JPH03168706A - Manufacture of optical module substrate - Google Patents

Manufacture of optical module substrate

Info

Publication number
JPH03168706A
JPH03168706A JP31030089A JP31030089A JPH03168706A JP H03168706 A JPH03168706 A JP H03168706A JP 31030089 A JP31030089 A JP 31030089A JP 31030089 A JP31030089 A JP 31030089A JP H03168706 A JPH03168706 A JP H03168706A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
waveguide
groove
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31030089A
Other languages
Japanese (ja)
Inventor
Masao Shibayama
柴山 政雄
Kazunori Miura
和則 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP31030089A priority Critical patent/JPH03168706A/en
Publication of JPH03168706A publication Critical patent/JPH03168706A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the productivity by filling transparent resist in a groove of specific width which cuts an optical waveguide, then irradiating the resist with ultraviolet rays from the end surface of the optical waveguide and performing development processing, and forming a hemispherical projection on each cut surface of the optical waveguide. CONSTITUTION:The optical waveguide 11 is formed in the area of an SiO2 film 10b formed on an Si substrate 10a and the groove 12 is formed intersecting the waveguide to depth large enough to cut the waveguide. Then the UV sensitive transparent resist 13 is filled in the groove 12. The optical waveguide 11 is irradiated with ultraviolet rays like l1 and l2 from both other ends and then the ray are diffused radially in four directions from the cut surface 12a, so that the area of the resist 13 irradiated with the ultraviolet rays changes in quality into a hemispherical convex shape A. Then the development processing is carried out to form the hemispherical projections 11a, i.e. convex lenses on both cut surfaces 12a. Consequently, the optical module is easily constituted which never deteriorates in optical coupling characteristics even if the thickness permissible range of an optical element is expanded.

Description

【発明の詳細な説明】 〔概 要〕 光モジュール基板の製造方法に関し、 光結合特性を落とすことなく搭載する光素子の適用範囲
を拡大して生産性の向上を図ることを目的とし、 導波路基板に形或された光導波路を、少なくとも該光導
波路を切断する深さで横切って切断する所定幅の溝を形
成し、該溝をポリマ系材料からなる透明なレジストで充
填した後、上記光導波路の両側端面から紫外線を照射し
、更に上記レジスト部分の現像処理を行うことで該光導
波路の上記溝形成時の各切断面に半球状突起を形成して
構或する。
[Detailed Description of the Invention] [Summary] Regarding the manufacturing method of an optical module substrate, the purpose of this invention is to expand the scope of application of mounted optical elements without degrading optical coupling characteristics and improve productivity. A groove of a predetermined width is formed to cut across an optical waveguide formed on a substrate at least at a depth at which the optical waveguide is cut, and the groove is filled with a transparent resist made of a polymeric material. By irradiating ultraviolet rays from both end faces of the waveguide and developing the resist portion, hemispherical protrusions are formed on each cut surface of the optical waveguide when forming the grooves.

〔産業上の利用分野〕[Industrial application field]

本発明は光モジュール基板の製造プロセスに係り、特に
光結合特性を落とすことなく搭載する光素子の適用範囲
を拡大して生産性の向上を図った光モジュール基板の製
造方法に関する。
The present invention relates to a process for manufacturing an optical module substrate, and more particularly to a method for manufacturing an optical module substrate that expands the scope of application of mounted optical elements without deteriorating optical coupling characteristics and improves productivity.

近年の光モジュールの安定化や小型化に伴って光回路の
集積化が要求されているが、これを実現するための手段
として光ファイバの端面間に各種の光デバイスを整列配
置させる空間ビーム方式や光導波路を途中で切断しその
切断端面間に各種の光素子を挿入する光導波路方式等が
実用化されている。
In recent years, with the stabilization and miniaturization of optical modules, there has been a demand for greater integration of optical circuits.One way to achieve this is the spatial beam method, in which various optical devices are aligned and arranged between the end faces of optical fibers. In addition, optical waveguide systems in which an optical waveguide is cut midway and various optical elements are inserted between the cut end faces have been put into practical use.

〔従来の技術〕[Conventional technology]

第3図は空間ビーム方弐を説明する概念図、第4図は光
導波路方式を説明する概念図である。
FIG. 3 is a conceptual diagram illustrating the spatial beam system, and FIG. 4 is a conceptual diagram illustrating the optical waveguide system.

なお図では、いずれも光アイソレータ主要部のファラデ
ー回転子近傍の構戒について説明する。
In each figure, the structure near the Faraday rotator, which is the main part of the optical isolator, will be explained.

第3図で平板状の光素子を示す1は、例えばビスマス置
換ガーネット[(TbBi)z(FeAIGa)so+
zl からなる厚さ300μm程度の45度ファラデー
回転子1aと,偏光分離膜としての誘電体多層膜が被着
形成された例えばガドリニウム・ガリウム・ガーネット
(GGG)からなる基板1bとを添着して一体化したも
のである。
In FIG. 3, reference numeral 1 indicating a flat optical element is, for example, bismuth-substituted garnet [(TbBi)z(FeAIGa)so+
A 45 degree Faraday rotator 1a having a thickness of approximately 300 μm and made of a 45-degree Faraday rotator 1a made of a 45-degree Faraday rotator 1a made of a material made of a polarized light beam and a substrate 1b made of, for example, gadolinium gallium garnet (GGG) on which a dielectric multilayer film as a polarization separation film is deposited are attached and integrated. It has become.

なお該光素子lは図示されない磁石よって磁界が付与さ
れるようになっている。
Note that a magnetic field is applied to the optical element 1 by a magnet (not shown).

また2.2′は光ファイバ、3.3′は光学レンズをそ
れぞれ表わしている。
Further, 2.2' represents an optical fiber, and 3.3' represents an optical lens.

そこで上記の各光デバイスを光軸を合わせて整列配置し
、光アイソレータ主要部のファラデ−回転子近傍を構威
している。
Therefore, the optical devices described above are arranged in alignment with their optical axes aligned, and are arranged near the Faraday rotator of the main part of the optical isolator.

かかる場合には、光ファイバ2のコア2aから射出する
光線Lが、破線で示す如く光学レンズ3で平行光となっ
て光素子lに入射し、更に該光素子lを通った後に光学
レンズ3“で集光して光ファイバ2′のコアに入射させ
ることができる。
In such a case, the light beam L emitted from the core 2a of the optical fiber 2 becomes parallel light at the optical lens 3 and enters the optical element l as shown by the broken line, and after passing through the optical element l, the light beam L enters the optical element l. It is possible to condense the light and input it into the core of the optical fiber 2'.

特にこの方式では、特別な技術を必要とせずに特性のよ
い光モジュールが構或できるメリットがあるが、各光デ
バイスを空間的に配置しているためモジュールが大型に
なると共に.各光デバイス間の光軸を厳しく抑えなけれ
ばならず調整に工数が掛かる欠点がある。
In particular, this method has the advantage of being able to construct optical modules with good characteristics without the need for special technology, but since each optical device is arranged spatially, the module becomes large and large. This method has the disadvantage that the optical axis between each optical device must be strictly controlled, which requires a lot of man-hours for adjustment.

第4図はかかる欠点を考慮した光モジュールの構戒を示
したもので、1は第3図で説明した光素子を表わしてお
り、第3図同様に図示されない磁石で磁界が与えられる
ようになっている。
Fig. 4 shows the structure of an optical module that takes such drawbacks into consideration. 1 represents the optical element explained in Fig. 3, and like Fig. 3, a magnetic field is applied by a magnet (not shown). It has become.

4は導波路基板,5は該導波路基板4に形成されている
光導波路を示し、該導波路基板4の一部には例えばカッ
ティング・ソーを使用して上記光導波路5を垂直に切断
する溝6が該導波路基板4の上面から形成されているが
、該溝6の幅は搭載する上記光素子1の厚さtに対応す
るようになっている。
Reference numeral 4 indicates a waveguide substrate, and 5 indicates an optical waveguide formed on the waveguide substrate 4. The optical waveguide 5 is vertically cut in a part of the waveguide substrate 4 using, for example, a cutting saw. A groove 6 is formed from the upper surface of the waveguide substrate 4, and the width of the groove 6 corresponds to the thickness t of the optical element 1 to be mounted.

そこで上記溝6の間で前記光導波路5の光軸上の所定位
置に上記光素子lを挿入し接着等の手段で固定して所要
の光モジュールを得るようにしている。
Therefore, the optical element 1 is inserted between the grooves 6 at a predetermined position on the optical axis of the optical waveguide 5 and fixed by adhesive or other means to obtain a desired optical module.

特にこの方式の場合には、溝6の幅を挿入する光素子の
厚さに対応させて設定することで光軸調整等の作業を不
要とすることができるため、特性的に優れた小型の光モ
ジュールを容易に構威することができる。
In particular, in the case of this method, by setting the width of the groove 6 to correspond to the thickness of the optical element to be inserted, it is possible to eliminate the need for work such as adjusting the optical axis. The optical module can be easily constructed.

しかし、光導波路5を通る光線Lは切断端面5aから射
出する際に図示L゛の如く該端面5aで拡散されて上記
光素子1に入射することになり、該光素子lを通った後
ではL IFのように該光導波路5に入射しない部分が
生じて結果的に光結合特性が低下することがある。
However, when the light beam L passing through the optical waveguide 5 exits from the cut end surface 5a, it is diffused by the end surface 5a as shown in the figure L'' and enters the optical element 1, and after passing through the optical element l, There may be a portion, such as the LIF, where the light does not enter the optical waveguide 5, resulting in a decrease in optical coupling characteristics.

特に該光結合特性の低下は、上記光素子lの厚さtに影
響することが大きく該厚さtが厚いときには該光結合特
性の低下が大きくなることが確認されており、この点か
ら結果的に該光素子lの厚さLは数lOa11が限度と
なっている。
In particular, it has been confirmed that the decrease in the optical coupling characteristics greatly affects the thickness t of the optical element 1, and when the thickness t is large, the decrease in the optical coupling characteristics increases. Generally speaking, the thickness L of the optical element 1 is limited to several lOa11.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の光モジュール基板を使用した場合には、光導波路
の間に挿入して搭載する光素子の厚さが厚いときには光
結合特性が低下することから、使用される光素子に制約
が生ずると言う問題があった。
When using conventional optical module substrates, when the thickness of the optical element inserted between the optical waveguides is large, the optical coupling characteristics deteriorate, which places restrictions on the optical elements that can be used. There was a problem.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、導波路基板に形成された光導波路を、少
なくとも該光導波路を切断する深さで横切って切断する
所定幅の溝を形成し、 該溝をポリマ系材料からなる透明なレジストで充填した
後、 上記光導波路の両側端面から紫外線を照射し、更に上記
レジスト部分の現像処理を行うことで該光導波路の上記
溝形戊時の各切断面に半球状突起を形或する光モジュー
ル基板の製造方法によって解決される。
The above problem can be solved by forming a groove of a predetermined width that cuts across an optical waveguide formed on a waveguide substrate at least at a depth that cuts the optical waveguide, and then filling the groove with a transparent resist made of a polymeric material. After filling, the optical waveguide is irradiated with ultraviolet rays from both end surfaces, and the resist portion is developed, thereby forming a hemispherical protrusion on each cut surface of the groove-shaped optical waveguide. The problem is solved by a method of manufacturing a substrate.

〔作 用] 光導波路の切断端面から射出する拡散光を集光させると
該光導波路中の光線を効率的に光素子に進入させること
ができる。また光素子から射出する光線を集光させると
該光素子を透過する光線を効果的に光導波路に入射させ
ることができる。
[Function] By condensing the diffused light emitted from the cut end surface of the optical waveguide, the light rays in the optical waveguide can efficiently enter the optical element. Furthermore, by condensing the light rays emitted from the optical element, the light rays that pass through the optical element can be effectively made to enter the optical waveguide.

一方、レジストには例えば紫外線を照射すると変質する
ものがあり、かかるものでは現像処理によって該紫外線
照射による変質部分のみを残存させることができる。
On the other hand, some resists change in quality when irradiated with ultraviolet rays, for example, and in such resists, only the portions altered by the ultraviolet irradiation can be left behind through development processing.

そこで、光導波路の切断露出面に上記の如きレジストを
被着させて導波路側から紫外線を照射すると該紫外線は
該光導波路の切断端面から放射状に拡散しながら該レジ
スト内に進入するが、このことは該光導波路の切断端面
から半球状に上記レジストを変質させることを意味して
おり、該紫外線を照射した後の現像処理によって結果的
に光導波路の上記切断端面に半球状の突起ひいては凸レ
ンズを形或することができる。
Therefore, when a resist as described above is applied to the cut exposed surface of the optical waveguide and ultraviolet rays are irradiated from the waveguide side, the ultraviolet rays enter the resist while radially diffusing from the cut end surface of the optical waveguide. This means that the resist is transformed into a hemispherical shape from the cut end surface of the optical waveguide, and as a result, a hemispherical protrusion and a convex lens are formed on the cut end surface of the optical waveguide by the development treatment after irradiating the ultraviolet rays. can be shaped.

本発明では光導波路を切断したときに形成される対向す
る切断端面それぞれに上記方法で半球状突起すなわち凸
のレンズを形戊するようにしている。
In the present invention, a hemispherical protrusion, that is, a convex lens is formed by the above method on each of the opposing cut end surfaces formed when the optical waveguide is cut.

従って、光素子の厚さの許容範囲を拡大しても光結合特
性を低下させることのない光モジュールが容易に構或で
きる光モジュール基板を得ることができる。
Therefore, it is possible to obtain an optical module substrate that allows easy construction of an optical module without degrading the optical coupling characteristics even if the allowable range of the thickness of the optical element is expanded.

〔実施例] 第1図は本発明になる光モジュール基板の製造方法を説
明する工程図であり、第2図は光モジュールの構戒例を
示す図である。
[Example] FIG. 1 is a process diagram illustrating a method of manufacturing an optical module substrate according to the present invention, and FIG. 2 is a diagram showing an example of the structure of an optical module.

第1図(A)で、シリコン(Si)基板10a上に厚さ
3μm程度の二酸化珪素(Sing)膜10bを形成し
た導波路基板10の該二酸化珪素膜tabの領域には直
径が6μm程度の光導波路11が形成されており、特に
該導波路基板10の一部には(B)に示す如く少なくと
も該光導波路11を切断する深さで幅dが0.8〜1.
Onm位の溝12が光導波路11と直交する方向に該導
波路基板IOの上面から形成されている。
In FIG. 1(A), a silicon dioxide (Sing) film 10b having a thickness of about 3 μm is formed on a silicon (Si) substrate 10a in the region of the silicon dioxide film tab of the waveguide substrate 10, which has a diameter of about 6 μm. An optical waveguide 11 is formed, and in particular, as shown in FIG.
A groove 12 of approximately Onm is formed from the upper surface of the waveguide substrate IO in a direction perpendicular to the optical waveguide 11.

なおこの場合の溝12は第3図と同様に例えばカッティ
ング・ソーを使用することで精密に形成することができ
る。
Note that the groove 12 in this case can be precisely formed by using, for example, a cutting saw as in FIG. 3.

次いで該溝12の部分に、例えば一般に市販されている
UV感光性のボジレジストのようなポリマー系材料から
なる透明なレジス口3を塗布等の手段で充填すると(C
)に示す状態にすることができる。
Next, the groove 12 is filled with a transparent resist opening 3 made of a polymeric material such as a commercially available UV-sensitive body resist by coating or other means (C
).

そこで、該光導波路11の図示されない他端側両端部か
ら図示1,,l,のように紫外線を照射すると、該紫外
線は図示矢印lのように切断面12aから四方に放射状
に拡散し、この時点で該レジス1・13の紫外線被照射
領域が凸の半球状に変質する。
Therefore, when ultraviolet rays are irradiated from both ends of the other end (not shown) of the optical waveguide 11 as shown in FIGS. At this point, the ultraviolet irradiated areas of the resists 1 and 13 change into a convex hemispherical shape.

(D)はかかる状態を表わしたもので、Aは半球状の変
質領域を示している。
(D) shows such a state, and A shows a hemispherical altered area.

以後、例えば一般市販の現像液を使用して通常の現像処
理を行うと上記の変質した半球状領域Aのみを残して他
の部分が除去されることから、(E)に示すような半球
状突起11aを備えた所要の光モジュール基板14を得
ることができる。
After that, if a normal development process is carried out using, for example, a commercially available developer, only the altered hemispherical area A will be left and the other parts will be removed, so the hemispherical shape shown in (E) will be removed. A desired optical module substrate 14 including the protrusions 11a can be obtained.

かかる光モジュール基板l4では、溝12の両切断面1
2aに形成される上記半球状突起11aが第3図の光学
レンズ3,3゛と同等の効果をもたらすと共に、(B)
における溝12の幅dを挿入する光デバイスの厚さに対
応させて自由に設定できるため、該溝12に挿入搭載さ
れる光素子の厚さが従来より厚くても光結合特性を低下
させることのない光モジュールを構或することができる
In such an optical module substrate l4, both cut surfaces 1 of the groove 12
The hemispherical protrusion 11a formed on 2a provides the same effect as the optical lenses 3, 3' in FIG. 3, and (B)
Since the width d of the groove 12 can be freely set in accordance with the thickness of the optical device to be inserted, the optical coupling characteristics will not deteriorate even if the thickness of the optical element inserted and mounted in the groove 12 is thicker than before. It is possible to construct an optical module without.

光モジュールの構威例を示す第2図で、(a)は構或図
、(b)は光路を説明するための光結合部の拡大図であ
る。
FIG. 2 shows an example of the configuration of an optical module, in which (a) is a diagram of the configuration, and (b) is an enlarged view of an optical coupling section for explaining the optical path.

第2図(a)で、光モジュール基板15は第l図で説明
した光モジュール基板14と同様の構戒になるものであ
り、16は該光モジュール基板l5に形成されている光
導波路を表わしている。
In FIG. 2(a), the optical module board 15 has the same structure as the optical module board 14 explained in FIG. 1, and 16 represents the optical waveguide formed on the optical module board 15. ing.

またl7は該光モジュール基Fi.l5に第1図で説明
した手段で設けた溝を示し、18は第4図同様の光素子
を表わしている。
l7 is the optical module base Fi. 15 shows a groove provided by the means explained in FIG. 1, and 18 represents an optical element similar to that shown in FIG. 4.

更に該光モジュール基板15は、上記溝l7の幅Dを該
光モジュール基板15に挿入搭載する上記光素子18の
厚さTより例えば光導波路16の直径程度広くして加工
した後、第l図で説明した方法で該溝17の加工時に形
成される切断面17aに半球状突起16aを形成したも
のである。
Further, the optical module substrate 15 is processed so that the width D of the groove l7 is wider than the thickness T of the optical element 18 inserted and mounted on the optical module substrate 15, for example, by the diameter of the optical waveguide 16, as shown in FIG. A hemispherical protrusion 16a is formed on the cut surface 17a formed during processing of the groove 17 using the method described in .

この場合には該半球状突起16aの頂点間の隔たりが光
素子l8の厚さTとほぼ等しくなるため、該半球状突起
16aの間に光素子18を挿入すると該光素子18の両
面が半球状突起16aの頂点と接触するかまたは近接し
た状態とすることができる。
In this case, since the distance between the vertices of the hemispherical protrusions 16a is approximately equal to the thickness T of the optical element l8, when the optical element 18 is inserted between the hemispherical protrusions 16a, both sides of the optical element 18 become hemispherical. It can be in contact with or in close proximity to the apex of the protrusion 16a.

ここで該半球状突起16aの近傍における光路について
説明するが、図では理解し易くするため該光導波路l6
の途中に挿入搭載する光素子18の厚さTを従来の場合
の限度である数10μmよりも厚いものを使用した場合
としている。
Here, the optical path in the vicinity of the hemispherical protrusion 16a will be explained, but in order to make it easier to understand, the optical waveguide l6 is shown in the figure.
The thickness T of the optical element 18 inserted and mounted in the middle of the optical element 18 is assumed to be thicker than several tens of micrometers, which is the limit in the conventional case.

(a)における半球状突起16a部分を拡大した(b)
で光導波路l6中を送られてくる光線を例えばLとする
(b) Enlarged portion of the hemispherical protrusion 16a in (a)
For example, let L be the light beam sent through the optical waveguide l6.

この場合、半球状突起16aが形成されていないときに
は、第4図で説明した如く該光線Lが破線で示す光路し
α→L1”のように進むことから対向する光導波路16
に進入しないことがあり、該光導波路l6からはみ出し
た分だけ光結合特性が低下することとなる。
In this case, when the hemispherical protrusion 16a is not formed, the light ray L travels along the optical path α→L1'' shown by the broken line as explained in FIG. 4, so that the opposing optical waveguide 16
In some cases, the light does not enter the optical waveguide l6, and the optical coupling characteristics deteriorate by the amount that it protrudes from the optical waveguide l6.

一方半球状突起16aがあると、該光線Lは半球状突起
16a部分で集光して図示実線で示す光路L2゜→L2
゛′のように進み対向する光導波路l6に効果的に進入
するため光結合特性の低下を抑制することができる。
On the other hand, if there is a hemispherical protrusion 16a, the light beam L is condensed at the hemispherical protrusion 16a, and the optical path L2°→L2 is shown by a solid line in the figure.
Since the light beam advances as shown in FIG. 1 and effectively enters the opposing optical waveguide l6, deterioration of the optical coupling characteristics can be suppressed.

実験結果によれば、上記光素子l8に厚さTが約300
uI1のファラデー回転子(波長1.3μm帯)や約2
00μmのファラデー回転子(波長1.55μ一帯)を
使用した場合でも光結合特性が低下しないことを確認し
ている。
According to experimental results, the thickness T of the optical element l8 is approximately 300 mm.
uI1 Faraday rotator (wavelength 1.3μm band) and approx.
It has been confirmed that the optical coupling characteristics do not deteriorate even when a 00 μm Faraday rotator (wavelength 1.55 μm band) is used.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明により、光結合特性を落とすことなく
光素子の適用範囲を拡大して生産性の向上を図った光モ
ジュール基板の製造方法を提供することができる。
As described above, according to the present invention, it is possible to provide a method for manufacturing an optical module substrate that expands the range of application of optical elements and improves productivity without deteriorating optical coupling characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる光モジュール基板の製造方法を説
明する工程図、 第2図は光モジュールの構戒例を示す図、第3図は空間
ビーム方式を説明する概念図、第4図は光導波路方式を
説明する概念図、である。図において、 10は導波路基板、  10aはシリコン基板、10b
は二酸化珪素膜、11.16は光導波路、11a .1
6aは半球状突起、 12. 17は溝、    12a,17aは切断面、
13はレジスト、 14.15は光モジュール基板、 l8は光素子、 ^ をそれぞれ表わす。 木斧%= tようtモ5−ユール蟇抜の製童力法Σ説明
オ3工程図第 1 図 (b) χモシ゛ユールの横六例Σ示jEiEI7間ビームδK
を殺明15擺危図 纂 3 図 t尋波路乃穴と説明13擺念圃 第4図
Figure 1 is a process diagram explaining the method for manufacturing an optical module board according to the present invention, Figure 2 is a diagram showing an example of the structure of an optical module, Figure 3 is a conceptual diagram explaining the spatial beam method, and Figure 4. is a conceptual diagram explaining the optical waveguide method. In the figure, 10 is a waveguide substrate, 10a is a silicon substrate, and 10b
11.16 is a silicon dioxide film, 11.16 is an optical waveguide, and 11a. 1
6a is a hemispherical process; 12. 17 is a groove, 12a and 17a are cut surfaces,
13 represents a resist, 14 and 15 an optical module substrate, l8 an optical element, and ^, respectively. Wooden ax %= tMo5-Explanation of the force-making method Σ of Yule's toe removal 3 process diagram Figure 1 (b)
The Meiji 15th Anniversary Compilation 3 Figure t Jinhaji-no-ana and Explanation 13 The Memorial Park Figure 4

Claims (1)

【特許請求の範囲】 導波路基板(10)に形成された光導波路(11)を、
少なくとも該光導波路(11)を切断する深さで横切っ
て切断する所定幅の溝(12)を形成し、該溝(12)
をポリマ系材料からなる透明なレジスト(13)で充填
した後、 上記光導波路(11)の両側端面から紫外線を照射し、
更に上記レジスト(13)部分の現像処理を行うことで
該光導波路(11)の上記溝(12)形成時の各切断面
(12a)に半球状突起(11a)を形成することを特
徴とした光モジュール基板の製造方法。
[Claims] An optical waveguide (11) formed on a waveguide substrate (10),
A groove (12) of a predetermined width is formed to cut across at least the optical waveguide (11) at a depth, and the groove (12)
After filling the optical waveguide (11) with a transparent resist (13) made of a polymeric material, ultraviolet rays are irradiated from both end faces of the optical waveguide (11).
Further, by developing the resist (13) portion, hemispherical protrusions (11a) are formed on each cut surface (12a) when forming the groove (12) of the optical waveguide (11). A method for manufacturing an optical module board.
JP31030089A 1989-11-29 1989-11-29 Manufacture of optical module substrate Pending JPH03168706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31030089A JPH03168706A (en) 1989-11-29 1989-11-29 Manufacture of optical module substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31030089A JPH03168706A (en) 1989-11-29 1989-11-29 Manufacture of optical module substrate

Publications (1)

Publication Number Publication Date
JPH03168706A true JPH03168706A (en) 1991-07-22

Family

ID=18003566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31030089A Pending JPH03168706A (en) 1989-11-29 1989-11-29 Manufacture of optical module substrate

Country Status (1)

Country Link
JP (1) JPH03168706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491311U (en) * 1990-12-27 1992-08-10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491311U (en) * 1990-12-27 1992-08-10

Similar Documents

Publication Publication Date Title
JPH0133801B2 (en)
KR20060060610A (en) Process for producing filmy optical waveguide
JPH04172308A (en) Y-branched light circuit
JP2001201636A (en) Optical fiber polarizer and method its manufacturing
JPH08179155A (en) Method for coupling lens with optical fiber and production of lens substrate
JPH0996760A (en) Optical device
JPH03168706A (en) Manufacture of optical module substrate
JP2701326B2 (en) Method for connecting optical waveguide and method for manufacturing optical waveguide connecting portion
JP2586606B2 (en) Method of forming optical circuit device
JPS6296912A (en) Fixing structure for optical lens
JPS6396609A (en) Optical connecting circuit
JPS60175010A (en) Manufacture of optical waveguide
JPS63311212A (en) Optical waveguide device and method for packaging optical waveguide
JP2890475B2 (en) Mask aligner
JPH05241048A (en) Coupling device for optical parts
JPH0743640A (en) Polarization independence type optical isolator
JPS61122610A (en) Working method of optical fiber end face
JPS6358827A (en) Exposure device
JPH08304670A (en) Optical module and its production
JPH0475482B2 (en)
JPS635310A (en) Production of optical connecting circuit
JPS60156012A (en) Flush type optical waveguide
JPH02236505A (en) Incident tapered optical waveguide and wavelength converting element and manufacture of incident tapered optical waveguide
JPH09292539A (en) Waveguide-shaped collimator
JPS62172306A (en) Method for forming film on end surface of optical fiber