JPH02181483A - Manufacture of superconducting circuit - Google Patents

Manufacture of superconducting circuit

Info

Publication number
JPH02181483A
JPH02181483A JP1001673A JP167389A JPH02181483A JP H02181483 A JPH02181483 A JP H02181483A JP 1001673 A JP1001673 A JP 1001673A JP 167389 A JP167389 A JP 167389A JP H02181483 A JPH02181483 A JP H02181483A
Authority
JP
Japan
Prior art keywords
thin film
ion beam
film
focused ion
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1001673A
Other languages
Japanese (ja)
Inventor
Shinji Nagamachi
信治 長町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1001673A priority Critical patent/JPH02181483A/en
Publication of JPH02181483A publication Critical patent/JPH02181483A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To contrive the simplification of the manufacturing process of a superconducting circuit and a reduction in the manufacturing time of the circuit by a method wherein a focused ion beam is irradiated on a uniform thin film to implant ions in the film. CONSTITUTION:A uniform thin film 2 consisting of an Mo single substance is deposited on the upper surface of an insulator substrate 1 and the substrate 1 is placed on a sample stage 16 of a focusing ion beam device. An ion beam from an ion source 11 is focused by electrostatic type lenses 13a and 13b, passes through a mass filter 14 and while being deflected by deflecting electrode 15, a focussed ion beam B of N' is irradiated on the film 1 on the stage 16. In such a way, an N' implanted part S is formed in the film 2. Thus, by irradiating a focused ion beam in a prescribed pattern, ions are implanted in the thin film and the critical temperature of the ion-implanted part is made to rise to form a superconducting circuit pattern.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は超電導回路、詳しくは超電導薄膜回路、の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a method for manufacturing a superconducting circuit, specifically a superconducting thin film circuit.

〈従来の技術〉 超電導薄膜回路を製作するには、゛従来、基板上にNb
等の超電導体を蒸着させて−様な超電i薄膜を形成し、
次いでその表面にレジストを塗布し、露光および現像後
にエツチングを行い、更にレジストを除去するという工
程により、所望のパターンを有する超電導薄膜を得てい
た。
<Conventional technology> In order to fabricate a superconducting thin film circuit, 'conventionally, Nb was deposited on a substrate.
By depositing superconductors such as - to form a superelectric i thin film,
A superconducting thin film having a desired pattern was then obtained by applying a resist to the surface, performing etching after exposure and development, and then removing the resist.

〈発明が解決しようとする課題〉 上述のような従来の超電W薄膜回路の製造方法によると
、工程が多く繁雑で、完成までに長時間を要するととも
に、光露光のためにはフォトマスクを製作する必要があ
り、また、薄膜を人気中にさらし、あるいは大気中と真
空中を往復させる工程があるため、大気からの吸着汚染
の惧れもある。
<Problems to be Solved by the Invention> According to the conventional method for manufacturing superelectric W thin film circuits as described above, there are many and complicated steps, it takes a long time to complete the circuit, and a photomask is not required for light exposure. In addition, there is a risk of adsorption contamination from the atmosphere as there is a process of exposing the thin film to the atmosphere or moving it back and forth between the atmosphere and vacuum.

本発明の目的は、前車な工程で、しかも、工程途中で超
電導薄膜を大気にさらす必要のない、超電導薄膜回路の
製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a superconducting thin film circuit in a simple process and in which there is no need to expose the superconducting thin film to the atmosphere during the process.

く課題を解決するための手段〉 上記の目的を達成するため、本発明では、実施例に対応
する第1図、第2図に示すように、まず、基板賃上に、
ある元素との化合によって臨界温度が上昇する物質から
なる薄膜2を形成し、次に、上記の元素の集束イオンビ
ームBを薄膜2に所定のパターンで照射してそのイオン
を打ち込む。
Means for Solving the Problems> In order to achieve the above object, in the present invention, as shown in FIGS. 1 and 2 corresponding to the embodiment, first, on a substrate,
A thin film 2 made of a substance whose critical temperature increases when combined with a certain element is formed, and then a focused ion beam B of the above element is irradiated onto the thin film 2 in a predetermined pattern to implant the ions.

く作用〉 例えばMoは、単体での臨界温度は0.92にであるが
、Nと化合してM″oNとなればその臨界温度は12.
OKとなる。
For example, the critical temperature of Mo alone is 0.92, but when it is combined with N to form M″oN, the critical temperature is 12.
OK.

一方、集束イオンビームをあるエネルギの範囲でターゲ
ット物質に照射すれば、そのイオンはターゲット物質内
に注入されることは知られている。
On the other hand, it is known that when a target material is irradiated with a focused ion beam within a certain energy range, the ions are implanted into the target material.

本発明はこれらを利用し、集束イオンビームの照射によ
りイオンを打ち込んでその部分のみの臨界温度を上昇さ
せることにより、薄膜2の臨界温度とイオン打ち込み部
Sの臨界温度の間の温度で動作する、パターンSの超電
導薄膜回路を得ている。
The present invention takes advantage of these factors and operates at a temperature between the critical temperature of the thin film 2 and the critical temperature of the ion implantation part S by implanting ions by irradiation with a focused ion beam and raising the critical temperature of only that part. , a superconducting thin film circuit with pattern S was obtained.

〈実施例〉 第1図および第2図は本発明実施例の工程説明図で、第
3図はその工程で使用される集束イオンビーム装置の構
造説明図である。
<Embodiment> FIGS. 1 and 2 are process explanatory diagrams of an embodiment of the present invention, and FIG. 3 is a structural explanatory diagram of a focused ion beam device used in the process.

まず、第1図に示すように、絶縁体基板1の上面に、−
様なM0単体の薄膜2を蒸着する。この薄膜2の臨界温
度は0.92にであり、液体ヘリウム温度において常電
導体である。
First, as shown in FIG. 1, -
A thin film 2 of M0 alone is deposited. This thin film 2 has a critical temperature of 0.92 and is a normal conductor at liquid helium temperatures.

次に、第3図に例示する集束イオンビーム装置のサンプ
ルステージ16上に基板1を載せ、薄膜2にNoの集束
イオンビームBを照射する。
Next, the substrate 1 is placed on the sample stage 16 of the focused ion beam apparatus illustrated in FIG. 3, and the thin film 2 is irradiated with the focused ion beam B of No.

集束イオンビー1、装置は、真空チャンバ(図示せず)
内にイオン源11、引出し電極12、静電型レンズ13
aおよび13b1マスフイルタ14、偏向電極15、お
よびサンプルステージ16を備えるとともに、イオンに
加速エネルギを与える加速電源17と、イオン源11と
引出し電極12間に電位差を与える引出し電源18を有
しており、イオン源11から引出されたイオンビームは
静電型レンズ13aおよび13bで集束されると同時に
、マスフィルタ14で所望のイオンのみが偏向量15を
介してサンプルステージ16に導かれる。
Focused ion beam 1, the device includes a vacuum chamber (not shown)
Inside, an ion source 11, an extraction electrode 12, an electrostatic lens 13
a and 13b1 includes a mass filter 14, a deflection electrode 15, and a sample stage 16, as well as an acceleration power source 17 that provides acceleration energy to ions, and an extraction power source 18 that provides a potential difference between the ion source 11 and the extraction electrode 12, The ion beam extracted from the ion source 11 is focused by electrostatic lenses 13a and 13b, and at the same time only desired ions are guided by the mass filter 14 to the sample stage 16 via the amount of deflection 15.

その集束イオンビームBのエネルギは、加速電源17の
調節によって変化させることができる。
The energy of the focused ion beam B can be changed by adjusting the acceleration power source 17.

さて、このような集束イオンビーム装置によってNoの
集束イオンビームBを作り、その加速エネルギを、No
がM。薄膜2に効率よく注入されるエネルギに設定する
。そして、第2図(a)に縦断面図、同図(blに斜視
図で示すように、その集束イオンビームBを偏向重上1
5によって偏向させつつ、所定のパターンで薄膜2に照
射する。
Now, a focused ion beam B of No. is created using such a focused ion beam device, and its acceleration energy is
is M. The energy is set to be efficiently injected into the thin film 2. As shown in FIG. 2(a) in a vertical cross-sectional view and in FIG. 2(bl) in a perspective view, the focused ion beam B is deflected and
5, the thin film 2 is irradiated in a predetermined pattern.

これにより、M0単体のWJ膜2にはその照射部分に所
定パターンのNo打ち込み部Sが形成されることになる
。このNo打ち込み部Sの臨界温度は、その打ち込み量
によって異なるが、充分なNoを打ち込んでその部分が
M、Nとなれば12.OKにまで上昇する。つまり、こ
のNo打ち込み部Sは液体ヘリウム温度で超電導体とな
り、液体ヘリウム温度で動作するパターンSを持つ超電
導薄膜回路が得られる。
As a result, a predetermined pattern of No. implanted portions S is formed in the irradiated portion of the single M0 WJ film 2. The critical temperature of this No. implanted part S varies depending on the amount of No. implanted, but if sufficient No. is implanted and the part becomes M or N, the temperature will be 12. It rises to OK. In other words, the No implanted portion S becomes a superconductor at the liquid helium temperature, and a superconducting thin film circuit having the pattern S that operates at the liquid helium temperature is obtained.

なお、回路中に特に絶縁体部分を必要とする場合には、
集束イオンビー11装置のイオン種を変え、例えば0°
イオンの集束イオンビームを作り、これをM、単体の薄
膜2に所望のパターンで照射して注入する。これにより
、その0°モ はMg0xとなり、絶縁体となる。
In addition, if an insulator part is particularly required in the circuit,
Change the ion species of the focused ion bee 11 device, for example, 0°
A focused ion beam of ions is created, and the single thin film 2 is irradiated with it in a desired pattern for implantation. As a result, the 0° mole becomes Mg0x and becomes an insulator.

また、ある元素との化合によって臨界温度が上昇する物
質からなる薄膜、のその薄膜と打ち込むべき元素イオン
の組み合わせは、MoとNoのほか、例えば次のような
組み合わせが考えられる。
In addition to Mo and No, the combination of the thin film made of a substance whose critical temperature increases when combined with a certain element and the element ions to be implanted may be, for example, the following combinations.

A1.1!:Nb”:Al単体での臨界温度(以下、T
、と称す)が1.196にで、Nb3八lとなると18
.8K SnとNb”:5nii″L体の′r、が3.722に
、 N b、S nが18.3K ZrとN”:Zr単体の1゛oが0.546K 、 Z
 r Nが8.9に 以上の組み合わせにより、本発明方法で液体ヘリウム温
度で動作する超電導薄膜回路が得られる。
A1.1! :Nb”:Critical temperature of Al alone (hereinafter referred to as T
) is 1.196, and when Nb38L is 18
.. 8K Sn and Nb": 5nii"'r of L body is 3.722, N b, Sn is 18.3K Zr and N": 1゛o of Zr alone is 0.546K, Z
With the above combination of r N of 8.9, a superconducting thin film circuit operating at liquid helium temperature can be obtained by the method of the invention.

また、YBCO等の酸化物高温超電導体では、Y、Ba
およびCuをターゲットとするスパッタリングによる製
膜時に、酸素原子を反応させて超電導化しているが、一
般に酸素原子の薄膜結晶内への採り込みが不足しがらで
ある。そこで、スパッタリング時に酸素原子を反応させ
ず、あるいは超電導化するには不充分な量の酸素原子を
反応させて薄膜を作っておき、これにO゛集束イオンビ
ームを所望のパターンで照射して打ち込めば、そのパタ
ーンのみを酸化物高温超電導薄膜とすることができ、こ
の場合、本発明の方法によって液体窒素温度で動作する
超電うr薄膜回路が得られる。
In addition, in oxide high temperature superconductors such as YBCO, Y, Ba
During film formation by sputtering using Cu as a target, superconductivity is achieved by reacting oxygen atoms, but generally the oxygen atoms are not sufficiently incorporated into the thin film crystal. Therefore, during sputtering, a thin film is made by not reacting oxygen atoms, or by reacting an insufficient amount of oxygen atoms to make it superconducting, and then an O゛ focused ion beam is irradiated and implanted in the desired pattern. For example, only the pattern can be an oxide high temperature superconducting thin film, in which case the method of the invention provides a superconducting thin film circuit operating at liquid nitrogen temperatures.

〈発明の効果〉 以上説明したように、本発明によれば、−様な薄膜に集
束イオンビームを所定パターンで照射することで薄膜内
にそのイオンを注入し、その部分の臨界温度を上昇させ
ることによって超電導回路パターンを形成するので、実
質的に製膜工程とイオン注入工程の2つの工程で所望の
超電導回路パターンが得られ、工程の簡略化と製造の所
要時間の短縮が達成され、コストダウンが実現する。
<Effects of the Invention> As explained above, according to the present invention, by irradiating a --like thin film with a focused ion beam in a predetermined pattern, the ions are implanted into the thin film and the critical temperature of that part is raised. As a result, the desired superconducting circuit pattern can be obtained in essentially two steps: the film forming process and the ion implantation process, simplifying the process and shortening the time required for manufacturing, thereby reducing costs. Down is realized.

また、従来の製法のようにレジストのめ布工程や露光、
現像工程等を必要とせず、マスクの製作が不要となると
ともに、工程の途中で大気t4t4こ超電導薄膜をさら
す必要がなくなり、吸着汚染の惧れがなく、信頼性の高
い超電導回路が得られる。
In addition, unlike conventional manufacturing methods, there is no resist coating process, exposure,
There is no need for a developing process or the like, there is no need to manufacture a mask, there is no need to expose the superconducting thin film to the atmosphere during the process, there is no risk of adsorption contamination, and a highly reliable superconducting circuit can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明実施例の工程説明図、 第3図はその工程で使用される望束イオンビーム装置の
構造説明図である。 ・基板 ・薄膜 ・集束イオンビーム ・イオン打ち込み部
1 and 2 are process explanatory diagrams of an embodiment of the present invention, and FIG. 3 is a structural explanatory diagram of a focused ion beam device used in the process.・Substrate, thin film, focused ion beam, ion implantation section

Claims (1)

【特許請求の範囲】[Claims]  基板上に、所定の元素との化合によって臨界温度が上
昇する物質からなる薄膜を形成した後、上記元素の集束
イオンビームを上記薄膜に所定のパターンで照射してそ
のイオンを打ち込むことを特徴とする超電導回路の製造
方法。
A thin film made of a substance whose critical temperature increases when combined with a predetermined element is formed on a substrate, and then a focused ion beam of the above element is irradiated onto the thin film in a predetermined pattern to implant the ions. A method for manufacturing superconducting circuits.
JP1001673A 1989-01-06 1989-01-06 Manufacture of superconducting circuit Pending JPH02181483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1001673A JPH02181483A (en) 1989-01-06 1989-01-06 Manufacture of superconducting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001673A JPH02181483A (en) 1989-01-06 1989-01-06 Manufacture of superconducting circuit

Publications (1)

Publication Number Publication Date
JPH02181483A true JPH02181483A (en) 1990-07-16

Family

ID=11508038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001673A Pending JPH02181483A (en) 1989-01-06 1989-01-06 Manufacture of superconducting circuit

Country Status (1)

Country Link
JP (1) JPH02181483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212422A (en) * 1991-03-07 1994-08-02 Natl Res Inst For Metals Method for reforming high temperature superconducting oxide thin film
WO1996027226A1 (en) * 1995-02-28 1996-09-06 National Research Council Of Canada Bandgap tuning of semiconductor well structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212422A (en) * 1991-03-07 1994-08-02 Natl Res Inst For Metals Method for reforming high temperature superconducting oxide thin film
WO1996027226A1 (en) * 1995-02-28 1996-09-06 National Research Council Of Canada Bandgap tuning of semiconductor well structure

Similar Documents

Publication Publication Date Title
WO1989011553A1 (en) Selective area nucleation and growth method for metal chemical vapor deposition using focused ion beams
JPH02181483A (en) Manufacture of superconducting circuit
US5356870A (en) Method for processing superconducting thin films
JPH03129349A (en) Production of photomask
KR0132573B1 (en) Mask fabrication method
Wolf et al. Electron beam and ion beam fabricated microwave switch
JP2890431B2 (en) Superconducting circuit manufacturing method
JPH0657638B2 (en) Method for controlling critical temperature of superconductor thin film by focused ion beam
JP2900490B2 (en) Method for manufacturing MES field effect transistor
JPH06151349A (en) Manufacture of semiconductor device
JPH0494179A (en) Production of oxide superconducting thin film device
JP2690574B2 (en) Device making method
JPH0657639B2 (en) Method for controlling critical temperature of superconductor thin film by focused ion beam
JP2002076456A (en) Method for manufacturing josephson junction element
JPH02137785A (en) Working of oxide superconductor
JPH05102545A (en) Working method of superconducting thin film and manufacture of josephson junction element
JPH0469421B2 (en)
JPS6029921B2 (en) Diffraction grating manufacturing method
JPH02222138A (en) Mask for ion implantation
JPS5596681A (en) Method of fabricating semiconductor device
JPS58150188A (en) Manufacture of magnetic bubble element
JPS61234530A (en) Formation of pattern
JPH0210305A (en) Manufacture of optical waveguide
JPH043919A (en) Method of implanting ions into wafer of high resistance material
JPH01114084A (en) Method of forming superconductor pattern