle spacer is in a rubber state, and rearrangement itself of the spacer surface molecules is manifested, so that a fixed fixing force can be secured. Furthermore, when the temperature is increased, the temperature of the alignment film itself cannot be increased to 250 ° C. or more because the alignment film itself starts to thermally decompose.

【0030】有機微粒子スペーサとしては、通常ポリジ
ビニルベンゼン系またはアクリル樹脂系の材料を用いる
場合が多く、この際には、100〜150℃、さらに好
ましくは130〜150℃の範囲で2時間以上加熱処理
することにより、充分な固着力を得ることが出来る。
As the organic fine particle spacer, a polydivinylbenzene-based material or an acrylic resin-based material is often used in many cases. In this case, the material is heated at 100 to 150 ° C., more preferably 130 to 150 ° C. for 2 hours or more. By the treatment, a sufficient fixing force can be obtained.

【0031】さらに詳細には、有機微粒子スペーサの表
面と配向膜の表面とで十分な分子間力が発現し、後の液
晶封入後の振動試験において、異常配向が発生しない程
度の固着力を有するように、実験により決めることがで
きる。
More specifically, a sufficient intermolecular force is developed between the surface of the organic fine particle spacer and the surface of the alignment film, and has such a fixing force that abnormal alignment does not occur in a vibration test after liquid crystal sealing. As can be determined by experiment.

【0032】次いで、通常の方法により液晶を封入し、
アクティブマトリックスのセルが完成する。
Next, the liquid crystal is sealed by a usual method,
The cell of the active matrix is completed.

【0033】このようにして作製したアクティブマトリ
ックス液晶表示装置を、振動試験装置にかけ、1〜20
0Hz、5Gの振動条件で、振動させた後に、液晶の異
常配向を調べたところ、図2のように、液晶層16は、
各基板のラビング方向である画素電極と平行に液晶分子
が配向するが、スペーサ15の周辺では表面張力により
液晶分子が、スペーサ15の外周に沿って配向する。こ
の状態で画素電極8と共通電極11の間に電圧印加を行
うと、液晶分子は画素電極8と共通電極11と垂直な方
向に配列するが、スペーサ15の周辺では無印加時と同
様に、液晶分子がスペーサ15の外周に沿って配向す
る。よって、スペーサ15周辺の液晶分子の異常配向は
スペーサ周辺の表層のみに留まり、光漏れやコントラス
トの低下等の不具合を生じさせない。このように、スペ
ーサが移動することで静電気が発生し、スペーサ周辺が
広範囲に渡り配向異常を起こす従来の技術に比べ、液晶
分子の配向方向をより安定的に規制することが出来る。
The active matrix liquid crystal display device thus manufactured was subjected to a vibration tester,
When the liquid crystal layer 16 was vibrated under the vibration conditions of 0 Hz and 5 G, the abnormal alignment of the liquid crystal was examined. As shown in FIG.
The liquid crystal molecules are oriented in parallel with the pixel electrode, which is the rubbing direction of each substrate, but around the spacer 15, the liquid crystal molecules are oriented along the outer periphery of the spacer 15 due to surface tension. When a voltage is applied between the pixel electrode 8 and the common electrode 11 in this state, the liquid crystal molecules are arranged in a direction perpendicular to the pixel electrode 8 and the common electrode 11, but around the spacer 15, as in the case where no voltage is applied, The liquid crystal molecules are aligned along the outer periphery of the spacer 15. Therefore, the abnormal alignment of the liquid crystal molecules around the spacer 15 remains only in the surface layer around the spacer, and does not cause a problem such as light leakage or a decrease in contrast. As described above, the movement of the spacer generates static electricity, and the alignment direction of the liquid crystal molecules can be regulated more stably as compared with the related art in which alignment abnormality occurs over a wide area around the spacer.

【0034】次に、TFT基板1と対向基板2の外側の
面に偏光板である光学フィルム3、4を貼付けする。こ
の時、各基板に貼付けされた偏光板の吸収軸が直交する
ように配置する。例えば、TFT基板側の偏光板3の吸
収軸は画素電極8ならびに共通電極11と平行とし、基
板2のCF基板側の偏光板4の吸収軸は画素電極8なら
びに共通電極11と直交するように配置する。
Next, optical films 3 and 4 as polarizing plates are attached to the outer surfaces of the TFT substrate 1 and the counter substrate 2. At this time, they are arranged such that the absorption axes of the polarizing plates attached to the respective substrates are orthogonal to each other. For example, the absorption axis of the polarizing plate 3 on the TFT substrate side is parallel to the pixel electrode 8 and the common electrode 11, and the absorption axis of the polarizing plate 4 on the CF substrate side of the substrate 2 is orthogonal to the pixel electrode 8 and the common electrode 11. Deploy.

【0035】[0035]

【発明の効果】本発明によれば、偏光板貼り付け工程、
輸送時時に発生する外力に対し、スペーサが配向膜表面
に固着しているため、スペーサの画素内移動による静電
気の発生を抑えることができる。したがって、IPS方
式のアクティブマトリックス液晶表示装置において顕著
に発生が認められるノーマリィブラックモードでのコン
トラストの低下や表示のムラを抑制することが出来る。
According to the present invention, a polarizing plate adhering step,
Since the spacer is fixed to the surface of the alignment film in response to an external force generated during transport, generation of static electricity due to movement of the spacer in the pixel can be suppressed. Therefore, it is possible to suppress a decrease in contrast and display unevenness in a normally black mode, which is noticeably generated in an IPS type active matrix liquid crystal display device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のIPS方式アクティブマトリックス液
晶表示装置の一実施形態についての断面図を示す。
FIG. 1 is a sectional view showing an embodiment of an IPS type active matrix liquid crystal display device of the present invention.

【図2】本発明のIPS方式アクティブマトリックス液
晶表示装置の一実施形態についての平面図を示すととも
に、液晶分子の配向の状態を模式的に示す。
FIG. 2 is a plan view showing an embodiment of an IPS type active matrix liquid crystal display device of the present invention, and also schematically shows a state of alignment of liquid crystal molecules.

【図3】従来技術により作製されたIPS方式アクティ
ブマトリックス液晶表示装置の平面図を示すとともに、
液晶分子の異常配向の状態を模式的に示す。
FIG. 3 shows a plan view of an IPS type active matrix liquid crystal display device manufactured by a conventional technique,
The state of abnormal alignment of liquid crystal molecules is schematically shown.

【符号の簡単な説明】[Brief description of reference numerals]

1 TFT基板 2 対向基板 3 偏光板(光学フィルム) 4 偏光板(光学フィルム) 5 ゲート電極 6 ゲート絶縁膜 7 ドレイン電極 8 画素電極 9 半導体層(a−Si、n+a−Si) 10 絶縁膜 11 共通電極 12 ブラックマトリックス 13 色層 14 オーバーコート層 15 有機微粒子スペーサ 16 液晶層Reference Signs List 1 TFT substrate 2 Counter substrate 3 Polarizing plate (optical film) 4 Polarizing plate (optical film) 5 Gate electrode 6 Gate insulating film 7 Drain electrode 8 Pixel electrode 9 Semiconductor layer (a-Si, n + a-Si) 10 Insulating film DESCRIPTION OF SYMBOLS 11 Common electrode 12 Black matrix 13 Color layer 14 Overcoat layer 15 Organic fine particle spacer 16 Liquid crystal layer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 TFT基板上に、画素電極及び共通電極
の両方を有するIPS方式のアクティブマトリックス液
晶表示装置であって、前記TFT基板とこのTFT基板
に対向する対向基板を、有機微粒子スペーサを介して貼
り合わせた空セルを作製した後、この空セルを加熱処理
することにより、前記有機微粒子スペーサを前記TFT
基板及び前記対向基板に固着し、次いで液晶を前記TF
T基板と前記対向基板との間に封入して作製したアクテ
ィブマトリックス液晶表示装置。
An active matrix liquid crystal display device of an IPS system having both a pixel electrode and a common electrode on a TFT substrate, wherein the TFT substrate and a counter substrate facing the TFT substrate are interposed via an organic fine particle spacer. After producing an empty cell bonded by heating, the empty cell is subjected to a heat treatment, so that the organic fine particle spacer is attached to the TFT.
The liquid crystal is fixed to the substrate and the counter substrate,
An active matrix liquid crystal display device manufactured by being enclosed between a T substrate and the counter substrate.
【請求項2】 前記TFT基板及び前記対向基板の液晶
に接する側の表面に、ポリイミド配向膜が形成されてい
ることを特徴とする請求項1記載のアクティブマトリッ
クス液晶表示装置。
2. The active matrix liquid crystal display device according to claim 1, wherein a polyimide alignment film is formed on a surface of the TFT substrate and the counter substrate on a side in contact with the liquid crystal.
【請求項3】 前記有機微粒子スペーサが、ポリジビニ
ルベンゼン系またはアクリル樹脂系の材料からなる有機
微粒子スペーサであることを特徴とする請求項1または
2記載のアクティブマトリックス液晶表示装置。
3. The active matrix liquid crystal display device according to claim 1, wherein said organic fine particle spacer is an organic fine particle spacer made of a polydivinylbenzene-based or acrylic resin-based material.
【請求項4】 前記有機微粒子スペーサが、表面に親水
性基を有する有機微粒子スペーサであることを特徴とす
る請求項1〜3のいずれかに記載のアクティブマトリッ
クス液晶表示装置。
4. The active matrix liquid crystal display device according to claim 1, wherein said organic fine particle spacer is an organic fine particle spacer having a hydrophilic group on its surface.
【請求項5】 前記親水性基が、水酸基、スルホン酸
基、カルボン酸基及びアミノ基から選ばれた少なくとも
1種の官能基であることを特徴とする請求項4記載のア
クティブマトリックス液晶表示装置。
5. The active matrix liquid crystal display device according to claim 4, wherein said hydrophilic group is at least one functional group selected from a hydroxyl group, a sulfonic acid group, a carboxylic acid group and an amino group. .
【請求項6】 前記空セルの加熱処理温度を有機微粒子
スペーサのガラス転移温度領域またはそれ以上の温度
で、250℃以下の温度で行うことを特徴とする請求項
1〜5のいずれかに記載のアクティブマトリックス液晶
表示装置。
6. The method according to claim 1, wherein the heat treatment of the empty cell is performed at a temperature equal to or higher than the glass transition temperature of the organic fine particle spacer and at a temperature of 250 ° C. or less. Active matrix liquid crystal display device.
【請求項7】 前記空セルの加熱処理温度を100〜1
50℃の範囲で行うことを特徴とする請求項3〜5のい
ずれかに記載のアクティブマトリックス液晶表示装置。
7. The heat treatment temperature of the empty cell is set to 100 to 1
The active matrix liquid crystal display device according to claim 3, wherein the temperature is set in a range of 50 ° C. 6.
JP10329759A 1998-11-19 1998-11-19 Active matrix liquid crystal display device Pending JP2000155320A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10329759A JP2000155320A (en) 1998-11-19 1998-11-19 Active matrix liquid crystal display device
CN99123956A CN1259683A (en) 1998-11-19 1999-11-19 Effective array type liquid crystal display device
KR1019990051446A KR20000035569A (en) 1998-11-19 1999-11-19 Active-matrix type liquid-crystal display devie

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10329759A JP2000155320A (en) 1998-11-19 1998-11-19 Active matrix liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2000155320A true JP2000155320A (en) 2000-06-06

Family

ID=18224966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10329759A Pending JP2000155320A (en) 1998-11-19 1998-11-19 Active matrix liquid crystal display device

Country Status (3)

Country Link
JP (1) JP2000155320A (en)
KR (1) KR20000035569A (en)
CN (1) CN1259683A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101023730B1 (en) * 2004-09-08 2011-03-25 엘지디스플레이 주식회사 Method of forming an alignment layer for liquid crystal display device, and method of fabricating liquid crystal display device using the same

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207719A (en) * 1988-02-15 1989-08-21 Toray Ind Inc Spacer for liquid crystal element
JPH0416928A (en) * 1990-05-11 1992-01-21 Ricoh Co Ltd Compensating plate for liquid crystal display element and production thereof
JPH04142516A (en) * 1990-10-03 1992-05-15 Takiron Co Ltd Liquid crystal laminate
JPH05216049A (en) * 1992-02-07 1993-08-27 Kao Corp Spacer for liquid crystal display and production thereof
JPH05313172A (en) * 1992-05-12 1993-11-26 Kao Corp Liquid crystal display panel and its production
JPH06118421A (en) * 1992-08-20 1994-04-28 Kao Corp Liquid crystal display device
JPH06172659A (en) * 1992-12-03 1994-06-21 Sekisui Finechem Co Ltd Coated fine particle
JPH06180456A (en) * 1992-10-14 1994-06-28 Sekisui Finechem Co Ltd Spacer for liquid crystal device and liquid crystal device using same
JPH07230094A (en) * 1994-02-21 1995-08-29 Kao Corp Spacer for liquid crystal display and liquid crystal display device
JPH07300587A (en) * 1994-03-09 1995-11-14 Natoko Paint Kk Spacer for liquid crystal
JPH07333621A (en) * 1994-06-09 1995-12-22 Kao Corp Spacer for liquid crystal display and liquid crystal display device
JPH08328019A (en) * 1995-05-30 1996-12-13 Nippondenso Co Ltd Liquid crystal cell and its production
JPH0926578A (en) * 1995-07-10 1997-01-28 Fujitsu Ltd Liquid crystal display panel and manufacture thereof
JPH09113915A (en) * 1995-10-19 1997-05-02 Sekisui Finechem Co Ltd Spacer for liquid crystal display element and its production as well as liquid crystal display element
JPH10206861A (en) * 1997-01-22 1998-08-07 Nippon Shokubai Co Ltd Production of spacer for liquid crystal display plate
JPH11223821A (en) * 1997-07-14 1999-08-17 Sekisui Finechem Co Ltd Spacer for liquid crystal display element and liquid crystal display element using that

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207719A (en) * 1988-02-15 1989-08-21 Toray Ind Inc Spacer for liquid crystal element
JPH0416928A (en) * 1990-05-11 1992-01-21 Ricoh Co Ltd Compensating plate for liquid crystal display element and production thereof
JPH04142516A (en) * 1990-10-03 1992-05-15 Takiron Co Ltd Liquid crystal laminate
JPH05216049A (en) * 1992-02-07 1993-08-27 Kao Corp Spacer for liquid crystal display and production thereof
JPH05313172A (en) * 1992-05-12 1993-11-26 Kao Corp Liquid crystal display panel and its production
JPH06118421A (en) * 1992-08-20 1994-04-28 Kao Corp Liquid crystal display device
JPH06180456A (en) * 1992-10-14 1994-06-28 Sekisui Finechem Co Ltd Spacer for liquid crystal device and liquid crystal device using same
JPH06172659A (en) * 1992-12-03 1994-06-21 Sekisui Finechem Co Ltd Coated fine particle
JPH07230094A (en) * 1994-02-21 1995-08-29 Kao Corp Spacer for liquid crystal display and liquid crystal display device
JPH07300587A (en) * 1994-03-09 1995-11-14 Natoko Paint Kk Spacer for liquid crystal
JPH07333621A (en) * 1994-06-09 1995-12-22 Kao Corp Spacer for liquid crystal display and liquid crystal display device
JPH08328019A (en) * 1995-05-30 1996-12-13 Nippondenso Co Ltd Liquid crystal cell and its production
JPH0926578A (en) * 1995-07-10 1997-01-28 Fujitsu Ltd Liquid crystal display panel and manufacture thereof
JPH09113915A (en) * 1995-10-19 1997-05-02 Sekisui Finechem Co Ltd Spacer for liquid crystal display element and its production as well as liquid crystal display element
JPH10206861A (en) * 1997-01-22 1998-08-07 Nippon Shokubai Co Ltd Production of spacer for liquid crystal display plate
JPH11223821A (en) * 1997-07-14 1999-08-17 Sekisui Finechem Co Ltd Spacer for liquid crystal display element and liquid crystal display element using that

Also Published As

Publication number Publication date
CN1259683A (en) 2000-07-12
KR20000035569A (en) 2000-06-26

Similar Documents

Publication Publication Date Title
US7199855B2 (en) Liquid crystal display and method of fabricating the same
JP2808962B2 (en) Liquid crystal panel alignment defect suppression method and display device
JP3133228B2 (en) Display device
US8264657B2 (en) Liquid crystal display panel and method of manufacturing the same
US7362409B2 (en) Liquid crystal display device and method for manufacturing the same
KR20010073233A (en) Liquid crystal display device and method for manufacturing the same
KR100811640B1 (en) liquid crystal display devices
JP3483730B2 (en) Liquid crystal display
JP4318954B2 (en) Liquid crystal panel and manufacturing method thereof
JP2000155320A (en) Active matrix liquid crystal display device
JP2004191841A (en) Liquid crystal panel and its manufacturing method
JP4132967B2 (en) Liquid crystal panel substrate and liquid crystal panel manufacturing method
JPH09146078A (en) Liquid crystal element, manufacture of liquid crystal element, and liquid crystal device using the same
JP3175272B2 (en) Liquid crystal display
JP2004163459A (en) Liquid crystal panel and method of manufacturing the same
JP3868658B2 (en) Liquid crystal display device and manufacturing method thereof
JPH03197928A (en) Liquid crystal display device
Kazlas et al. Assembly and packaging of liquid-crystal-on-silicon displays
JP2002098974A (en) Liquid crystal display device and method for manufacturing the same
JPH10186373A (en) Liquid crystal display element
JPH11271798A (en) Liquid crystal display device
JPS63188118A (en) Liquid crystal device
JP2002296571A (en) Substrate for liquid crystal element and liquid crystal element using the same
JPH0240622A (en) Manufacture of liquid crystal display device
JP2006163433A (en) Liquid crystal display device and manufacturing method thereof