JPH0416762A - Sample introducing apparatus for supercritical liquid chromatography - Google Patents

Sample introducing apparatus for supercritical liquid chromatography

Info

Publication number
JPH0416762A
JPH0416762A JP12229390A JP12229390A JPH0416762A JP H0416762 A JPH0416762 A JP H0416762A JP 12229390 A JP12229390 A JP 12229390A JP 12229390 A JP12229390 A JP 12229390A JP H0416762 A JPH0416762 A JP H0416762A
Authority
JP
Japan
Prior art keywords
sample
mobile phase
container
flow path
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12229390A
Other languages
Japanese (ja)
Inventor
Takashi Hine
隆 日根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP12229390A priority Critical patent/JPH0416762A/en
Publication of JPH0416762A publication Critical patent/JPH0416762A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • G01N2030/202Injection using a sampling valve rotary valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To prevent the fluctuation of the introducing amount of a sample due to the clogging of a resistance pipe by introducing the sample into a buffer container held to final analytical pressure and dissolving the sample in a mobile phase to dilute the same to discharge the diluted sample to a separation column. CONSTITUTION:A sample is injected in a sampling valve 1 from the sample injection port 4 thereof and, at the same time, a mobile phase is supplied to a buffer container 3 from a mobile phase feed part 2. This mobile phase is injected in the container 3 in a supercritical state and a part thereof is discharged to the atmosphere through a resistance pipe 8 to hold the interior of the container 3 to final analytical pressure. After the sample is injected, when the valve 1 is revolved to connect a sample injection pipe to the feed part 2 and container 3, the sample flows in a metering pipe 7. Subsequently, when a flow path change-over valve 6 is changed over, the mobile phase from a mobile phase feed part 9 flows in the metering pipe 7 and the sample is sent out to a capillary column 10 to be separated in a supercritical state. By this method, a predetermined amount of the sample can be introduced without generating the clogging due to the precipitation of a solute.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超臨界流体クロマトグラフに適した試料導入
装置の閑する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a sample introduction device suitable for supercritical fluid chromatography.

(従来技術) 超臨界クロマトグラフは、二酸化炭素やアンモニア等を
超臨界温度、超臨界圧力に加熱圧縮したガス流体を移動
相に使用したもので、゛移動相が気体と液体どの中間の
物性を備えおり、液体としての高溶解性を利用して高分
子物質を低温で溶解させ、また気体としての低粘性を利
用して分離カラムにキャピラリーカラムを使用できてる
ため、不揮発性の高分子物質、熱に不安定な物質、誘導
体化か困aな物質の分析に使用されている。
(Prior art) A supercritical chromatograph uses a gas fluid, such as carbon dioxide or ammonia, heated and compressed to a supercritical temperature and pressure as a mobile phase. The high solubility of a liquid makes it possible to dissolve polymeric substances at low temperatures, and the low viscosity of a gas makes it possible to use a capillary column as a separation column. It is used to analyze substances that are unstable or difficult to derivatize.

ところで、上述したように高い分離性能を得るべくキャ
ピラリーカラムを使用した場合には、キャピラリーカラ
ムの試料負荷か極めて小きく、かつ微小量の試料を高い
精度で注入すること困難であるため、計量精度を維持で
きる程度の試料を注入し、これの一部たけをキャどラリ
−カラムに導入することか行なわれている。
By the way, as mentioned above, when using a capillary column to obtain high separation performance, the sample load on the capillary column is extremely small, and it is difficult to inject a minute amount of sample with high precision, so it is difficult to maintain measurement accuracy. The practice is to inject as much sample as possible and introduce only a portion of this into the cathode column.

第2図は、上述した超臨界クロマトグラフに使用されて
いる試料導入装置の一例を示Tものであって、サンブリ
ジグパルプAと分離カラムBの間に分岐管Cを介して抵
抗管りを接続し、抵抗管りの流体抵抗を調整することに
より、分離カラムBへの流入量を調整するように構成さ
れている。
FIG. 2 shows an example of a sample introduction device used in the supercritical chromatograph described above, in which a resistance pipe is connected between the Sambrizig pulp A and the separation column B via a branch pipe C. The flow rate into the separation column B is adjusted by adjusting the fluid resistance of the resistance pipe.

なお、図中符号Eは、移動相送液部を示す。In addition, the code|symbol E in the figure shows a mobile phase liquid feeding part.

(発明が解決しようとする課題) しかしながら、超臨界流体クロマトグラフにあっては、
試料は極めて高い圧力を受けて分離カラムに注入してい
るため、カラムに存在しているときの溶媒の溶解度か極
めて大きく、また大気に排出された時の溶解度が急激に
低下する。
(Problem to be solved by the invention) However, in a supercritical fluid chromatograph,
Since the sample is injected into the separation column under extremely high pressure, the solubility of the solvent is extremely high when it is present in the column, and the solubility decreases rapidly when it is discharged into the atmosphere.

このため抵抗管りの排出端近傍での溶解度が急激に低下
し、移動相に溶解されている成分が析出して抵抗管りの
排出端を閉基するという現象が起こる。このため、抵抗
管りの流体抵抗値が設定値よりも大きくなって試料がス
プリットされず、カラムに大量に流入することになり、
結果としてカラム負荷が大きくなって分M牲能か低下し
たり、再現性の低下を招くという問題がある。
For this reason, the solubility near the discharge end of the resistance tube rapidly decreases, and a phenomenon occurs in which components dissolved in the mobile phase precipitate and close the discharge end of the resistance tube. For this reason, the fluid resistance value of the resistance tube becomes larger than the set value, and the sample is not split, resulting in a large amount of flowing into the column.
As a result, there are problems in that the column load increases, resulting in a decrease in the fractional capacity and a decrease in reproducibility.

本発明はこのような問題に鑑みてなされたものであって
、その目的とするところはスプリット機構を不要として
、予め設定された■の試料1F!:確案に分離カラムに
注入することができる超臨界液体クロマトグラフ用の新
規な試料導入量Wを提供することにある。
The present invention has been made in view of these problems, and its purpose is to eliminate the need for a split mechanism and to eliminate the need for a preset sample 1F! : The object of the present invention is to provide a new sample introduction amount W for supercritical liquid chromatography that can be reliably injected into a separation column.

(課題を解決するための手段) このような問題を解消するために本発明においては、移
動相送液手段、サンプリングバルブ、バッファ容器、及
び一端が大気に連通する抵抗管を介して大気に連通され
ている計量管を直列に接続してなる第一流路と、切替弁
を介して前記計量管を移動相送液部と分離カラムに接続
する第二流路を備えるようにした。
(Means for Solving the Problems) In order to solve such problems, the present invention provides a mobile phase liquid feeding means, a sampling valve, a buffer container, and a resistance tube that communicates with the atmosphere at one end through a resistance tube that communicates with the atmosphere. A first flow path formed by connecting measuring tubes in series, and a second flow path connecting the measuring tubes to a mobile phase liquid feeding section and a separation column via a switching valve.

(作用) サンプリングバルブからの試料を、抵抗管により分離カ
ラムにおける最終分析圧力に維持されているバッファ容
器内に導入して移動相に溶解させて希釈し、ついてこれ
を分離カラムに排出する。
(Operation) The sample from the sampling valve is introduced into the buffer container maintained at the final analysis pressure in the separation column by a resistance tube, dissolved and diluted in the mobile phase, and then discharged into the separation column.

これにより従来装置におけるスプリット比調整用の抵抗
管が不要となり、したがって抵抗管の目詰りによる試料
導入量の変動を防止することができる。
This eliminates the need for a resistance tube for adjusting the split ratio in the conventional apparatus, and therefore it is possible to prevent variations in the amount of sample introduced due to clogging of the resistance tube.

(寅施例) そこで以下に本発明の詳細を図示した寅施例に基づいて
説明する。
(Tora Embodiment) The details of the present invention will be explained below based on the illustrated Tora Embodiment.

菌7図は本発明の一実施例を示すものであって、図中符
号1は、サシブリングバルブで、一端が超臨界圧以上に
移動相流体を加圧する移動相送液部2に、他端が礒述す
るバッファ容器3に接続する流路と、試料注入口4と排
出口5に接続する2つの流路1fr備えている。
Fig. 7 shows an embodiment of the present invention, in which reference numeral 1 is a subsibling valve, one end of which is connected to the mobile phase feeding section 2 that pressurizes the mobile phase fluid above supercritical pressure, and the other It is provided with a flow path connected to the buffer container 3 whose end is described, and two flow paths 1fr connected to the sample injection port 4 and the discharge port 5.

3は、前述のバッファ容器で、超臨界圧力に耐えるよう
に構成され、その排出端は、後述する流路切替弁6に接
続されている。
Reference numeral 3 denotes the aforementioned buffer container, which is configured to withstand supercritical pressure, and its discharge end is connected to a flow path switching valve 6, which will be described later.

6は、前述の流路切替弁で、バッファ容器3の排出端か
ら計量管7を通り、一端か大気に開放された抵抗管8に
接続する第一流路(図中実線により示す流路)と、計量
管7の一端に超臨界圧力以上に移動相流体を加圧する藁
二移動相送液部9を、他端にキャピラリーカラム10を
接続する一方、バッファ客器3v!抵抗管8を介して大
気に連通きせる第二流路(図中点線により示す流路)と
を切替えるようになっている。なお、図中符号]1は、
キャどラリ−カラム10の排出端に接続された検出器を
、また]2は、恒温槽をそれぞれ示す。
Reference numeral 6 designates the aforementioned flow path switching valve, which connects the first flow path (the flow path indicated by the solid line in the figure) from the discharge end of the buffer container 3 through the metering pipe 7 to the resistance pipe 8 whose one end is open to the atmosphere. At one end of the metering tube 7, a two-layer mobile phase liquid feeding section 9 for pressurizing the mobile phase fluid above the supercritical pressure is connected, and at the other end, a capillary column 10 is connected, while a buffer device 3V! A second flow path (flow path indicated by a dotted line in the figure) which communicates with the atmosphere via the resistance tube 8 is switched. In addition, the symbol] 1 in the figure is
2 represents a detector connected to the discharge end of the Cadler column 10, and 2 represents a constant temperature bath.

この寅施例において、流路切替弁6を第二流路にセット
した状態で(図中点線で示す状態)、サンプリングバル
ブ1の試料注入口4がら試料を注入すると、一部は流路
に保持され、余剰分は排出口5から外部に排出される。
In this embodiment, when a sample is injected through the sample injection port 4 of the sampling valve 1 with the flow path switching valve 6 set to the second flow path (the state shown by the dotted line in the figure), a portion of the sample enters the flow path. The excess amount is discharged to the outside from the discharge port 5.

同時にサンプリングバルブの他方の流路(図中実線で示
す流路)を介して第一の移動相送液部2からバッファ容
器3に移動相か供給される。これにより第−移動相送液
部2からの移動相は、バッファ容器3に超臨界状態で注
入され、その一部が抵抗管8を介して大気に放出され、
バッファ容器3の内部を抵抗管8によりPA!121!
れ是最終分析圧力に維持する。
At the same time, the mobile phase is supplied from the first mobile phase feeding section 2 to the buffer container 3 through the other channel of the sampling valve (the channel indicated by the solid line in the figure). As a result, the mobile phase from the first mobile phase liquid feeding section 2 is injected into the buffer container 3 in a supercritical state, and a part of it is released into the atmosphere via the resistance tube 8.
PA the inside of the buffer container 3 using the resistance tube 8! 121!
This should be maintained at final analysis pressure.

試料を注入し終えた段階で、サンプリングバルブ]を回
動して試料注入管を第−移動相送液部2とバッファ容器
3に接続すると(図中実線により示す状態)、試料は、
第−移動相送液部2からの移動相によりバッファ容器3
に送り出される6バツ2ア容器3は、抵抗管81Fr介
して分析終了時の圧力、つまりキャピラリーカラム10
の排出端での圧力になるように内部圧力が設定されでい
るので、分析終了時点まで溶解可能な成分たゆか溶解さ
れ、溶解されない成分はバッファ容器3内に残留するこ
とになる。成分を溶解したバッファ容器3内の移動相は
、ざらに計量管7に流入する。
After injecting the sample, turn the sampling valve to connect the sample injection tube to the first mobile phase feeding section 2 and buffer container 3 (state shown by the solid line in the figure), the sample will be
The mobile phase from the mobile phase liquid feeding section 2 causes the buffer container 3
The 6x2a container 3 sent to
Since the internal pressure is set to be the pressure at the discharge end of the buffer, only the soluble components will be dissolved and the undissolved components will remain in the buffer container 3 until the end of the analysis. The mobile phase in the buffer container 3 in which the components have been dissolved roughly flows into the measuring tube 7.

ついで、流路切替弁6を第二流路(図中点線で示す流路
)に切替えると、計量管7に第二移動相送液部9からの
移動相が流入して、計量管7の容積で規定された量の試
料がキャピラリーカラム10に送り出される。この状態
て第二移動相送液部9から移動相を供給し続けることに
より、キャピラリーカラム10内で超臨界状態で分離が
行なわれ、検出器11によつ成分か検出されることにな
る0分離カラム10の排ヨ端に行くにしたがって移動相
の圧力か低下しても、予めバッファ客器3において最終
分析圧力で溶解可能な成分だけが溶解されているので、
溶質が析出したつして生じる目詰りが未然に防止される
ことになる。
Next, when the flow path switching valve 6 is switched to the second flow path (the flow path indicated by the dotted line in the figure), the mobile phase from the second mobile phase feeding section 9 flows into the metering tube 7, and the flow path of the metering tube 7 is A volumetrically defined amount of sample is delivered to the capillary column 10. By continuing to supply the mobile phase from the second mobile phase feeding section 9 in this state, separation is performed in a supercritical state within the capillary column 10, and the components are detected by the detector 11. Even if the pressure of the mobile phase decreases as it approaches the exhaust end of the column 10, only the components that can be dissolved at the final analysis pressure are dissolved in the buffer chamber 3 in advance.
This will prevent clogging that would otherwise occur due to the precipitation of solutes.

なお、この実施例においては2つの移動相送液部を備え
るようにしているが、1つの移動相送液部から分離カラ
ムとバッファ容器に共通に供給するようにしても同様の
作用を奏することは明らかである。
In this example, two mobile phase feeding sections are provided, but the same effect can be achieved even if the separation column and buffer container are commonly supplied from one mobile phase feeding section. is clear.

(発明の効果) 以上説明したように本発明においては、移動相送液手段
、サンプリングバルブ、バッファ容器、及び一端が大気
に連通する抵抗管を介して大気に連通されている計量管
を直列に接続してなる第一流路と、切替弁を介して前記
計量管を移動相送液部と分離カラムに接続する第二流路
を備えたので、予め最終分析圧力に保たれているバッフ
ァ容器内で移動相により試料を希釈することができて安
定した試料量を分離カラムに供給することができる。
(Effects of the Invention) As explained above, in the present invention, a mobile phase liquid feeding means, a sampling valve, a buffer container, and a metering tube whose one end communicates with the atmosphere via a resistance tube that communicates with the atmosphere are connected in series. The first flow path is connected to the first flow path, and the second flow path connects the metering tube to the mobile phase feeding section and the separation column via the switching valve, so that the inside of the buffer container, which is previously maintained at the final analysis pressure, is provided. The sample can be diluted with the mobile phase and a stable amount of sample can be supplied to the separation column.

また、本発明においては予めバッファ容器において最終
分析圧力で溶解可能な成分だけが溶解されているので、
分離カラムの排出端に行くにしたがって移動相の圧力が
低下しても、溶質が析出することがなく、したがって信
頼性の高い分析が可能となる。
Furthermore, in the present invention, only the components that can be dissolved at the final analysis pressure are dissolved in the buffer container in advance.
Even if the pressure of the mobile phase decreases toward the discharge end of the separation column, the solute does not precipitate, thus enabling highly reliable analysis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す装冨の構成図、第2図
は従来の超臨界流体クロマトグラフの試料導入部の一例
を示す構成図である。 1・・・・サンプリングバルブ 2・・・・移動相送液
部3・・・・バッファ容器    6・・・・流路切替
弁7・・・・計量管       8・・・・抵抗管9
・・・・移動相送液部    10・・・・分離カラム
第1図
FIG. 1 is a block diagram of a loading device showing an embodiment of the present invention, and FIG. 2 is a block diagram showing an example of a sample introduction section of a conventional supercritical fluid chromatograph. 1...Sampling valve 2...Mobile phase liquid feeding section 3...Buffer container 6...Flow path switching valve 7...Measuring tube 8...Resistance tube 9
...Mobile phase feeding section 10...Separation column Fig. 1

Claims (1)

【特許請求の範囲】[Claims] 移動相送液手段、サンプリングバルブ、バッファ容器、
及び一端が大気に連通する抵抗管を介して大気に連通さ
れている計量管を直列に接続してなる第一流路と、切替
弁を介して前記計量管を移動相送液部と分離カラムに接
続する第二流路を備えてなる超臨界流体クロマトグラフ
用試料導入装置。
Mobile phase feeding means, sampling valve, buffer container,
and a first flow path formed by connecting metering tubes in series, each of which is connected to the atmosphere through a resistance tube whose one end communicates with the atmosphere, and a switching valve that connects the metering tube to the mobile phase feeding section and the separation column. A sample introduction device for supercritical fluid chromatography comprising a second connecting channel.
JP12229390A 1990-05-11 1990-05-11 Sample introducing apparatus for supercritical liquid chromatography Pending JPH0416762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12229390A JPH0416762A (en) 1990-05-11 1990-05-11 Sample introducing apparatus for supercritical liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12229390A JPH0416762A (en) 1990-05-11 1990-05-11 Sample introducing apparatus for supercritical liquid chromatography

Publications (1)

Publication Number Publication Date
JPH0416762A true JPH0416762A (en) 1992-01-21

Family

ID=14832374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12229390A Pending JPH0416762A (en) 1990-05-11 1990-05-11 Sample introducing apparatus for supercritical liquid chromatography

Country Status (1)

Country Link
JP (1) JPH0416762A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408757B2 (en) 1999-12-22 2002-06-25 Tokyo Kikai Seisakusho, Ltd. Paper roll braking device
WO2005073710A1 (en) * 2004-01-13 2005-08-11 Daicel Chemical Industries, Ltd. Method and device for injecting sample
JP2006058146A (en) * 2004-08-20 2006-03-02 Daicel Chem Ind Ltd Sample injection method, sample injection device and supercritical fluid chromatography device having it
JP2020106280A (en) * 2018-12-26 2020-07-09 日本分光株式会社 Sample injection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408757B2 (en) 1999-12-22 2002-06-25 Tokyo Kikai Seisakusho, Ltd. Paper roll braking device
WO2005073710A1 (en) * 2004-01-13 2005-08-11 Daicel Chemical Industries, Ltd. Method and device for injecting sample
JP2006058146A (en) * 2004-08-20 2006-03-02 Daicel Chem Ind Ltd Sample injection method, sample injection device and supercritical fluid chromatography device having it
JP4508778B2 (en) * 2004-08-20 2010-07-21 ダイセル化学工業株式会社 Sample injection method, sample injection apparatus, and supercritical fluid chromatography apparatus having the same
JP2020106280A (en) * 2018-12-26 2020-07-09 日本分光株式会社 Sample injection device

Similar Documents

Publication Publication Date Title
US10641746B2 (en) Sample injection with fluidic connection between fluid drive unit and sample accommodation volume
US9551329B2 (en) Automated dilution for liquid chromatography
US4300393A (en) Sample introduction apparatus for gas chromatographic analysis using packed or capillary bore open tubular columns and method of testing
US20150316516A1 (en) Mixer bypass sample injection for liquid chromatography
US20110016955A1 (en) Sample Dilution for Chromatography of Multiple Process Streams
US4124358A (en) Sample-injection device for process gas chromatography with capillary columns
JP2009080012A (en) Liquid chromatograph and sample introducing apparatus
US7250767B2 (en) Method for introducing a liquid sample into an NMR spectrometer
JP2012088133A (en) Online sample introduction apparatus
US20210302396A1 (en) Large volume sample injection for liquid chromatography
JPH0416762A (en) Sample introducing apparatus for supercritical liquid chromatography
US3884802A (en) Liquid chromatography injection system
JPS6378065A (en) Liquid chromatographic device
US20240060939A1 (en) Sample metering and injection for liquid chromatography
JP3536074B2 (en) Liquid chromatograph and analysis system
JPS6197567A (en) Sample preprocessor
JPH05256834A (en) Liquid chromatograph
US4057997A (en) Sample preparation
JPH05307026A (en) Material separating method with super-critical fluid chromatography and device for it
JP4459633B2 (en) Sample injection method and injection apparatus
US20210156826A1 (en) Sample injection for liquid chromatography using split solvent flow
JP2573678B2 (en) Sample injection method for liquid chromatography
JP2002071657A (en) Device and method for gradient liquid chromatogram measurement
JP4403638B2 (en) Liquid chromatograph
JPS62218860A (en) Solubility meter for supercritical fluid