JPH04168401A - Manufacture of optical wave-guiding channel - Google Patents

Manufacture of optical wave-guiding channel

Info

Publication number
JPH04168401A
JPH04168401A JP2295773A JP29577390A JPH04168401A JP H04168401 A JPH04168401 A JP H04168401A JP 2295773 A JP2295773 A JP 2295773A JP 29577390 A JP29577390 A JP 29577390A JP H04168401 A JPH04168401 A JP H04168401A
Authority
JP
Japan
Prior art keywords
refractive index
substrate
high refractive
ion implantation
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2295773A
Other languages
Japanese (ja)
Inventor
Kaoru Matsuda
薫 松田
Tadashi Narisawa
成沢 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2295773A priority Critical patent/JPH04168401A/en
Publication of JPH04168401A publication Critical patent/JPH04168401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To manufacture an optical wave-guiding channel having a high refraction factor area as a wave guide for light by conducting one or more ion implantation on a substrate to form a high refraction factor layer. CONSTITUTION:Masking is applied to a Y3Fe5O12 substrate 10 by a mask 12 with a stripe form 11 left. The implantation of an ion 13 is conducted several times to form an ion implantation area 24, and the mask 12 is removed. The area forms an area having a high refraction factor in the center part to the refraction factor of the substrate 10. The substrate 10 is cut vertically to the form 11, and an optical polishing is conducted to form incident and outgoing ends 25, 26. The resulting high refraction factor layer is used as a wave guide for light.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光通像 光情報処理 光計測等の光回路や受動
及び能動の光部品に用いる光導波路の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing an optical waveguide used in optical circuits and passive and active optical components for optical imaging, optical information processing, optical measurement, and the like.

従来の技術 従来の3次元光導波路は第4図(a)、(b)に示すよ
うな装荷型導波法 リッジ型導波路の様に2次元の導波
層1の上に装荷層2を形成したり、導波層1の膜厚を変
化させたりして実効的に高屈折率層3を形成し 高屈折
率層3を光の導波層4とするものがある。また第5図(
a)、(b)に示す様に基板5上の一部をイオン交換法
やプロトン交換法により、イオンやプロトンを交換する
ことにより基板の一部の組成を変えて、 3次元的な高
屈折率領域6ん 6Bを形成し 高屈折率領域6を光の
導波層4とするものとに大別されも 発明が解決しようとする課題 後者の基板の一部の組成を連続的に変化させることによ
って高屈折率領域6を形成するタイプの導波路において
(よ 従来技術であるイオン交換法やプロトン交換法が
イオン親和度や解離定数等によって可能になる材料によ
ってのみ可能であり、任意の材料の基板の一部を任意の
イオンによって交換することは不可能でありへ また前
記任意の材料を高屈折率領域を形成することができる任
意のイオンで交換することにより高屈折率領域を形成し
た光導波路はなかっな 本発明は前記従来の技術の課題であった任意の材料に高
屈折率領域が得られる任意のイオン交換を行しく 高屈
折率領域を形成し この高屈折率領域を光の導波層とす
る光導波路の製造方法を提供するものあム 課題を解決するための手段 本発明は上記課題を解決すべく、基板上に1回以上のイ
オン注入工程によりイオンを注入することにより、高屈
折率層を形成し この高屈折率層を光の導波層とする光
導波路を提供すム また上記課題を解決すべく、基板上
に一回以上のイオン注入により、光の導波層となるべく
高屈折率層を形成する工程と光の入出射端を形成する工
程とを有した光導波路の製造方法を提案するものであム
作用 本発明によれば一回以上のイオン注入工程により任意の
材料へ 高屈折率領域が得られる任意のイオンを物理的
に打ち込へ その微 アニール処理等を行を入 前記−
回以上のイオン注入工程にょる任意の材料のダメージを
回復させる方法をとるた数 従来技術のプロトン交換法
やイオン交換法では行うことができなかった任意の材料
への任意のイオンでの交換を行うことができ、任意の材
料の一部を任意のイオンで交換シ  高屈折率領域を形
成し 前記高屈折率領域を光の導波層とする光導波路が
実現できも 実施例 第1図に本発明の光導波路の製造方法のフローチャート
ラ示す。YsFesO+ 2 (Y I G )基板1
o上にストライプ形状11を残しマスク12により、マ
スキングを行う(a)。次にBi3°イオン13の注入
を3回行って、イオン注入領域24を形成した(b)。
Conventional technology A conventional three-dimensional optical waveguide is a loaded waveguide method as shown in FIGS. 4(a) and (b). Like a ridge-type waveguide, a loading layer 2 is placed on a two-dimensional waveguide layer 1. There is a method in which the high refractive index layer 3 is effectively formed by forming or changing the film thickness of the waveguide layer 1, and the high refractive index layer 3 is used as the optical waveguide layer 4. Also, Figure 5 (
As shown in a) and (b), the composition of a part of the substrate 5 is changed by exchanging ions and protons using an ion exchange method or a proton exchange method to create a three-dimensional high refractive index. The problem to be solved by the invention is to continuously change the composition of a part of the latter substrate. In the type of waveguide that forms the high refractive index region 6 (by the conventional techniques, ion exchange method and proton exchange method are possible only with materials that are made possible by the ionic affinity, dissociation constant, etc.), and any material can be used. It is impossible to replace a part of the substrate with arbitrary ions, and a high refractive index region can be formed by replacing said arbitrary material with an arbitrary ion that can form a high refractive index region. There is no optical waveguide.The present invention aims to perform any ion exchange that can obtain a high refractive index region in any material, which was a problem with the conventional technology, and forms a high refractive index region. To provide a method for manufacturing an optical waveguide as a waveguide layer. Means for Solving the Problems The present invention aims to solve the above problems by implanting ions onto a substrate by one or more ion implantation steps. , a high refractive index layer is formed, and the high refractive index layer is used as an optical waveguide layer. The present invention proposes a method for manufacturing an optical waveguide, which includes a step of forming a high refractive index layer as a layer and a step of forming light input and output ends.According to the present invention, one or more ion implantation steps are performed. By physically implanting arbitrary ions that can obtain a high refractive index region into an arbitrary material, a fine annealing treatment, etc. is performed.
A method for recovering damage to any material caused by multiple ion implantation processes.Exchanging any ion to any material, which could not be done with conventional proton exchange or ion exchange methods. By exchanging a part of an arbitrary material with an arbitrary ion, a high refractive index region is formed, and an optical waveguide using the high refractive index region as a light waveguide layer can be realized. 2 is a flowchart illustrating a method for manufacturing an optical waveguide according to the present invention. YsFesO+ 2 (Y I G ) substrate 1
Masking is performed using a mask 12 leaving a stripe shape 11 on the surface (a). Next, 3° Bi ions 13 were implanted three times to form an ion implantation region 24 (b).

最初すなわち1回目はドーズ量]、 O” 70m”を
IMVでイオン注入を行っな 1回目のイオン注入によ
るBiトの濃度分布20は第2図に示す様に基板表面か
らの深さ5000人にピークをもっf、  2回目のイ
オン注入はドーズ量10”/cm2を60CHVで行っ
た 2回目のイオン注入によるBi2゛濃度分布21は
第2図に示すように基板表面から2500人のところに
ピークを有する分布であっ九 3回目のイオン注入はド
ーズ量10”/cn+”を100KVで行った Bi”
イオン濃度は基板表面からの深さ200人のところにピ
ークをもつ3回目のイオン注入によるBi”濃度分布2
2に示す様な分布をしめしfSo3回のイオン注入にょ
るBi”濃度分布23は第4図に示す様に基板表面から
約2000人のところにピークをもつ形となっ1゜マス
ク12を除去し 形成されたイオン注入領域24はYs
 Fes O+ を基板10の屈折率に対して、中心部
において約2%の高屈折率をもつ領域であった ストラ
イブ形状11を有する高屈折率層であるイオン注入領域
24のストライプ形状11に垂直な部分に入出射端25
. 26を形成するためく ストライブ形状11に対し
て垂直に約1 mmの長さに基板1oを切断し光の入出
射端25. 26を光学ケンマを行うことにより形成し
た(d)。
For the first time, the ion implantation was performed using IMV at a dose of 70 m.The concentration distribution 20 of Bi by the first ion implantation was at a depth of 5000 m from the substrate surface as shown in Figure 2. The second ion implantation was performed at a dose of 10"/cm2 at 60CHV. The Bi2 concentration distribution 21 resulting from the second ion implantation peaked at 2500 m from the substrate surface as shown in Figure 2. The third ion implantation was performed at a dose of 10"/cn+" at 100 KV.Bi"
The ion concentration peaks at a depth of 200 mm from the substrate surface. Bi'' concentration distribution 2 due to the third ion implantation.
The Bi'' concentration distribution 23 resulting from three fSo ion implantations has a peak at approximately 2,000 points from the substrate surface as shown in FIG. The formed ion implantation region 24 is Ys
Fes O+ was applied perpendicularly to the stripe shape 11 of the ion implantation region 24, which is a high refractive index layer having a stripe shape 11, which was a region having a high refractive index of about 2% in the center with respect to the refractive index of the substrate 10. The input/output end 25
.. The substrate 1o is cut into a length of about 1 mm perpendicular to the stripe shape 11 to form a light input/output end 25. 26 was formed by performing optical gradation (d).

上述した本発明の製造方法で作成した本発明の光導波路
を第3図に示to  Y寥FebCheニ基板10(7
) −部分にイオン注入によりBiトイオンを注入し 
注入領域24よりなる高屈折率層を形成し この高屈折
率層30を光の導波層とし 光学研磨により光の入出射
端〉曳26を形成した 光の入出射端25より波長1.
3μmの光を入射したとこへ 導波路長1 mmを導波
して出射端26より出射光が確認された 導波ロスは1
cm−’であっな 発明の効果 本発明の光導波路により、任意の材料に高屈折率層が形
成できる任意のイオンを注入じ 組成を変化させること
により高屈折率層を形成し 前記高屈折率層を光の導波
層とした光導波路が得られな また本発明の光導波路の
製造方法により、任意の材料の一部を任意のイオンで交
換して高屈折率層を形成する光導波路の製造方法が得ら
れ旭例のプロセスフローを示した工程断面@ 第2図は
本発明の光導波路の製造方法の高屈折率層を形成する工
程としてのイオン注入の例として、 3回Bi3°イオ
ンの注入を行った場合の各々のイオン注入時の注入され
たBi″″イオン濃度と基板表面からの深さの関係を示
した云 第3図は本発明により作成された先導波路の概
略斜視医 第4図(a)、(b)及び第5図(a)、(
b)は従来の光導波路の断面図であム 10・・・・YsFe60+2基板、12・・・・マス
久 24・・・・イオン注入類wA20. 21. 2
2・・・・イオン濃度分布25、 26・・・・入射組
 出射塩 代理人の氏名 弁理士 小鍜冶 明 ほか2名24イ1
>=L入411tA 2f光Φ人軒喝 厚誹及衷fIOXらの5肇さ 第 3 図 第4図 (2)                 の)第5図 4句                       
 (b)、S1状       S基板
FIG. 3 shows an optical waveguide of the present invention produced by the above-described manufacturing method of the present invention.
) Bi ions are implanted into the − part by ion implantation.
A high refractive index layer consisting of the injection region 24 is formed, this high refractive index layer 30 is used as a light waveguide layer, and a light input/output end 26 is formed by optical polishing.
Where the 3 μm light was incident, the waveguide length was 1 mm, and the output light was confirmed from the output end 26. The waveguide loss was 1
cm-' Amazing effect of the invention By using the optical waveguide of the present invention, a high refractive index layer can be formed by implanting arbitrary ions that can form a high refractive index layer into an arbitrary material and changing the composition. An optical waveguide in which a layer is an optical waveguide layer cannot be obtained.Furthermore, according to the method of manufacturing an optical waveguide of the present invention, an optical waveguide in which a part of an arbitrary material is exchanged with an arbitrary ion to form a high refractive index layer can be obtained. A process cross-section showing the process flow of the Asahi example after the manufacturing method was obtained. Figure 3 shows the relationship between the implanted Bi'' ion concentration and the depth from the substrate surface during each ion implantation when ion implantation is performed. Figure 4 (a), (b) and Figure 5 (a), (
b) is a cross-sectional view of a conventional optical waveguide. 21. 2
2... Ion concentration distribution 25, 26... Incoming group Name of outgoing salt agent Patent attorney Akira Okaji and 2 others 24-1
>=L entry 411tA 2f light Φ people's evacuation, thickness and compensation f IOX et al.
(b), S1 type S substrate

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に1回以上のイオン注入工程によりイオン
を注入することにより高屈折率層を形成し、前記高屈折
率層を光の導波層とすることを特徴とする光導波路の製
造方法。
(1) Manufacture of an optical waveguide characterized in that a high refractive index layer is formed by implanting ions onto a substrate by one or more ion implantation steps, and the high refractive index layer is used as a light waveguide layer. Method.
(2)基板上に1回以上のイオン注入を行うことにより
、光の導波層となる高屈折率層を形成する工程、前記高
屈折率層の一部に光の入出射端形成工程を有することを
特徴とする光導波路の製造方法。
(2) A step of forming a high refractive index layer that becomes a light waveguide layer by performing ion implantation on the substrate one or more times, and a step of forming light input/output ends on a part of the high refractive index layer. A method for manufacturing an optical waveguide, comprising:
JP2295773A 1990-10-31 1990-10-31 Manufacture of optical wave-guiding channel Pending JPH04168401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2295773A JPH04168401A (en) 1990-10-31 1990-10-31 Manufacture of optical wave-guiding channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2295773A JPH04168401A (en) 1990-10-31 1990-10-31 Manufacture of optical wave-guiding channel

Publications (1)

Publication Number Publication Date
JPH04168401A true JPH04168401A (en) 1992-06-16

Family

ID=17824980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2295773A Pending JPH04168401A (en) 1990-10-31 1990-10-31 Manufacture of optical wave-guiding channel

Country Status (1)

Country Link
JP (1) JPH04168401A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198824A (en) * 1986-02-26 1987-09-02 Hitachi Ltd Optical modulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198824A (en) * 1986-02-26 1987-09-02 Hitachi Ltd Optical modulator

Similar Documents

Publication Publication Date Title
EP0467579B1 (en) Method of producing optical waveguides by an ion exchange technique on a glass substrate
US3808068A (en) Differential etching of garnet materials
FI92886B (en) Electro-optical component and process for its preparation
JPH02293351A (en) Production of light waveguide path and ion exchange mask used for it
DE3532811C2 (en) Optical thin film element
US3879110A (en) Small fly{3 s eye lens array
JPH04168401A (en) Manufacture of optical wave-guiding channel
EP0986768A1 (en) Microstrip line
JPH02275907A (en) Formation of optical waveguide
JPS6281717A (en) Transferring method for fine photoresist structure
JPH0341406A (en) Production of optical waveguide
ATE139037T1 (en) OPTICAL COMPONENT WITH OPTICAL COUPLER FOR SPLITTING OR COMBINING LIGHT AND METHOD FOR PRODUCING THE SAME
JPS60188909A (en) Manufacture of grating coupler
JPH02262110A (en) Production of flush type optical waveguide
JPH0462644B2 (en)
JPS6066210A (en) Production of optical waveguide
JPH0197907A (en) Production of optical waveguide circuit
JPS58167453A (en) Preparation of material wherein cylindrical lenses are arranged
JPH02181483A (en) Manufacture of superconducting circuit
JPS58102203A (en) Formation of waveguide
JPS62133402A (en) Preparation of hologram lens
JPH03252610A (en) Production of optical waveguide
JPS59157602A (en) Production of linbo3 optical waveguide
JPH11295543A (en) Production of optical waveguide
JPH03168706A (en) Manufacture of optical module substrate