JPH05256834A - Liquid chromatograph - Google Patents
Liquid chromatographInfo
- Publication number
- JPH05256834A JPH05256834A JP5326292A JP5326292A JPH05256834A JP H05256834 A JPH05256834 A JP H05256834A JP 5326292 A JP5326292 A JP 5326292A JP 5326292 A JP5326292 A JP 5326292A JP H05256834 A JPH05256834 A JP H05256834A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- constant
- pump
- flow rate
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は液体クロマトグラフに係
り、特に試料注入時の圧力上昇による圧力ショックを少
なくすることによりカラムの損傷を防止するのに好適な
液体クロマトグラフに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid chromatograph, and more particularly to a liquid chromatograph suitable for preventing column damage by reducing a pressure shock due to a pressure increase during sample injection.
【0002】[0002]
【従来の技術】一般的な液体クロマトグラフの構成を図
2に示す。ポンプで吸引された溶離液は、試料注入部,
カラム,検出器を通り流れている。試料は、試料注入部
の注入バルブで流路内に注入されカラムで分離される。
分離された成分は、検出器で検出されその信号がデータ
処理装置に送られる。データ処理結果は、分析結果とし
て出力される。2. Description of the Related Art The structure of a general liquid chromatograph is shown in FIG. The eluent aspirated by the pump is
It flows through the column and the detector. The sample is injected into the flow channel by the injection valve of the sample injection unit and separated by the column.
The separated component is detected by the detector and the signal is sent to the data processing device. The data processing result is output as the analysis result.
【0003】代表的な試料注入部の原理を図3に示す。
圧力の高い液体が流れている流路内に試料を注入するた
めに、次のような動作をさせる。はじめは、(a)に示
すように注入バルブ5がセットされており、ポンプ1に
よって溶離液4は、サンプルループ6を通り、カラム9
へ流れている。次に、(b)に示すように注入バルブ5
を切り換え、試料吸入ポンプ8を働かせ、サンプルルー
プ6内に試料を吸入する。その後、再び(a)の状態に
注入バルブ5を戻して、試料を高圧流路内に注入する。The principle of a typical sample injection part is shown in FIG.
The following operation is performed in order to inject the sample into the channel in which the high-pressure liquid is flowing. Initially, the injection valve 5 is set as shown in (a), and the eluent 4 is passed through the sample loop 6 and the column 9 by the pump 1.
Is flowing to. Next, as shown in (b), the injection valve 5
And the sample suction pump 8 is operated to suck the sample into the sample loop 6. After that, the injection valve 5 is returned to the state of (a) again, and the sample is injected into the high-pressure channel.
【0004】従来の液体クロマトグラフでは、注入バル
ブを切り換えている間も、ポンプは、一定流量で送液を
していた。注入バルブを切り換えるときには図4のよう
に、流路系が閉鎖されている状態がある。この状態でポ
ンプは送液を続けるから、バルブより手前の流路内の圧
力が上昇してしまう。その後、バルブ切り替えが完了し
た時点で上昇した圧力がカラムにかかり、カラムを損傷
することがあった。また、ポンプの出口側の圧力が高く
なるために、ポンプを使用最高圧近傍で用いた際に試料
注入時に圧力限界を越え、ポンプが停止する糖など動作
が不良になることもある。In the conventional liquid chromatograph, the pump was sending liquid at a constant flow rate even while the injection valve was being switched. When switching the injection valve, there is a state in which the flow path system is closed as shown in FIG. In this state, the pump continues to feed the liquid, so the pressure in the flow path before the valve rises. After that, when the valve switching was completed, the increased pressure was applied to the column, which could damage the column. In addition, since the pressure on the outlet side of the pump becomes high, when the pump is used near the maximum working pressure, the pressure limit may be exceeded during sample injection, and the pump may stop operating, such as sugar.
【0005】これに対処するために、従来の液体クロマ
トグラフでは、図5に示すように注入バルブ部にバイパ
ス流路12を設けたり、図6に示すようにダンパー13
をポンプと注入バルブ部間の流路内に入れたりしてい
た。In order to cope with this, in the conventional liquid chromatograph, a bypass flow passage 12 is provided in the injection valve portion as shown in FIG. 5, or a damper 13 as shown in FIG.
Was placed in the flow path between the pump and the injection valve.
【0006】[0006]
【発明が解決しようとする課題】上記従来技術のうち、
バイパス流路による方法は、バイパス内を流れる液によ
る誤差や試料拡散の点について配慮がされておらず、ま
たバイパス流路内径を一定にすることが難しいために、
動作が不安定であるという問題があった。また、ダンパ
ーによる方法は、グラジエント装置を付けた場合に誤差
の原因になるという問題があった。Of the above-mentioned conventional techniques,
The method using the bypass flow passage does not consider the error due to the liquid flowing in the bypass and the point of sample diffusion, and it is difficult to make the bypass flow passage inner diameter constant.
There was a problem that the operation was unstable. Further, the damper method has a problem that it causes an error when a gradient device is attached.
【0007】本発明の目的は、これらの問題の無い液体
クロマトグラフを提供することにある。An object of the present invention is to provide a liquid chromatograph which does not have these problems.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に、定流量制御と定圧制御の両者を設け、注入バルブを
切り換えている間など流路が閉鎖されている間は、ポン
プ出口側の圧力が一定になるように、ポンプを定圧制御
するようにしたものである。また、流路が閉鎖されてい
ない場合は、一定流量になるように制御し正確なクロマ
トグラフが得られるようにする。さらに定圧制御への切
り替え時には定流量制御時の圧力となるよう制御し、そ
の間の圧力変動が生じないようにする。In order to achieve the above object, both constant flow rate control and constant pressure control are provided, and while the flow path is closed, such as when switching the injection valve, the pump outlet side The pump is controlled at a constant pressure so that the pressure becomes constant. When the flow path is not closed, the flow rate is controlled to be constant so that an accurate chromatograph can be obtained. Further, when switching to the constant pressure control, the pressure is controlled so as to be the pressure at the constant flow rate control so that the pressure fluctuation during that time does not occur.
【0009】[0009]
【作用】ポンプの圧力を一定に保つことにより、注入バ
ルブが切り替え時等のカラムにかかる圧力変動が少なく
なり、カラムの損傷を防ぐことができる。また、バイパ
ス流路や、ダンパーが無いのでそれによる試料の希釈や
グラジエントの誤差が無い。By maintaining the pressure of the pump constant, the pressure fluctuation applied to the column when the injection valve is switched can be reduced, and the column can be prevented from being damaged. Further, since there is no bypass channel or damper, there is no sample dilution or gradient error due to it.
【0010】[0010]
【実施例】以下、本発明の一実施例を図により説明す
る。図1は本実施例の構成図である。ポンプ1で吸引さ
れた溶離液4は、注入バルブ5を通りカラム9へ送られ
る。試料7は、一旦、注入バルブ5を切り換えてから、
試料用ポンプ8で、サンプルループ6に吸入する。その
後、再び注入バルブ5を切り換えることにより、高圧流
路に試料を注入する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of this embodiment. The eluent 4 sucked by the pump 1 is sent to the column 9 through the injection valve 5. For sample 7, once the injection valve 5 has been switched,
The sample pump 8 sucks into the sample loop 6. Then, the injection valve 5 is switched again to inject the sample into the high-pressure channel.
【0011】本発明では、制御部3に、定流量制御機能
10と、定圧制御機能11を設けており、両者を任意に
切り換えて使用できるようになっている。In the present invention, the control unit 3 is provided with a constant flow rate control function 10 and a constant pressure control function 11 so that both can be arbitrarily switched and used.
【0012】定流量制御では、溶媒吸引工程から吐出工
程への移行時に、溶媒圧縮による圧力変化補正のため一
時的に運転速度を変更することを除き、ポンプのモータ
を一定の速度で回転させて一定流量の送液を実現してい
る。従って、送液する溶液の組成が変化したり流路の抵
抗が変化した場合でも常に定量送液を行なうことができ
る。In the constant flow rate control, the motor of the pump is rotated at a constant speed except that the operating speed is temporarily changed at the time of shifting from the solvent suction process to the discharge process to correct the pressure change due to the solvent compression. A constant flow rate of liquid has been achieved. Therefore, even if the composition of the solution to be sent changes or the resistance of the flow path changes, constant quantity solution can be sent.
【0013】これにたいし、定圧制御では、圧力検出器
2で検出されるポンプ出口の圧力が一定になるように送
液量を連続的に変化させてポンプ1を制御する。送液す
る溶液の組成が一定で、流路抵抗に変化がない場合は、
この方法でも一定流量の送液が可能である。On the other hand, in the constant pressure control, the pump 1 is controlled by continuously changing the liquid supply amount so that the pressure at the pump outlet detected by the pressure detector 2 becomes constant. When the composition of the solution to be sent is constant and the flow path resistance does not change,
This method can also deliver a constant flow rate.
【0014】通常の動作時には、定流量制御を行なうこ
とにより、溶液組成の変化にとらわれずに一定の流量で
溶離液を送り、再現性の高い正確な分析を行なってい
る。注入バルブ5を切り換える間は、流路閉鎖が起こる
ので、ポンプ1を定圧制御する。この時、定圧制御は定
流量制御時の圧力となるよう行なわれる。従ってバルブ
動作による流路閉鎖時以外は一定流量が保たれ、かつこ
の間の流路閉鎖時でも圧力変動は生じない。During normal operation, constant flow rate control is performed to send the eluent at a constant flow rate without being affected by changes in the solution composition, thereby performing highly reproducible and accurate analysis. While the injection valve 5 is switched, the flow path is closed, so that the pump 1 is controlled at a constant pressure. At this time, the constant pressure control is performed so as to be the pressure at the constant flow rate control. Therefore, a constant flow rate is maintained except when the flow passage is closed by the valve operation, and pressure fluctuation does not occur even when the flow passage is closed during this period.
【0015】代表的な試料注入部とポンプの制御法の切
替えの同期例を図7に示す。ポンプの制御方式の切替え
は試料注入部の動作と同期しており、流路の閉鎖を伴う
バルブ切替え時には必ず定圧制御となっている。このた
め圧力上昇は生ずることがない。さらに送液は大部分の
時間定流量送液となっており、送液する溶液の組成変化
やカラムの劣化による流路抵抗変化の影響を受けずに一
定流量を保つことができる。FIG. 7 shows a synchronization example of switching of control methods of a typical sample injection part and pump. The switching of the pump control system is in synchronism with the operation of the sample injection part, and constant pressure control is always performed when the valves are switched with the closing of the flow path. Therefore, the pressure does not rise. Further, the liquid is fed at a constant flow rate for most of the time, and a constant flow rate can be maintained without being affected by the change in the composition of the solution to be fed or the change in the flow path resistance due to the deterioration of the column.
【0016】実際の分析に際しての各部の動作の流れを
示したものが図8である。定流量制御により送液しシス
テムの安定化を行ない、この時の圧力を読み込む。次に
この安定時圧力による定圧制御に切替え送液を続ける。
この後試料注入部は注入バルブをロード側へ切替え試料
をサンプルループに吸引する。次に注入バルブをインジ
ェクション側に切替え試料を高圧流路内に注入し、これ
と同時に溶液のグラジエント開始あるいはデータの取り
込みといった分析が開始される。この時ポンプは定圧送
液であるため流路閉鎖による圧力上昇は生じない。この
後すみやかにポンプは定流量制御に変更され、実際の分
析はこの定流量制御条件下で行なわれる。従って送液す
る溶液の組成が変化した場合でも正確な定量送液が行な
え高い再現性を得ることができる。FIG. 8 shows the flow of the operation of each part in the actual analysis. Liquid is sent by constant flow rate control to stabilize the system, and the pressure at this time is read. Next, switching to the constant pressure control by this stable pressure is continued and liquid feeding is continued.
After this, the sample injection unit switches the injection valve to the load side and sucks the sample into the sample loop. Next, the injection valve is switched to the injection side to inject the sample into the high-pressure channel, and at the same time, analysis such as the start of a solution gradient or the acquisition of data is started. At this time, since the pump is a constant pressure liquid feed, the pressure does not increase due to the closing of the flow path. After that, the pump is promptly changed to the constant flow rate control, and the actual analysis is performed under the constant flow rate control condition. Therefore, even if the composition of the solution to be transferred changes, accurate quantitative solution transfer can be performed and high reproducibility can be obtained.
【0017】本実施例によれば、注入バルブ5を切り換
えている間の流路が閉鎖されることによる圧力の上昇が
なくなる。従って、カラムを損傷することがなく、また
ポンプの最大使用可能圧に近い圧力でも試料の注入が可
能である。さらに、前記バイパス流路による方法のよう
な試料の希釈や誤差は生ずることがない。また、ダンパ
ーによるポンプとカラム間の容積の増大もないからグラ
ジエント装置使用時の誤差も生じない。According to this embodiment, the pressure does not increase due to the passage being closed while the injection valve 5 is being switched. Therefore, the sample can be injected without damaging the column and at a pressure close to the maximum usable pressure of the pump. Furthermore, there is no occurrence of sample dilution or error as in the method using the bypass channel. Further, since the volume between the pump and the column is not increased by the damper, no error occurs when using the gradient device.
【0018】[0018]
【発明の効果】本発明によれば、注入バルブ切り換え時
の圧力上昇がなくなり、分析時の流量誤差もない液体ク
ロマトグラフが得られる効果がある。EFFECTS OF THE INVENTION According to the present invention, there is an effect that a pressure increase at the time of switching an injection valve is eliminated and a liquid chromatograph free from flow rate error at the time of analysis can be obtained.
【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.
【図2】一般的な液体クロマトグラフの構成図である。FIG. 2 is a configuration diagram of a general liquid chromatograph.
【図3】試料注入部の原理図である。FIG. 3 is a principle diagram of a sample injection unit.
【図4】流路閉鎖状態を表す図である。FIG. 4 is a diagram showing a flow path closed state.
【図5】バイパス流路方式図である。FIG. 5 is a bypass flow channel system diagram.
【図6】ダンパー方式図である。FIG. 6 is a damper system diagram.
【図7】試料注入部とポンプ制御切り替えの同期例を示
す図である。FIG. 7 is a diagram showing an example of synchronizing the sample injection unit and pump control switching.
【図8】分析に際しての各部の動作の流れを示す図であ
る。FIG. 8 is a diagram showing a flow of operation of each unit at the time of analysis.
1…ポンプ、2…圧力検出器、3…制御部、4…溶離
液、5…注入バルブ、6…サンプルループ、7…試料、
8…試料用ポンプ、9…カラム、10…定流量制御機
能、11…定圧制御機能、12…バイパス流路、13…
ダンパー。1 ... Pump, 2 ... Pressure detector, 3 ... Control part, 4 ... Eluent, 5 ... Injection valve, 6 ... Sample loop, 7 ... Sample,
8 ... Sample pump, 9 ... Column, 10 ... Constant flow rate control function, 11 ... Constant pressure control function, 12 ... Bypass flow path, 13 ...
Damper.
Claims (2)
ラムを備えた液体クロマトグラフにおいて、間欠的なモ
ータ運転速度変更により前記ポンプの出口側の流量を一
定にする定流量制御機能と、連続的なモータ運転速度変
更により前記ポンプの出口側の圧力を一定にする定圧制
御機能を持つ制御部を設け、これら両制御の切り替えが
任意に行なえ、定流量制御から定圧制御への切り替え時
には定流量制御時の圧力となるように制御を行なうこと
を特徴とする液体クロマトグラフ。1. A liquid chromatograph equipped with a pump, a sample injection section including an injection valve, and a column, and a constant flow rate control function for making constant the flow rate on the outlet side of the pump by intermittently changing the motor operating speed, and a continuous flow rate control function. A control unit that has a constant pressure control function that keeps the pressure on the outlet side of the pump constant by changing the motor operating speed is provided, and both of these controls can be switched arbitrarily, and when switching from constant flow rate control to constant pressure control A liquid chromatograph characterized in that control is performed so as to obtain a pressure at the time of control.
上記両制御の切り替えを試料注入部の注入バルブの切り
換えと同期して行なうことを特徴とする液体クロマトグ
ラフ。2. The liquid chromatograph according to claim 1,
A liquid chromatograph characterized in that switching between the above two controls is performed in synchronization with switching of an injection valve of a sample injection unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5326292A JPH05256834A (en) | 1992-03-12 | 1992-03-12 | Liquid chromatograph |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5326292A JPH05256834A (en) | 1992-03-12 | 1992-03-12 | Liquid chromatograph |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05256834A true JPH05256834A (en) | 1993-10-08 |
Family
ID=12937861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5326292A Pending JPH05256834A (en) | 1992-03-12 | 1992-03-12 | Liquid chromatograph |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05256834A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008209157A (en) * | 2007-02-23 | 2008-09-11 | Tosoh Corp | Control method of not renewing pressure correction value |
WO2009098125A1 (en) * | 2008-02-06 | 2009-08-13 | Proxeon Biosystems A/S | Flow control in high performance liquid chromatography |
JP4587583B2 (en) * | 2000-03-10 | 2010-11-24 | 日本錬水株式会社 | Control method for chromatographic separation |
US20120024048A1 (en) * | 2009-04-16 | 2012-02-02 | Shimadzu Corporation | Liquid chromatograph |
JP2012026938A (en) * | 2010-07-26 | 2012-02-09 | Arkray Inc | Liquid chromatography apparatus and injection valve |
US8151629B2 (en) | 2004-03-05 | 2012-04-10 | Waters Technologies Corporation | Pressure monitor optimization of fluid path utilization |
WO2013069769A1 (en) | 2011-11-11 | 2013-05-16 | 積水メディカル株式会社 | Sample injection device for biochemical analysis, flow-type biochemical analysis device, and measurement method for hemoglobin component |
WO2014157505A1 (en) | 2013-03-29 | 2014-10-02 | 積水メディカル株式会社 | Sample-injection device for flow-analysis device, flow-analysis device, and method for measuring hemoglobin components |
CN112005111A (en) * | 2018-04-25 | 2020-11-27 | 株式会社岛津制作所 | Chromatographic analysis system |
JPWO2020240650A1 (en) * | 2019-05-27 | 2020-12-03 |
-
1992
- 1992-03-12 JP JP5326292A patent/JPH05256834A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4587583B2 (en) * | 2000-03-10 | 2010-11-24 | 日本錬水株式会社 | Control method for chromatographic separation |
US8151629B2 (en) | 2004-03-05 | 2012-04-10 | Waters Technologies Corporation | Pressure monitor optimization of fluid path utilization |
US9752950B2 (en) | 2004-03-05 | 2017-09-05 | Waters Technologies Corporation | Pressure monitor optimizaiton of fluid path utilization |
US8539819B2 (en) | 2004-03-05 | 2013-09-24 | Waters Technologies Corporation | Pressure monitor optimization of fluid path utilization |
JP2008209157A (en) * | 2007-02-23 | 2008-09-11 | Tosoh Corp | Control method of not renewing pressure correction value |
US10175210B2 (en) | 2008-02-06 | 2019-01-08 | Proxeon Biosystems A/S | Flow control in high performance liquid chromatography |
US9370729B2 (en) | 2008-02-06 | 2016-06-21 | Proxeon Biosystems A/S | Flow control in high performance liquid chromatography |
WO2009098125A1 (en) * | 2008-02-06 | 2009-08-13 | Proxeon Biosystems A/S | Flow control in high performance liquid chromatography |
US8794052B2 (en) | 2009-04-16 | 2014-08-05 | Shimadzu Corporation | Liquid chromatograph |
US20120024048A1 (en) * | 2009-04-16 | 2012-02-02 | Shimadzu Corporation | Liquid chromatograph |
JP2012026938A (en) * | 2010-07-26 | 2012-02-09 | Arkray Inc | Liquid chromatography apparatus and injection valve |
WO2013069769A1 (en) | 2011-11-11 | 2013-05-16 | 積水メディカル株式会社 | Sample injection device for biochemical analysis, flow-type biochemical analysis device, and measurement method for hemoglobin component |
CN103930779A (en) * | 2011-11-11 | 2014-07-16 | 积水医疗株式会社 | Sample injection device for biochemical analysis, flow-type biochemical analysis device, and measurement method for hemoglobin component |
US9714886B2 (en) | 2011-11-11 | 2017-07-25 | Sekisui Medical Co., Ltd. | Sample injection device for biochemical analysis, flow-type biochemical analysis device, and measurement method for hemoglobin component |
WO2014157505A1 (en) | 2013-03-29 | 2014-10-02 | 積水メディカル株式会社 | Sample-injection device for flow-analysis device, flow-analysis device, and method for measuring hemoglobin components |
US9810604B2 (en) | 2013-03-29 | 2017-11-07 | Sekisui Medical Co., Ltd. | Sample injection device for flow-type analysis device, flow-type analysis device, and measurement method for hemoglobin component |
CN112005111A (en) * | 2018-04-25 | 2020-11-27 | 株式会社岛津制作所 | Chromatographic analysis system |
CN112005111B (en) * | 2018-04-25 | 2023-11-03 | 株式会社岛津制作所 | Chromatographic analysis system |
JPWO2020240650A1 (en) * | 2019-05-27 | 2020-12-03 | ||
WO2020240650A1 (en) * | 2019-05-27 | 2020-12-03 | 株式会社島津製作所 | Liquid chromatograph and liquid chromatograph control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7722764B2 (en) | Gradient pump apparatus | |
US4962042A (en) | Method for on-column injection gas chromatography | |
US8794052B2 (en) | Liquid chromatograph | |
US4883504A (en) | Gas chromatograph | |
US10005006B2 (en) | Method for adjusting a gradient delay volume | |
US4976750A (en) | Method and device for the control of gas chromatographic functions | |
US20080296209A1 (en) | Liquid chromatograph device | |
JPH05256834A (en) | Liquid chromatograph | |
US5391221A (en) | Gas chromatograph and method of using same | |
JP3180391B2 (en) | Liquid chromatograph | |
JP3424432B2 (en) | Gas chromatograph | |
EP0577033A1 (en) | A stabilizing method for measurement values by high speed liquid chromatography | |
JPH1123550A (en) | Sample feed method of gas chromatography and device thereof | |
WO2004010134A1 (en) | Equipment and method for feeding liquid gradient in nano/micro liquid chromatography | |
JP2005257575A (en) | Chromatograph | |
CA1078215A (en) | Fluid sample dilution for chromatographic analysis | |
US20030126908A1 (en) | Gas chromatograph | |
JP2573678B2 (en) | Sample injection method for liquid chromatography | |
JP4403638B2 (en) | Liquid chromatograph | |
JPH05223800A (en) | Liquid chromatograph | |
JP2862120B2 (en) | Gas chromatograph | |
JPS5918454A (en) | Carrier gas controlling apparatus for on-column capillary chromatograph | |
JPH0416762A (en) | Sample introducing apparatus for supercritical liquid chromatography | |
JP3907138B2 (en) | Pump device, control method therefor, and recording medium recording the control program | |
JPH07280787A (en) | Liquid chromatography |