JPH04243228A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JPH04243228A
JPH04243228A JP1844791A JP1844791A JPH04243228A JP H04243228 A JPH04243228 A JP H04243228A JP 1844791 A JP1844791 A JP 1844791A JP 1844791 A JP1844791 A JP 1844791A JP H04243228 A JPH04243228 A JP H04243228A
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment
antiferroelectric
ferroelectric
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1844791A
Other languages
Japanese (ja)
Other versions
JP2979180B2 (en
Inventor
Akihiko Kanemoto
金本 明彦
Yasuyuki Takiguchi
康之 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1844791A priority Critical patent/JP2979180B2/en
Publication of JPH04243228A publication Critical patent/JPH04243228A/en
Application granted granted Critical
Publication of JP2979180B2 publication Critical patent/JP2979180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To improve the memory characteristic and orientability of a ferroelectric liquid crystal of the liquid crystal element formed by using the ferroelectric liquid crystal. CONSTITUTION:An oriented film 11 provided on a liquid crystal display substrate 12 is formed by using a liquid crystalline high polymer which exhibits an antiferroelectric characteristic at the temp. higher than room temp. The molecular axis direction within the smectic layer of the antiferroelectric liquid crystal phase exists in two directions and, therefore, this orientation is fixed and is used for the oriented film, by which the uniform orientation is executed without impairing the bistability of the ferroelectric liquid crystal and the memory characteristic is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、表示素子、ライトバル
ブ、光シャッター、光メモリーなどの用途を有する強誘
電性液晶を用いた液晶素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal element using ferroelectric liquid crystal, which has uses such as display elements, light valves, optical shutters, and optical memories.

【0002】0002

【従来の技術及び発明が解決しようとする課題】強誘電
性液晶を用いた液晶表示素子、液晶シャッター、液晶ラ
イトバルブ、光情報処理用スイッチング素子、光メモリ
ーなどの液晶素子では、液晶を一方向に優先的に配向さ
せる必要がある。この配向処理はこれらの液晶素子の品
質に大きな影響を与えることから多くの研究がなされて
いる。液晶の基板表面での配向状態には、基板面に平行
に配向するホモジニアス配向と、基板面に垂直に配向す
るホメオトロピック配向とに大きくわけられる。
[Prior Art and Problems to be Solved by the Invention] In liquid crystal elements such as liquid crystal display elements, liquid crystal shutters, liquid crystal light valves, switching elements for optical information processing, and optical memories that use ferroelectric liquid crystal, the liquid crystal is unidirectionally It is necessary to preferentially orient it. Since this alignment treatment has a great influence on the quality of these liquid crystal elements, much research has been conducted on it. The alignment state of liquid crystal on the substrate surface can be broadly classified into homogeneous alignment, which is aligned parallel to the substrate surface, and homeotropic alignment, which is aligned perpendicular to the substrate surface.

【0003】実際の液晶は、このように配向された強誘
電性液晶に電界などを印加することにより、液晶の配向
状態を変化させ、複屈折、2色性等を利用して、光のO
N−OFFを行う。
In actual liquid crystals, by applying an electric field or the like to the ferroelectric liquid crystals oriented in this way, the alignment state of the liquid crystals is changed, and by using birefringence, dichroism, etc., the O
Perform N-OFF.

【0004】従来の配向方法としては、無機物の斜方蒸
着、シランカップリング剤塗膜や有機高分子塗膜のラビ
ングなどが知られているが、いずれも満足のいくもので
はない。無機物の斜方蒸着はバッチ処理のため時間がか
かり、生産性が悪い。また、シランカップリング剤の塗
膜をラビングする方法は、信頼性に乏しい。さらに、有
機高分子塗膜をラビングして配向膜とする方法では、耐
熱性の悪いものが多く、耐熱性が良好で広く用いられて
いるポリイミドの場合では、均質なモノドメインを得る
ことは困難である。
Conventional orientation methods include oblique vapor deposition of inorganic materials, rubbing of silane coupling agent coatings, and rubbing of organic polymer coatings, but none of these methods are satisfactory. Oblique vapor deposition of inorganic materials is a batch process, which takes time and has poor productivity. Moreover, the method of rubbing the coating film of the silane coupling agent is poor in reliability. Furthermore, many methods of rubbing organic polymer coatings to form alignment films have poor heat resistance, and in the case of polyimide, which has good heat resistance and is widely used, it is difficult to obtain homogeneous monodomains. It is.

【0005】そこで本発明者らは、特開昭63−301
024号公報において、配向膜に強誘電体を用いる方法
を提案し、これにより強誘電性液晶の配向性を改良した
。ところが、この方法によれば均一な配向を得るのは比
較的容易であるものの、充分なメモリー性の発現という
点についてはさらに改善の余地があった。
[0005] Therefore, the inventors of the present invention have proposed
In Japanese Patent No. 024, a method using a ferroelectric material for an alignment film was proposed, thereby improving the alignment of ferroelectric liquid crystals. However, although it is relatively easy to obtain uniform orientation using this method, there is still room for improvement in terms of developing sufficient memory properties.

【0006】充分なメモリー性を発現させることが困難
なのは、従来の配向方法のほぼすべてについても言える
ことである。その原因は、従来の配向方法では、強誘電
性液晶分子を、ラビング方向などのある一方向にのみ配
向させるような作用を用いるためである。図1にその典
型例を示した。基板1上に、ポリイミドなどの有機高分
子薄膜を形成し、その表面を植毛布などでラビングする
と、液晶分子の長軸方向はラビング方向2に平行になろ
うとする。ネマティック液晶やスメクティックA液晶は
、この方法で何の問題もなく、ラビング方向2に液晶分
子長軸を配向させることができる。しかし、強誘電性液
晶素子(以下FLCDということもある)の中でも、現
在最も良く検討されている表面安定化型FLCD(SS
FLCD)をこの配向方法で作った場合、モノドメイン
は得難く、ラビング方向2に対してみかけの長軸方向が
ある角度だけずれた2つのドメインに分割してしまう(
この場合の分子長軸方向は図1の3,3’に対応)。 しかも、ラビング方向2に分子長軸をそろえようとする
力が働いているために、メモリー性が弱くなってしまう
。上下基板に異った配向処理を施したり、配向膜として
強誘電体を用いることによって、強誘電性液晶の分子長
軸方向がそれぞれ3,3’のときのダイポールモーメン
トの方向4,4’をコントロールし、2つのドメインの
うち一方のみにそろえることが可能であるが、この場合
、双安定性を持たせるのが困難なため、メモリー性は著
しく低下してしまうことがほとんどであった。
[0006] It is difficult to develop sufficient memory properties with almost all conventional orientation methods. The reason for this is that conventional alignment methods use an action that aligns ferroelectric liquid crystal molecules only in one direction, such as the rubbing direction. A typical example is shown in Figure 1. When an organic polymer thin film such as polyimide is formed on the substrate 1 and its surface is rubbed with a flocked cloth, the long axis direction of the liquid crystal molecules tends to be parallel to the rubbing direction 2. For nematic liquid crystals and smectic A liquid crystals, the long axes of liquid crystal molecules can be aligned in the rubbing direction 2 by this method without any problems. However, among ferroelectric liquid crystal devices (hereinafter also referred to as FLCDs), surface-stabilized FLCDs (SSS) are currently the most studied.
When FLCD) is made using this alignment method, it is difficult to obtain a monodomain, and the film is divided into two domains whose apparent long axis direction is shifted by a certain angle with respect to the rubbing direction 2 (
In this case, the long axis direction of the molecule corresponds to 3 and 3' in Fig. 1). Moreover, since there is a force acting to align the long axes of the molecules in the rubbing direction 2, the memory property becomes weak. By applying different alignment treatments to the upper and lower substrates or using ferroelectric materials as alignment films, the dipole moment directions 4 and 4' when the molecular long axis directions of the ferroelectric liquid crystal are 3 and 3', respectively, can be changed. Although it is possible to control and align only one of the two domains, in this case, it is difficult to provide bistability, so in most cases the memory performance is significantly reduced.

【0007】本発明は、このような従来技術の問題点に
鑑みてなされたもので、特定の配向制御膜を用いること
により、強誘電性液晶のメモリー性と配向性を改良し、
高密度、大容量、高速応答性を具備する液晶素子を提供
することを目的とする。
The present invention was made in view of the problems of the prior art, and improves the memory properties and orientation of ferroelectric liquid crystal by using a specific alignment control film.
The object of the present invention is to provide a liquid crystal element having high density, large capacity, and high-speed response.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
、本発明によれば、少くとも一方が透明な一対の基板間
に、強誘電性液晶層と、強誘電性液晶分子を基板に対し
て略水平配向させるための配向膜とを介在させてなる液
晶素子において、配向膜が、室温より高い温度において
反強誘電性を示す液晶性高分子を成膜することにより形
成されたものであることを特徴とする液晶素子が提供さ
れる。
[Means for Solving the Problems] In order to achieve the above object, according to the present invention, a ferroelectric liquid crystal layer and ferroelectric liquid crystal molecules are provided between a pair of substrates, at least one of which is transparent. In a liquid crystal element in which an alignment film is interposed for substantially horizontal alignment, the alignment film is formed by depositing a liquid crystalline polymer that exhibits antiferroelectricity at a temperature higher than room temperature. A liquid crystal element is provided.

【0009】以下本発明の構成を詳述する。本発明にお
いて配向膜として用いられる液晶性高分子は、室温より
も高い温度において反強誘電相を示す。反強誘電性液晶
相の配向状態は図2に記したように極めて特徴的なもの
である。図2は、基板表面に配向膜を塗布、ラビングし
、その配向膜上で通常の低分子の反強誘電相を配向させ
たものを基板面に垂直な方向から見た図である。隣りあ
ったスメクティック層5,5における液晶分子長軸方向
7,7は、ラビング方向6に対して逆向きに傾斜するた
めに、強誘電相よりもドメイン分割する傾向は著しく弱
く、均一な配向状態が得やすい。ラビング方向に対する
分子長軸の傾斜方向はスメクティック層の一層ごとに逆
にはならない場合もあり、図3に例示したように二層ご
とに逆向きとなることもある。三層以上が平行となる場
合や、一層と二層の組み合わせなども考えられるが、反
強誘電相に特有の配向であれば、本発明に利用すること
ができる。
The configuration of the present invention will be explained in detail below. The liquid crystalline polymer used as the alignment film in the present invention exhibits an antiferroelectric phase at a temperature higher than room temperature. The alignment state of the antiferroelectric liquid crystal phase is extremely characteristic as shown in FIG. FIG. 2 is a view of a structure in which an alignment film is coated and rubbed on the substrate surface, and an ordinary low-molecular antiferroelectric phase is oriented on the alignment film, as viewed from a direction perpendicular to the substrate surface. Since the long axis directions 7, 7 of liquid crystal molecules in the adjacent smectic layers 5, 5 are inclined in the opposite direction to the rubbing direction 6, the tendency for domain division is significantly weaker than in the ferroelectric phase, resulting in a uniform alignment state. is easy to obtain. The direction of inclination of the long axis of the molecule with respect to the rubbing direction may not be reversed for each smectic layer, but may be reversed for every two layers as illustrated in FIG. Although three or more layers may be parallel or a combination of one layer and two layers may be considered, any orientation specific to the antiferroelectric phase can be utilized in the present invention.

【0010】上述のように、反強誘電性液晶相では、ス
メクティック層内の分子長軸方向は二方向あり、この配
向を固定化して強誘電性液晶の配向膜として用いれば、
強誘電性液晶の双安定性を損うことなく配向させること
ができ、したがってメモリー性の優れたFLCDを作製
できる。
As mentioned above, in the antiferroelectric liquid crystal phase, there are two long axis directions of the molecules in the smectic layer, and if this orientation is fixed and used as an alignment film for the ferroelectric liquid crystal,
It is possible to align the ferroelectric liquid crystal without impairing its bistability, and therefore it is possible to produce a FLCD with excellent memory properties.

【0011】反強誘電性液晶相での配向の固定化は、液
晶性高分子で反強誘電相を持つ材料を基板上に成膜し、
この高分子が反強誘電相を示す温度まで加熱し、予め基
板に施しておいた配向処理膜の作用で所望の配向状態を
とらせ、次に液晶相をとらない温度まで急冷することに
よって達成することができる。基板上に配向固定化した
液晶性高分子の構成例を図4に示した。図中10は液晶
性高分子層、11は配向処理層、12は基板である。基
板12としては、ガラスやプラスチックフィルムを用い
ることができる。プラスチックフィルムの中では、ポリ
エチレンテレフタレート、ポリエーテルサルフォン、ポ
リアリレートなどが耐熱性の点から好ましい。配向処理
層11としては、ポリイミド系樹脂の塗膜をラビング処
理したものや、SiOの斜方蒸着膜など、従来の配向処
理法による配向膜で充分である。一軸延伸したポリエチ
レンテレフタレートのようなフィルムを基板12として
用いる場合は、延伸した方向にポリエチレンテレフタレ
ートの主鎖が配向しているため、配向処理層11はなく
ても良く、また、基板の延伸方向とは異る方向に規制力
を持たせたいときは、基板表面を直接ラビングしても良
い。後者の方法は、一軸延伸していないプラスチックフ
ィルムを基板とするときも有効である。本発明で用いら
れるような反強誘電相を持つ液晶性高分子の例としては
、メソゲンとして反強誘電相をとるような構造を持った
側鎖型液晶性高分子があげられる。このようなメソゲン
としては例えば表1に示すようなものがある。
[0011] Fixing the orientation in the antiferroelectric liquid crystal phase is achieved by forming a film of a liquid crystal polymer material having an antiferroelectric phase on a substrate, and
This is achieved by heating this polymer to a temperature at which it exhibits an antiferroelectric phase, allowing the desired alignment state to be achieved by the action of an alignment treatment film previously applied to the substrate, and then rapidly cooling it to a temperature at which it does not form a liquid crystal phase. can do. FIG. 4 shows an example of the structure of a liquid crystalline polymer whose orientation is fixed on a substrate. In the figure, 10 is a liquid crystal polymer layer, 11 is an alignment treatment layer, and 12 is a substrate. As the substrate 12, glass or a plastic film can be used. Among plastic films, polyethylene terephthalate, polyether sulfone, polyarylate, and the like are preferred from the viewpoint of heat resistance. As the alignment treatment layer 11, an alignment film formed by a conventional alignment treatment method, such as a rubbed polyimide resin coating or an obliquely vapor-deposited SiO film, is sufficient. When a film such as uniaxially stretched polyethylene terephthalate is used as the substrate 12, the main chain of the polyethylene terephthalate is oriented in the direction of stretching, so the orientation treatment layer 11 may be omitted; When it is desired to have a regulating force in a different direction, the surface of the substrate may be directly rubbed. The latter method is also effective when the substrate is a plastic film that is not uniaxially stretched. An example of a liquid crystalline polymer having an antiferroelectric phase as used in the present invention is a side chain type liquid crystalline polymer having a structure such that it takes an antiferroelectric phase as a mesogen. Examples of such mesogens include those shown in Table 1.

【0012】0012

【表1】[Table 1]

【0013】反強誘電相を持つ液晶材料はまたあまり知
られていないが、今後多種類の反強誘電性液晶材料が発
見されると考えられ、それにつれて本発明で用いること
のできるようなメソゲンも増加すると期待できる。スペ
ーサー部は、一般の液晶性高分子と同様に炭素数が2〜
10のメチレン鎖や、直鎖アルコキシ基のとき、液晶相
が安定する。主鎖骨格は、ビニル系高分子やポリシロキ
サンなどが好ましい。
Although liquid crystal materials having an antiferroelectric phase are not well known, it is thought that many types of antiferroelectric liquid crystal materials will be discovered in the future, and as a result, mesogens that can be used in the present invention will be developed. can be expected to increase as well. The spacer part has 2 to 2 carbon atoms like general liquid crystal polymers.
When it is a methylene chain of 10 or a linear alkoxy group, the liquid crystal phase is stabilized. The main chain skeleton is preferably a vinyl polymer, polysiloxane, or the like.

【0014】反強誘電相を持った主鎖型液晶性高分子の
例は現在までのところ知られていないが、スメティック
相を持ち、しかも不斉炭素を有するような次式化1で表
わされる材料で、反強誘電相を持つものが期待できる。
Although no examples of main chain type liquid crystalline polymers having an antiferroelectric phase are known to date, there are examples of main chain type liquid crystal polymers having a smetic phase and an asymmetric carbon, which are represented by the following formula 1. Materials with an antiferroelectric phase can be expected.

【化1】 式化1において、nの異った単位の共重合体を用いるこ
ともできる。
[Formula 1] In Formula 1, copolymers of units with different n can also be used.

【0015】液晶性高分子を基板上または配向処理層付
き基板上に成膜する方法としては、液晶性高分子が流動
性を示すガラス転移点以上の温度で直接塗布する方法、
または液晶性高分子を溶媒に溶解させ、溶液として塗布
または印刷した後に、溶媒を蒸発させる方法などがある
。液晶性高分子を溶かす溶媒としては、クロロホルム、
ジクロロエタン、テトラクロロエタン、トリクロロエチ
レン、テトラクロロエチレン、オルソジクロロベンゼン
などのハロゲン化炭化水素系溶媒、フェノール、O−ク
ロロフェノール、クレゾールなどのフェノール系溶媒、
ジメチルホルムアミド、ジメチルスルホキシドなどの非
プロトン性極性溶媒、テトラヒドロフラン、ジオキサン
などのエーテル系溶媒、およびこれらの混合溶媒を用い
ることができる。特に配向処理層11として高分子塗膜
を用いるときは、液晶性高分子の溶剤によって配向処理
層の配向力が低下しないように溶媒を選ぶ必要がある。
Methods for forming a film of a liquid crystalline polymer on a substrate or a substrate with an alignment treatment layer include a method in which the liquid crystalline polymer is directly coated at a temperature equal to or higher than the glass transition point at which the liquid crystalline polymer exhibits fluidity;
Alternatively, there is a method in which the liquid crystalline polymer is dissolved in a solvent, the solution is applied or printed, and then the solvent is evaporated. Chloroform,
Halogenated hydrocarbon solvents such as dichloroethane, tetrachloroethane, trichloroethylene, tetrachloroethylene, orthodichlorobenzene, phenolic solvents such as phenol, O-chlorophenol, and cresol;
Aprotic polar solvents such as dimethylformamide and dimethyl sulfoxide, ether solvents such as tetrahydrofuran and dioxane, and mixed solvents thereof can be used. In particular, when a polymer coating film is used as the alignment layer 11, it is necessary to select a solvent so that the alignment force of the alignment layer is not reduced by the solvent for the liquid crystalline polymer.

【0016】基板上に液晶性高分子層を設けた後、液晶
性高分子が反強誘電相を示す温度まで加熱して数分〜1
時間保ち、図2や図3に示したような配向を完了してか
ら、液晶相をとらない温度まで急冷する。これにより、
反強誘電相の配向を固定化することができる。以上と同
様にして準備したもう一枚の基板をシール材によっては
りあわせて、強誘電性液晶を封入して作製した液晶セル
を図5に例示した。16,16’が配向を固定化した液
晶性高分子層で、強誘電性液晶17の配向膜として作用
している。
After providing the liquid crystal polymer layer on the substrate, the liquid crystal polymer is heated to a temperature at which it exhibits an antiferroelectric phase for several minutes to 1 hour.
After the alignment is completed as shown in FIGS. 2 and 3 for a certain period of time, it is rapidly cooled to a temperature at which no liquid crystal phase is formed. This results in
The orientation of the antiferroelectric phase can be fixed. FIG. 5 shows an example of a liquid crystal cell prepared by bonding another substrate prepared in the same manner as above with a sealing material and sealing ferroelectric liquid crystal therein. 16 and 16' are liquid crystalline polymer layers with fixed orientation, which act as alignment films for the ferroelectric liquid crystal 17.

【0017】[0017]

【実施例】次に本発明の実施例を説明する。 実施例1 透明電極をパターニングしたガラス基板上にポリイミド
系配向剤を印刷し、100℃で30分間乾燥した後、2
50℃で1時間焼成してイミド化を完了させ、配向膜面
をラビング処理した。この配向膜上に、下記式化2で示
される構造をメソゲンとする側鎖型ポリシロキサン系液
晶性高分子をテトラクロロエタンを主剤とする溶媒に溶
解した溶液を、スピンナーで塗布した。
[Example] Next, an example of the present invention will be described. Example 1 A polyimide alignment agent was printed on a glass substrate patterned with transparent electrodes, and after drying at 100°C for 30 minutes,
The imidization was completed by baking at 50° C. for 1 hour, and the surface of the alignment film was rubbed. On this alignment film, a solution in which a side-chain polysiloxane liquid crystalline polymer having a mesogen structure represented by the following formula 2 was dissolved in a solvent containing tetrachloroethane as a main ingredient was applied using a spinner.

【化2】 塗布後、100℃で1時間乾燥し、液晶性高分子が反強
誘電相を示す温度まで加熱し、30分間放置した後に室
温まで急冷した。この基板を偏光顕微鏡で観察したとこ
ろ、ラビング方向に消光位を持ったモノドメインである
ことがわかった。
embedded image After coating, the coating was dried at 100° C. for 1 hour, heated to a temperature at which the liquid crystalline polymer exhibits an antiferroelectric phase, left to stand for 30 minutes, and then rapidly cooled to room temperature. When this substrate was observed with a polarizing microscope, it was found to be a monodomain with an extinction position in the rubbing direction.

【0018】同様に用意したもう一枚の基板とラビング
方向が平行となるようにはりあわせ、液晶セルとした。 セルギャップは平均径が1.8ミクロンのプラスチック
ビーズを散布することにより、約1.7ミクロンにコン
トロールした。この液晶セルにメルク(Merck)社
製の強誘電性液晶ZLI−4237−000を封入し、
85℃まで昇温して等方相とし、約1℃/minの速さ
で徐冷したところ均一な配向が得られた。電極にパルス
状の正電位と負電位を印加することによってメモリー性
を評価したところ、一般のポリイミド系配向剤のみを用
いたときに比較して、はるかに安定したメモリー性が確
認された。図6の(a)に本実施例におけるメモリー性
、(b)に従来例におけるメモリー性を比較して示す。 電圧が印加されていない期間の光強度変化は(a)のほ
うが小さく、安定したメモリー性を持っていることがわ
かった。
[0018] This was laminated to another substrate prepared in the same manner so that the rubbing direction was parallel to it to form a liquid crystal cell. The cell gap was controlled to about 1.7 microns by scattering plastic beads with an average diameter of 1.8 microns. Ferroelectric liquid crystal ZLI-4237-000 manufactured by Merck was sealed in this liquid crystal cell,
When the temperature was raised to 85° C. to obtain an isotropic phase and then slowly cooled at a rate of about 1° C./min, uniform orientation was obtained. When the memory property was evaluated by applying pulsed positive and negative potentials to the electrodes, it was confirmed that the memory property was much more stable than when only a general polyimide alignment agent was used. FIG. 6(a) shows the memory performance of this embodiment, and FIG. 6(b) shows a comparison of the memory performance of the conventional example. It was found that the change in light intensity during the period when no voltage was applied was smaller in (a), indicating that it had stable memory properties.

【0019】[0019]

【発明の効果】本発明の液晶素子では、反強誘電相の配
向を固定化した液晶性高分子層を、強誘電性液晶を配向
させるための配向膜として用いているため、強誘電性液
晶のメモリー性を充分に発現させることができ、大容量
表示が可能な液晶素子や安定した記録媒体として使用で
きる液晶素子を提供することができる。
[Effects of the Invention] In the liquid crystal element of the present invention, the liquid crystalline polymer layer in which the orientation of the antiferroelectric phase is fixed is used as an alignment film for aligning the ferroelectric liquid crystal. It is possible to provide a liquid crystal element that can sufficiently exhibit memory properties and can be used as a liquid crystal element capable of displaying a large capacity or as a stable recording medium.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】従来技術の問題点の説明図である。FIG. 1 is an explanatory diagram of problems in the prior art.

【図2】反強誘電性液晶相の配向状態の説明図である。FIG. 2 is an explanatory diagram of the alignment state of an antiferroelectric liquid crystal phase.

【図3】反強誘電性液晶相の別の配向状態の説明図であ
る。
FIG. 3 is an explanatory diagram of another orientation state of an antiferroelectric liquid crystal phase.

【図4】配向固定化された液晶性高分子の構成例を示す
断面図である。
FIG. 4 is a cross-sectional view showing an example of the structure of a liquid crystalline polymer with fixed orientation.

【図5】本発明による液晶セルの構成例を示す断面図で
ある。
FIG. 5 is a cross-sectional view showing a configuration example of a liquid crystal cell according to the present invention.

【図6】(a)は実施例におけるメモリー性、(b)は
従来例におけるメモリー性を示す図である。
FIG. 6(a) is a diagram showing memory performance in an embodiment, and FIG. 6(b) is a diagram showing memory performance in a conventional example.

【符号の説明】[Explanation of symbols]

10,16,16’  液晶性高分子層    11,
15,15’  配向処理層 12,13,13’  基板            
  14,14’  透明電極 17  強誘電性液晶
10,16,16' liquid crystalline polymer layer 11,
15, 15' alignment treatment layer 12, 13, 13' substrate
14,14' Transparent electrode 17 Ferroelectric liquid crystal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  少くとも一方が透明な一対の基板間に
、強誘電性液晶層と、該強誘電性液晶分子を該基板に対
して略水平配向させるための配向膜とを介在させてなる
液晶素子において、該配向膜が、室温よりも高い温度に
おいて反強誘電性を示す液晶性高分子を成膜することに
より形成されたものであることを特徴とする液晶素子。
1. A ferroelectric liquid crystal layer and an alignment film for aligning the ferroelectric liquid crystal molecules substantially horizontally with respect to the substrates are interposed between a pair of substrates, at least one of which is transparent. 1. A liquid crystal element, wherein the alignment film is formed by depositing a liquid crystalline polymer exhibiting antiferroelectricity at a temperature higher than room temperature.
JP1844791A 1991-01-18 1991-01-18 Liquid crystal element Expired - Fee Related JP2979180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1844791A JP2979180B2 (en) 1991-01-18 1991-01-18 Liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1844791A JP2979180B2 (en) 1991-01-18 1991-01-18 Liquid crystal element

Publications (2)

Publication Number Publication Date
JPH04243228A true JPH04243228A (en) 1992-08-31
JP2979180B2 JP2979180B2 (en) 1999-11-15

Family

ID=11971880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1844791A Expired - Fee Related JP2979180B2 (en) 1991-01-18 1991-01-18 Liquid crystal element

Country Status (1)

Country Link
JP (1) JP2979180B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468844B1 (en) 1997-07-14 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Preparation method of semiconductor device
US6856360B1 (en) 1997-11-28 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device, method of manufacturing the same, and electronic equipment
US7227603B1 (en) 1993-07-22 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US8212968B2 (en) 1993-07-22 2012-07-03 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227603B1 (en) 1993-07-22 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US7561246B2 (en) 1993-07-22 2009-07-14 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US8212968B2 (en) 1993-07-22 2012-07-03 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US8243233B2 (en) 1993-07-22 2012-08-14 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US8396690B2 (en) 1993-07-22 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US6468844B1 (en) 1997-07-14 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Preparation method of semiconductor device
US6856360B1 (en) 1997-11-28 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device, method of manufacturing the same, and electronic equipment

Also Published As

Publication number Publication date
JP2979180B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
US4932758A (en) Ferroelectric smectic liquid crystal device having a bistable alignment state providing two stable orientation states
CN101542373B (en) Liquid crystal display element
US5325219A (en) Chiral smectic liquid crystal device having polyimide alignment layer with fluoroalkyl side chain
US5426525A (en) Ferroelectric smectic liquid crystal device
WO2005071476A1 (en) Liquid crystal display device
US5326600A (en) Liquid crystal device
JPH05224241A (en) Liquid crystal element and display device formed by using this element
JP2979180B2 (en) Liquid crystal element
EP0645662B1 (en) A liquid crystal display device
JPH0416919A (en) Optical phase plate
JPH0792568B2 (en) Liquid crystal display element
US5422749A (en) Ferroelectric smetic liquid crystal device
JP2675893B2 (en) Liquid crystal element
JP2585835B2 (en) Liquid crystal display device
JPH07306421A (en) Ferroelectric liquid crystal element
JPS61186932A (en) Liquid crystal element
JPH04268389A (en) Ferroelectric high-molecular liquid crystal composition and liquid-crystal optical element made by using it
JP2869450B2 (en) Liquid crystal display device
JPS62231936A (en) Liquid crystal element
JP2880807B2 (en) Liquid crystal display
JPH08286190A (en) Production of ferroelectric liquid crystal element
JP3062978B2 (en) Ferroelectric liquid crystal device
JPS62161122A (en) Ferroelectric liquid crystal element
JP3091091B2 (en) Liquid crystal display device
JPH04260024A (en) Liquid crystal shutter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees