JPH04169070A - Manufacture of carbonaceous composite electrode substrate for fuel cell - Google Patents

Manufacture of carbonaceous composite electrode substrate for fuel cell

Info

Publication number
JPH04169070A
JPH04169070A JP2296334A JP29633490A JPH04169070A JP H04169070 A JPH04169070 A JP H04169070A JP 2296334 A JP2296334 A JP 2296334A JP 29633490 A JP29633490 A JP 29633490A JP H04169070 A JPH04169070 A JP H04169070A
Authority
JP
Japan
Prior art keywords
adhesive
carbonaceous
parts
thickness
electrode substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2296334A
Other languages
Japanese (ja)
Other versions
JPH07120532B2 (en
Inventor
Yoshio Suzuki
義雄 鈴木
Toshiharu Uei
上井 敏治
Kazuyoshi Haino
灰野 和義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2296334A priority Critical patent/JPH07120532B2/en
Publication of JPH04169070A publication Critical patent/JPH04169070A/en
Publication of JPH07120532B2 publication Critical patent/JPH07120532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a carbonaceous composite electrode substrate for a fuel cell constantly having excellent adhesive strength and uniform and low electric resistance even in a large size by applying an adhesive, having specific composition, and a specific adhesion condition. CONSTITUTION:Carbonaceous powders, having mean particle diameters of 1-10mum, of 10-40wt. parts and carbonaceous powders, having mean particle diameters of 20-80mum, of 60-90wt. parts are mixedly used as the filler component of an adhesive. By this, an adhesion layer is formed in which conductive fine particles, whose particle size distribution has two piles at the time of baking and carbonization, mixedly exist in the inside of the carbonization organization of a thermosetting resin. Also on condition that the viscosity of the adhesive is 500-5000 poises and the thickness of the adhesive application forms an adhesion layer of 50-200mum in thickness, and adhesion layer is joined to a porous carbonaceous electrode plate to be hardened under pressurization and heating, and then is baked and carbonized in temperature region of 800 deg.C or more in a non-exidizing atmosphere. This permits the giving of excellent adhesive strength and uniform electric resistance between interfaces even in large size electrode members and separators.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素質材料で構成された多孔質電極板と緻密
質セパレーター板が一体化したリン酸型の燃料電池用炭
素質複合電極基板を製造する方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a carbonaceous composite electrode substrate for a phosphoric acid fuel cell in which a porous electrode plate made of a carbonaceous material and a dense separator plate are integrated. Relating to a method of manufacturing.

〔従来の技術] 炭素質材料を部材としたリン酸型燃料電池の製作に当た
っては、機械的強度の向上、セル内部における電気的・
熱的抵抗の低減、積層組立の簡素化などを図るため、セ
パレーター板と多孔質電極板の両部材を予め複合一体化
した構造のものが開発され、実用化の段階にある。
[Prior art] In manufacturing phosphoric acid fuel cells using carbonaceous materials as components, improvements in mechanical strength and electrical and
In order to reduce thermal resistance and simplify lamination assembly, a structure in which the separator plate and porous electrode plate are integrated into a composite structure has been developed and is now in the stage of practical application.

このような複合電極基板を製造するための簡易で実用性
の高い手段に、電極板、セパレータ板およびサイドシー
ル板を所定の形態に接着剤で接合したのち焼成する接合
焼成法(特開昭60−20471号公報、実開昭60−
15759号公報)がある。
A simple and highly practical means for manufacturing such composite electrode substrates is the bonding and firing method (Japanese Patent Application Laid-Open No. 1983-1996), in which electrode plates, separator plates, and side seal plates are bonded in a predetermined shape with an adhesive and then fired. -20471 Publication, Utility Model Publication 1986-
15759).

ところが、前記の接合焼成法による場合には接着材が多
孔質電極の組織内部に浸透する現象が生し、電極部材の
気孔率を低下させる一方、界面の接着強度が減退して電
極板とセパレーター板とが剥離を起こす欠点があった。
However, when using the bonding and firing method described above, a phenomenon occurs in which the adhesive permeates into the structure of the porous electrode, reducing the porosity of the electrode member and reducing the adhesive strength at the interface, causing the electrode plate and separator to deteriorate. There was a drawback that the plate would peel off.

そこで、本発明者らは接合時における接着剤の電極浸透
を防ぎかつ焼成段階で揮散消失する物質で予め電極基材
を処理する方法を先に提案した(特開昭62−1265
62号公報)。
Therefore, the present inventors previously proposed a method of pre-treating the electrode base material with a substance that prevents the adhesive from penetrating into the electrode during bonding and evaporates during the firing process (Japanese Patent Laid-Open No. 62-1265
Publication No. 62).

しかしながら、この方法を採る場合には前処理として1
工程が加わるため、生産能率が低下する難点がある。
However, when using this method, 1
The disadvantage is that production efficiency decreases due to the addition of additional steps.

(発明が解決しようとする課題) 近時、セルサイズの大型化に伴って部材接着力の増大な
らびに基板内部での電気抵抗の均一化が一層要求されて
きている。この性能要求に対しては、接着剤の接着強度
を高めるとともに接着界面を均一化してバラツキのない
接着層を形成することが必須の要件となるが、従来技術
による接着剤で前記の要件を全面的に満足する組成のも
のはない。とくに従来の接着剤では接着層の不均一化が
現出する傾向が強く、これは電気抵抗の変動ばかりでは
なく、加工時、接着層に剪断力が働くために層重の部分
から電極部材が欠落するなど、加工上の問題点ともなる
(Problems to be Solved by the Invention) Recently, with the increase in cell size, there has been a growing demand for increased member adhesive strength and uniform electrical resistance within the substrate. To meet this performance requirement, it is essential to increase the adhesive strength of the adhesive and to make the adhesive interface uniform to form a consistent adhesive layer. There is no one with a composition that satisfies the requirements. In particular, with conventional adhesives, there is a strong tendency for non-uniformity of the adhesive layer to appear, and this is not only caused by fluctuations in electrical resistance, but also by shearing force acting on the adhesive layer during processing, which causes electrode members to separate from the layered areas. It also causes problems in processing, such as chipping.

本発明は、接着剤の組成を改良して上記問題点の解消を
図ったもので、その目的は大型サイズの電極部材とセパ
レーターにおいても界面間に優れた接着強度と均一な電
気抵抗を付与することができる生産効率のよい燃料電池
用炭素質複合電極基板の製造方法を提供することにある
The present invention aims to solve the above problems by improving the composition of the adhesive, and its purpose is to provide excellent adhesive strength and uniform electrical resistance between the interfaces even in large-sized electrode members and separators. An object of the present invention is to provide a method for manufacturing a carbonaceous composite electrode substrate for a fuel cell with high production efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するための本発明による燃料電池用炭
素質複合電極基板の製造方法は、平均粒子径1〜10μ
mの炭素質粉末10〜40重量部と平均粒子径20〜8
0μmの炭素質粉末60〜90重量部を混合したのち残
炭率40%以上の液状熱硬化性樹脂と混練して粘度50
0〜5000ポイズの接着剤を調製し、該接着剤を炭素
質セパレータ一部材の表面に接着層の厚さが50〜20
0 μmになるように均一塗布して多孔炭素質電極板と
接合し、加圧加熱下で接着層を硬化したのち非酸化性雰
囲気中で800℃以上の温度域で焼成炭化することを構
成上の特徴とする。
The method for manufacturing a carbonaceous composite electrode substrate for fuel cells according to the present invention to achieve the above object includes an average particle size of 1 to 10 μm.
m carbonaceous powder 10 to 40 parts by weight and average particle size 20 to 8
After mixing 60 to 90 parts by weight of carbonaceous powder with a diameter of 0 μm, the mixture is kneaded with a liquid thermosetting resin having a residual carbon content of 40% or more to obtain a viscosity of 50%.
An adhesive having a poise of 0 to 5000 is prepared, and the adhesive is applied to the surface of a carbonaceous separator member so that the thickness of the adhesive layer is 50 to 20.
The structure is such that the adhesive layer is coated uniformly to a thickness of 0 μm and bonded to the porous carbonaceous electrode plate, the adhesive layer is cured under pressure and heat, and then fired and carbonized in a non-oxidizing atmosphere at a temperature of 800°C or higher. The characteristics of

本発明の構成部材となる炭素質セパレーター板としでは
、黒鉛基板にフェノール系、フラン系などの熱硬化性樹
脂液を含浸硬化して焼成する方法、黒鉛微粉末をフェノ
ール樹脂、フラン樹脂あるいはタールピッチなどと混練
して板状成形したのち焼成する方法、フェノール樹脂ま
たはフラン樹脂の成形板を焼成してガラス状カーボン化
する方法等で得られる不透過性の緻密質組織と表面平滑
性を備える薄板材料が供用される。
The carbonaceous separator plate, which is a component of the present invention, can be produced by impregnating a graphite substrate with a thermosetting resin liquid such as phenolic or furan, and then curing it, or by applying fine graphite powder to a phenolic resin, furan resin, or tar pitch. A thin sheet with an impermeable dense structure and a smooth surface obtained by kneading it with other materials, forming it into a plate shape, and then firing it, or firing a molded plate of phenol resin or furan resin to form a glassy carbon, etc. Materials will be made available.

また、多孔炭素質電極板には、炭素繊維あるいはポリア
クリルニトリル、セルローズなどの有機質繊維を例えば
フェノール樹脂のような熱硬化性樹脂と共に薄板状に成
形したのち、焼成炭化した多孔質組織をもつ炭素材料が
使用される。
In addition, porous carbonaceous electrode plates are made by forming carbon fibers or organic fibers such as polyacrylonitrile or cellulose into a thin plate together with a thermosetting resin such as phenolic resin, and then firing and carbonizing carbon fibers with a porous structure. material is used.

本発明の要点は、炭素質セパレーターと多孔炭素l!電
極板を、平均粒子径1−10μmの炭素質粉末10〜4
0重量部と平均粒子径20〜80μmの炭素質粉末60
〜90重量部を混合したのち残炭率40%以上の液状熱
硬化性樹脂と混練して調製した粘度500〜5000ポ
イズの接着剤を介して接合するところにある。
The key points of the present invention are the carbonaceous separator and the porous carbon l! The electrode plate is made of carbonaceous powder 10 to 4 with an average particle size of 1 to 10 μm.
Carbonaceous powder 60 with 0 parts by weight and an average particle size of 20 to 80 μm
After mixing ~90 parts by weight, the mixture is bonded via an adhesive having a viscosity of 500 to 5000 poise prepared by kneading with a liquid thermosetting resin having a residual carbon content of 40% or more.

平均粒子径範囲の異なる炭素質粉末を特定された配合比
で混合使用するのは、焼成炭化後の接着強度を向上させ
低い電気抵抗を与えるための組成条件であり、前記の粒
子径範囲と配合範囲を満たさないと効果的な接着強度の
増大および低位の電気抵抗の付与は期待できな(なる。
The mixing and use of carbonaceous powders with different average particle size ranges in a specified blending ratio is a compositional condition for improving adhesive strength after firing and carbonization and providing low electrical resistance. If the range is not met, effective increase in adhesive strength and provision of low electrical resistance cannot be expected.

炭素質粉末としては、コークス、炭素、天然黒鉛、人造
黒鉛、ガラス状カーボンなどを所定粒度範囲に粉砕した
ものを適用することができるが、特に高純度で良電導性
を有する人造黒鉛粉末が効果よく用いることができる。
As the carbonaceous powder, it is possible to use coke, carbon, natural graphite, artificial graphite, glassy carbon, etc. that have been crushed into a specified particle size range, but artificial graphite powder with high purity and good conductivity is particularly effective. Can be used often.

残炭率40%以上の液状熱硬化性樹脂とは、非酸化性雰
囲気中で1000″Cの温度に焼成した際に40重量%
以上の炭素分が残留する性質の熱硬化性樹脂液を指し、
例えばフェノール系樹脂、フラン系樹脂、ポリイミド樹
脂などの初期縮合物が該当する。
A liquid thermosetting resin with a residual carbon content of 40% or more means a residual carbon content of 40% by weight when fired at a temperature of 1000"C in a non-oxidizing atmosphere.
Refers to a thermosetting resin liquid with a residual carbon content of
For example, initial condensates such as phenolic resins, furan resins, and polyimide resins are applicable.

接着剤の粘度を500〜5000ポイズの範囲に設定す
る理由は、500ポイズを下履る粘度では接着剤が電極
板の多孔組織内に浸透して接着強度の低下を招き、50
00ポイズを越えると塗布が困難となって接着層の厚さ
が不均質となるためである。この粘度範囲を確保するに
は、前記炭素質粉末の混合物100重量部に対し液状熱
硬化性樹脂を概ね50〜150重量部の範囲で量調整し
、混練すればよい。
The reason why the viscosity of the adhesive is set in the range of 500 to 5000 poise is that if the viscosity is lower than 500 poise, the adhesive will penetrate into the porous structure of the electrode plate, resulting in a decrease in adhesive strength.
This is because if it exceeds 0.00 poise, coating becomes difficult and the thickness of the adhesive layer becomes non-uniform. In order to ensure this viscosity range, the amount of liquid thermosetting resin may be adjusted to approximately 50 to 150 parts by weight per 100 parts by weight of the carbonaceous powder mixture and kneaded.

上記組成の接着剤は、炭素質セパレーター板の表面に接
着層の厚さが50〜200μ請になるように均一塗布し
て多孔炭素質電極板と接合する。接着層の厚さが50μ
細未満であると接着力が不足して部分的な剥離が発生し
易くなり、200μmを上潮る接着層の厚さになると接
着界面の剥離が多発するようになる。
The adhesive having the above composition is uniformly applied to the surface of the carbonaceous separator plate so that the adhesive layer has a thickness of 50 to 200 μm to bond it to the porous carbonaceous electrode plate. Adhesive layer thickness is 50μ
If the thickness is less than 200 μm, the adhesive strength will be insufficient and partial peeling will easily occur, and if the thickness of the adhesive layer exceeds 200 μm, peeling at the adhesive interface will occur frequently.

接着剤の塗布は、例えばドクターブレード法のような機
械的手段を用いておこなうことが好ましく、接着層の厚
さのバラツキとして±0.03mmの範囲に収めること
が望ましい。該バラツキの範囲を外れると、部材の局部
的な剥離が起き易くなるうえ電気抵抗の変動が大きくな
る。
The adhesive is preferably applied using a mechanical means such as a doctor blade method, and it is desirable that the variation in the thickness of the adhesive layer is within a range of ±0.03 mm. Outside this range of variation, local peeling of the member tends to occur and the electrical resistance fluctuates significantly.

接合処理後の部材は、加圧加熱下で接着層を硬化する。After the bonding process, the adhesive layer of the member is cured under pressure and heat.

この場合の好ましい条件は、加圧力1〜20kg/cm
”、温度50〜300℃である。
In this case, the preferable conditions are a pressing force of 1 to 20 kg/cm.
”, the temperature is 50-300°C.

ついで、接合部材を焼成炉に移し、非酸化性雰囲気中で
800℃以上の温度域で焼成炭化する。このほか、サイ
ドシール部の設置、所要の加工(平面、外周、溝などの
加工)を施して燃料電池用炭素質複合電極基板を得る。
Next, the joining member is transferred to a firing furnace and fired and carbonized in a non-oxidizing atmosphere at a temperature of 800° C. or higher. In addition, a side seal portion is installed and required processing (processing of the flat surface, outer periphery, grooves, etc.) is performed to obtain a carbonaceous composite electrode substrate for a fuel cell.

〔作 用〕[For production]

本発明によれば、接着剤のフィラー成分として平均粒子
径1〜10μmの炭素質粉末10〜40重量部と平均粒
子径20〜80μ■の炭素質粉末60〜90重量部を混
合使用することにより、焼成炭化時に粒度分布が2山と
なる導電性微粒子が熱硬化性樹脂の炭化組織の内部に混
在した独特の接着層を形成し、この接着層が接着強度を
向上させ、同時に電気抵抗を低減させるために機能する
According to the present invention, by mixing and using 10 to 40 parts by weight of carbonaceous powder with an average particle size of 1 to 10 μm and 60 to 90 parts by weight of carbonaceous powder with an average particle size of 20 to 80 μm as a filler component of the adhesive. During firing and carbonization, conductive fine particles with a two-peak particle size distribution form a unique adhesive layer mixed inside the carbonized structure of the thermosetting resin, and this adhesive layer improves adhesive strength and reduces electrical resistance at the same time. function to make it happen.

また、接着剤の粘度を500〜5000ポイズとし、塗
布の厚さを接着層が50〜200μmになる条件を与え
ることは、接着層の均一性を確保して電気抵抗の変動を
軽減化するとともに、接着界面の剥離を阻止する働きを
なす。
In addition, setting the viscosity of the adhesive to 500 to 5000 poise and applying conditions such that the thickness of the adhesive layer becomes 50 to 200 μm ensures uniformity of the adhesive layer and reduces fluctuations in electrical resistance. , which acts to prevent peeling of the adhesive interface.

このような作用が相乗して、大型サイズの燃料電池用複
合電極基板に要求される接着層部分の強化と電気抵抗の
均一化を効果的に付与することが可能となる。
These effects combine to effectively provide reinforcement of the adhesive layer portion and uniform electrical resistance required for large-sized composite electrode substrates for fuel cells.

〔実施例] 以下、本発明の実施例を比較例と対比して説明する。〔Example] Examples of the present invention will be described below in comparison with comparative examples.

実施例1〜5、比較例1〜10 (1)接着剤の調製 平均粒子径3μmの人造黒鉛微粉末と平均粒子径40μ
mの人造黒鉛微粉末を用意し、両者を各種の配合比で混
合した。各混合粉末をフェノール樹脂初期縮合物〔住友
デュレズ■製、PR940)に加えてニーグーにより十
分に混練し、粘度の異なるペースト状接着剤を調製した
Examples 1 to 5, Comparative Examples 1 to 10 (1) Preparation of adhesive Artificial graphite fine powder with an average particle size of 3 μm and an average particle size of 40 μm
m of artificial graphite fine powder were prepared, and both were mixed at various blending ratios. Each of the mixed powders was added to a phenolic resin initial condensate (manufactured by Sumitomo Durez ■, PR940) and sufficiently kneaded with a niegu to prepare paste adhesives having different viscosities.

(2)複合電極基板の製造 多孔炭素質電極板として、ピッチ系炭素繊維のチョップ
(平均長さ2011■)をフェノール樹脂と混合してモ
ールド成形したのち2000℃で焼成して得た縦101
0Il+w、横920mm 、厚さ2 mmのサイズで
、気孔率64%、平均気孔径50μmの性状を有する板
状体を用いた。炭素質セパレーター板としては、黒鉛微
粉(平均粒径5μm>を混練したフェノール樹脂を圧延
成形したのち硬化し、ついで1300℃で焼成して得た
一辺の長さ1000mm、厚さ0.6m−の正方形薄板
を用いた。
(2) Manufacture of composite electrode substrate As a porous carbonaceous electrode plate, chopped pitch-based carbon fiber (average length 2011cm) was mixed with phenol resin, molded, and then baked at 2000°C.
A plate-like body having a size of 0Il+w, a width of 920 mm, a thickness of 2 mm, a porosity of 64%, and an average pore diameter of 50 μm was used. The carbonaceous separator plate was prepared by rolling a phenol resin kneaded with fine graphite powder (average particle size 5 μm), hardening it, and then baking it at 1300°C. A square thin plate was used.

このセパレーター板の表面にドクターブレード法で接着
剤を塗布し、前記の多孔炭素質電極板を両面に接合した
。接合は、セパレーター板の表裏面に電極板の長さ方向
が直交し、かつ両端に45−一の間隔があくようにおこ
なった。
An adhesive was applied to the surface of this separator plate using a doctor blade method, and the porous carbonaceous electrode plates described above were bonded to both sides. The joining was performed so that the longitudinal direction of the electrode plate was perpendicular to the front and back surfaces of the separator plate, and a 45-1 interval was left at both ends.

接合後の部材は、80℃に加熱しながらプレスにより5
 kg/cab”の圧力を加えて接着剤の樹脂成分を硬
化した。
After joining, the members are heated to 80°C and pressed for 55 minutes.
The resin component of the adhesive was cured by applying a pressure of "kg/cab".

ついで、接合部材を電気焼成炉に移しコークス粉で被包
したのち、5℃/分の昇温速度で1000℃まで上昇さ
せて焼成処理を施した。
Next, the joining members were transferred to an electric firing furnace and encapsulated with coke powder, and then fired at a temperature increase rate of 5° C./min to 1000° C.

焼成して接着層を炭化した一体化部材の両端部に、セパ
レーター板と同一材質のサイドシールを前記接合剤を介
して接合した。引き続き、−辺の長さ1100k、厚さ
2.8mmのセルサイズになるように外周および平面加
工をおこない、更に電極部分に上下直交する状態に溝(
幅2mm、深さ1■+s)を設置してリン酸型燃料電池
用の炭素質複合電極基板を製造した。
Side seals made of the same material as the separator plates were bonded to both ends of the integrated member whose adhesive layer was carbonized by firing, via the bonding agent. Subsequently, the outer periphery and plane were machined so that the cell size was 1100K in length on the negative side and 2.8mm in thickness, and grooves (
A carbonaceous composite electrode substrate for a phosphoric acid fuel cell was manufactured by installing a carbonaceous composite electrode substrate having a width of 2 mm and a depth of 1 cm + s.

(3)特性の評価 得られた各複合電極基板について測定された特性・性状
を、接着剤の組成と対比させて表1に示した。
(3) Evaluation of characteristics The characteristics and properties measured for each composite electrode substrate obtained are shown in Table 1 in comparison with the composition of the adhesive.

なお、表1に示した各種性状および特性の測定方法は下
記によった。
The various properties and characteristics shown in Table 1 were measured in the following manner.

■接着層の厚さ一:試片を16等分し、側面を光学顕微
鏡で観察して層厚を測定する。
(1) Thickness of adhesive layer: Divide the specimen into 16 equal parts, observe the side surface with an optical microscope, and measure the layer thickness.

■電極気孔率、電橋気孔径−:接着後の電極部材を水銀
圧大法により気孔径0.O1μmまでの気孔率を測定す
る。気孔径は、前気孔体積の50%として示した。
■Electrode porosity, bridge pore diameter: The electrode member after adhesion was measured with mercury pressure method to obtain a pore diameter of 0. Measure the porosity down to 01 μm. Pore diameter was expressed as 50% of the previous pore volume.

■電気抵抗−:電圧降下法で面積当たりの抵抗値を測定
し、面積と全抵抗を乗じて夏山する。
■Electrical resistance: Measure the resistance per area using the voltage drop method, and calculate the value by multiplying the area and total resistance.

■接着強度−:セパレーター板状片(30x50xO。■Adhesive strength: Separator plate (30x50xO.

811−)に接着剤(幅3s+m)を塗布し、2枚の試
片を接合、硬化したのち非酸化雰囲気中で1000℃の
温度で焼成する。この2枚の接合界面を引張り、剥離に
要した力を接着強度とする。
811-) was coated with adhesive (width 3 s+m), the two specimens were joined, and after hardening, they were fired at a temperature of 1000° C. in a non-oxidizing atmosphere. The bonding interface between these two sheets is pulled, and the force required for peeling is defined as the adhesive strength.

表1の結果から、本発明の要件を満たす実施例では大型
ザイズの電極基板であるにも拘わらず相対的に高い接着
強度とバラツキの少ない低電気抵抗を備えており、かつ
比較例に見られる接着剤の浸透に伴う電極組織の気孔率
低下、接着界面の剥離による加工歩留の減退等の現象は
認められない。
From the results in Table 1, the examples that meet the requirements of the present invention have relatively high adhesive strength and low electrical resistance with little variation despite the large size electrode substrate, and the comparative examples have relatively high adhesive strength and low electrical resistance with little variation. No phenomena such as a decrease in the porosity of the electrode structure due to penetration of the adhesive or a decrease in processing yield due to peeling of the adhesive interface were observed.

〔発明の効果] 以上のとおり、本発明に従えば特定された組成の接着剤
および接着条件を適用することにより、大型サイズであ
っても常に優れた接着強度と均一かつ低位の電気抵抗を
備える燃料電池用炭素質複合電極基板を製造することが
できる。
[Effects of the Invention] As described above, according to the present invention, by applying the adhesive with the specified composition and the adhesive conditions, even large sizes can always have excellent adhesive strength and uniform and low electrical resistance. A carbonaceous composite electrode substrate for fuel cells can be manufactured.

そのうえ、余分な処理工程を必要とせず、剥離現象を伴
う加工歩留の減退もないから生産性が頗る良好である。
Moreover, since no extra processing steps are required and there is no reduction in processing yield due to peeling phenomena, productivity is excellent.

出願人  東海カーボン株式会社 代理人 弁理士 高 畑 正 也Applicant: Tokai Carbon Co., Ltd. Agent: Patent Attorney Masaya Takahata

Claims (1)

【特許請求の範囲】[Claims] 1、平均粒子径1〜10μmの炭素質粉末10〜40重
量部と平均粒子径20〜80μmの炭素質粉末60〜9
0重量部を混合したのち残炭率40%以上の液状熱硬化
性樹脂と混練して粘度500〜5000ポイズの接着剤
を調製し、該接着剤を炭素質セパレーター板の表面に接
着層の厚さが50〜200μmになるように均一塗布し
て多孔炭素質電極板と接合し、加圧加熱下で接着層を硬
化したのち非酸化性雰囲気中で800℃以上の温度域で
焼成炭化することを特徴とする燃料電池用炭素質複合電
極基板の製造方法。
1. 10 to 40 parts by weight of carbonaceous powder with an average particle size of 1 to 10 μm and 60 to 9 parts of carbonaceous powder with an average particle size of 20 to 80 μm
After mixing 0 parts by weight with a liquid thermosetting resin having a residual carbon content of 40% or more, an adhesive having a viscosity of 500 to 5000 poise is prepared. Apply uniformly to a thickness of 50 to 200 μm, bond to a porous carbonaceous electrode plate, harden the adhesive layer under pressure and heat, and then sinter and carbonize in a non-oxidizing atmosphere at a temperature of 800°C or higher. A method for manufacturing a carbonaceous composite electrode substrate for fuel cells, characterized by:
JP2296334A 1990-11-01 1990-11-01 Method for producing carbonaceous composite electrode substrate for fuel cell Expired - Fee Related JPH07120532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2296334A JPH07120532B2 (en) 1990-11-01 1990-11-01 Method for producing carbonaceous composite electrode substrate for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2296334A JPH07120532B2 (en) 1990-11-01 1990-11-01 Method for producing carbonaceous composite electrode substrate for fuel cell

Publications (2)

Publication Number Publication Date
JPH04169070A true JPH04169070A (en) 1992-06-17
JPH07120532B2 JPH07120532B2 (en) 1995-12-20

Family

ID=17832198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2296334A Expired - Fee Related JPH07120532B2 (en) 1990-11-01 1990-11-01 Method for producing carbonaceous composite electrode substrate for fuel cell

Country Status (1)

Country Link
JP (1) JPH07120532B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019068488A1 (en) 2017-10-03 2019-04-11 Vito Nv Carbon based electrode with large geometric dimensions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019068488A1 (en) 2017-10-03 2019-04-11 Vito Nv Carbon based electrode with large geometric dimensions

Also Published As

Publication number Publication date
JPH07120532B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
US4582632A (en) Non-permeable carbonaceous formed bodies and method for producing same
CN111018554A (en) Method for preparing ultrahigh-power graphite electrode by using graphene
JPWO2003068707A1 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
JPH0449747B2 (en)
EP0212965B1 (en) Process for producing a thin carbonaceous plate
JPH04169070A (en) Manufacture of carbonaceous composite electrode substrate for fuel cell
CN108395256B (en) A kind of preparation method of dense form richness carbon PRECURSOR-DERIVED CERAMICS
JPS63270138A (en) Composite carbonic member and its manufacture
JPH05251088A (en) Manufacture of porous carbon electrode plate for fuel cell
JPH04319261A (en) Joining method of carbon composite substrate for fuel cell
JP2571108B2 (en) Method for producing carbon member for fuel cell
JP3148839B2 (en) Adhesive for carbon material
JPH01255170A (en) Manufacture of carbon composite member for fuel battery
JPS59141170A (en) Electrode substrate for fuel cell and manufacturing method thereof
JP3342508B2 (en) Method for producing impermeable carbonaceous plate
JPH06135770A (en) Carbonaceous preformed body, its production and production of electrode substrate
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JP2002321987A (en) Bonded graphite material and its manufacturing method
JPH0732532A (en) Carbon fiber molded heat insulating material
JPH06218827A (en) Fiber reinforced substrate and manufacture thereof
KR101650013B1 (en) Method for manufacturing an integrated carbon felt electrode-carbon bipolar plate for redox flow battery
JPH08198685A (en) Setter for firing and its production
JPH11349924A (en) Production of carbonaceous friction material
JPH02199010A (en) Production of thin sheetlike carbon material
JPH01320763A (en) Manufacture of carbon composite for fuel cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees