JPH0416489B2 - - Google Patents

Info

Publication number
JPH0416489B2
JPH0416489B2 JP23625287A JP23625287A JPH0416489B2 JP H0416489 B2 JPH0416489 B2 JP H0416489B2 JP 23625287 A JP23625287 A JP 23625287A JP 23625287 A JP23625287 A JP 23625287A JP H0416489 B2 JPH0416489 B2 JP H0416489B2
Authority
JP
Japan
Prior art keywords
poly
units
precursor
polymer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23625287A
Other languages
Japanese (ja)
Other versions
JPS6479222A (en
Inventor
Kazumoto Murase
Toshihiro Oonishi
Masanobu Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP23625287A priority Critical patent/JPS6479222A/en
Publication of JPS6479222A publication Critical patent/JPS6479222A/en
Publication of JPH0416489B2 publication Critical patent/JPH0416489B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は高導電性組成物を与えるポリー2,5
−チエニレンビニレンの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention provides highly conductive compositions using poly2,5
-Regarding a method for producing thienylene vinylene.

<従来の技術> ポリー2,5−チエニレンビニレンの直鎖状共
役高分子として知られ、その製造方法としてジホ
スホニウム塩とジアルデヒドとの反応による
Wittig反応法等により合成されることは公知であ
る(マクロモレキユラー・ヘミー131巻、15頁
(1970年).また、ジスルホニウ塩を塩基で重合し
て得られる高分子スルホニウム塩を熱処理してポ
リー2,5−チエニレンビニレンを得る方法も知
られている(特開昭61−148231)。
<Prior art> Poly 2,5-thienylenevinylene is known as a linear conjugated polymer, and its production method involves the reaction of a diphosphonium salt and dialdehyde.
It is known that it can be synthesized by the Wittig reaction method etc. (Macromolecular Chemie Vol. 131, p. 15 (1970). It is also known that the polymer sulfonium salt obtained by polymerizing a disulfonium salt with a base is heat-treated. A method for obtaining poly-2,5-thienylenevinylene is also known (Japanese Patent Application Laid-open No. 148231-1982).

<発明が解決しようとする問題点> しかしながら、前者のポリー2,5−チエニレ
ンビニレンは粉末状で生成し、また低重合物を除
いて高分子は不溶不融でありそのままではフイル
ム状もしくは繊維状に成形することは実質的に不
可能であり、特殊な粉末成形法を用いても有用な
成形物は得られていなかつた。また、後者のスル
ホニウム塩を側鎖に有する前駆体より得られるフ
イルム状ポリー2,5−チエニレンビニレンをド
ーピングした組成物の電導度は最高15S/cmであ
り、導電性材料としては充分な高導電性とは言え
ない。
<Problems to be Solved by the Invention> However, the former poly 2,5-thienylene vinylene is produced in powder form, and the polymers, except for low polymers, are insoluble and infusible, and as it is, it forms a film or fiber. It is virtually impossible to mold the powder into a shape, and even using special powder molding methods, no useful molded product has been obtained. In addition, the electrical conductivity of a composition doped with film-like poly 2,5-thienylene vinylene obtained from the latter precursor having a sulfonium salt in its side chain is at most 15 S/cm, which is high enough to be used as a conductive material. It cannot be said to be conductive.

本発明者らはより高導電性を与えるポリー2,
5−チエニレンビニレンを得る方法を鋭意検討し
た結果、側鎖にエステル基を有する前駆体が有機
溶媒に対する溶解性、安定性に優れ、均質なフイ
ルム状成形体を与え、かつ前駆体のエステル基側
鎖の脱離処理により従来のポリー2,5−チエニ
レンビニレンより高導電性を与えるポリー2,5
−チエニレンビニレンに変換できることを見出し
た。
The inventors have found that poly2, which provides higher conductivity,
As a result of intensive studies on methods for obtaining 5-thienylenevinylene, we found that a precursor having an ester group in the side chain has excellent solubility and stability in organic solvents, provides a homogeneous film-like molded product, and has an ester group in the precursor. Poly 2,5 has higher conductivity than conventional poly 2,5-thienylene vinylene due to removal of side chains.
- It has been found that it can be converted to thienylene vinylene.

本発明の目的は成形性に優れた高導電性を与え
るポリー2,5−チエニレンビニレンの製造方法
を提供することにある。
An object of the present invention is to provide a method for producing poly 2,5-thienylene vinylene which exhibits excellent moldability and high conductivity.

<問題点を解決するための手段> すなわち、本発明は、実質的に一般式(A) および一般式(B) R1:炭素数1〜10の炭化水素基 R2:水素または炭素数1〜10の炭化水素基 で表される繰り返し単位よりなり、且つ(A)単位の
数が2以上、(B)単位の数が2以上で、(A)単位の
数/(B)単位の数=0.05〜9である構造の高分子前
駆体の側鎖を脱離処理することを特徴とする を主要な繰返し単位として含むポリー2,5−チ
エニレンビニレンの製造方法を提供する。
<Means for solving the problems> That is, the present invention substantially solves the problem by solving the general formula (A) and general formula (B) R1: Hydrocarbon group having 1 to 10 carbon atoms R2: Consisting of repeating units represented by hydrogen or hydrocarbon groups having 1 to 10 carbon atoms, and the number of (A) units is 2 or more, and the number of (B) units is 2 or more and the number of (A) units/the number of (B) units = 0.05 to 9. Provided is a method for producing poly 2,5-thienylene vinylene containing as a major repeating unit.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明においてはポリー2,5−チエニレンビ
ニレンの前駆体として実質的に一般式(A) および一般式(B) R1:炭素数1〜10の炭化水素基 R2:水素または炭素数1〜10の炭化水素基 で表される繰り返し単位よりなり、且つ(A)単位の
数が2以上の整数、(B)単位の数が2以上の整数
で、(A)単位の数/(B)単位の数=0.05〜9である構
造の側鎖にエステル基を有する共役系高分子の前
駆体を使用する。
In the present invention, as a precursor of poly 2,5-thienylene vinylene, substantially the general formula (A) is used. and general formula (B) R1: Hydrocarbon group having 1 to 10 carbon atoms R2: Consisting of repeating units represented by hydrogen or hydrocarbon groups having 1 to 10 carbon atoms, and the number of (A) units is an integer of 2 or more, (B) units is an integer of 2 or more and the number of (A) units/the number of (B) units = 0.05 to 9. A precursor of a conjugated polymer having an ester group in the side chain is used.

一般式(1)中R1は炭素数1〜10の炭化水素基、
例えばメチル、エチル、プロピル、イソプロピ
ル、n−ブチル、2−エチルヘキシル、フエニ
ル、シクロヘキシル基等があげられるが、炭素数
1〜6の炭化水素基が好ましい。
In general formula (1), R 1 is a hydrocarbon group having 1 to 10 carbon atoms,
Examples include methyl, ethyl, propyl, isopropyl, n-butyl, 2-ethylhexyl, phenyl, and cyclohexyl groups, but hydrocarbon groups having 1 to 6 carbon atoms are preferred.

本発明の前駆体は上記式(1)中でR2は水素また
は炭素数1〜10の炭化水素基、例えばメチル、エ
チル、プロピル、イソプロピル、n−ブチル、2
−エチルヘキシル、フエニル、シクロヘキシル基
等があげられるが、炭素数1〜6の炭化水素基、
特にメチル、エチル基が好ましい。
In the precursor of the present invention, in the above formula (1), R 2 is hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, such as methyl, ethyl, propyl, isopropyl, n-butyl, 2
- Hydrocarbon groups having 1 to 6 carbon atoms, including ethylhexyl, phenyl, cyclohexyl groups, etc.
Particularly preferred are methyl and ethyl groups.

本発明に使用される高分子前駆体の合成方法は
特に限定はないが、以下に述べるスルホニウム塩
分解法によるものがより高導電性を与えるポリー
2,5−チエニレンビニレンが得られるので特に
好ましい。
Although there are no particular limitations on the method for synthesizing the polymer precursor used in the present invention, the sulfonium salt decomposition method described below is particularly preferred since poly-2,5-thienylenevinylene having higher conductivity can be obtained.

スルホニウム塩分解法に用いるモノマーは一般
式(C) R3,R4:炭素数1〜10の炭化水素基 A-:対イオン で示される2,5−チエニレンジメチレンビスス
ルホニウム塩であり、R3,R4は炭素数1〜10の
炭化水素基、例えばメチル、エチル、プロピル、
イソプロピル、n−ブチル、2−エチルヘキシ
ル、フエニル、シクロヘキシル、ベンジル基等が
挙げられるが、炭素数1〜6の炭化水素基特に、
メチル、エチル基が好ましい。
The monomer used in the sulfonium salt decomposition method has the general formula (C) R3, R4: Hydrocarbon group having 1 to 10 carbon atoms A - : 2,5-thienylene dimethylene bissulfonium salt represented by a counter ion, R3 and R4 are hydrocarbon groups having 1 to 10 carbon atoms, such as methyl , ethyl, propyl,
Examples include isopropyl, n-butyl, 2-ethylhexyl, phenyl, cyclohexyl, benzyl groups, etc., especially hydrocarbon groups having 1 to 6 carbon atoms,
Methyl and ethyl groups are preferred.

スルホニウム塩の対イオンA-は任意のものを
用いることができる。例えば、ハロゲン、水酸
基、4弗化ホウ素、過塩素酸、カルボン酸、スル
ホン酸イオン等を使用することでき、なかでも塩
素、臭素、ヨウ素などのハロゲン及び水酸基イオ
ンが好ましい。
Any counter ion A of the sulfonium salt can be used. For example, halogen, hydroxyl, boron tetrafluoride, perchloric acid, carboxylic acid, sulfonate ions, etc. can be used, and among them, halogen and hydroxyl ions such as chlorine, bromine, and iodine are preferred.

縮合重合の溶媒としては水、アルコール単独、
ならびに水および/またはアルコールを含む混合
溶媒等が使用されるがアルカリの溶解度を上げる
ため水を含む溶媒が好ましい。
The solvent for condensation polymerization is water, alcohol alone,
Also, mixed solvents containing water and/or alcohol are used, but solvents containing water are preferred in order to increase the solubility of the alkali.

縮合重合に用いるアルカリ溶液はPH11以上の強
い塩基性溶液であることが好ましく、アルカリと
して水酸化ナトリウム、水酸化カリウム、水酸化
カルシウム、第4級アンモニウム塩水酸化物、ス
ルホニウム塩水酸化物、強塩基性イオン交換樹脂
(OH型)等を用いることができるが、水酸化ナ
トリウム、水酸化カリウム、強塩基性イオン交換
樹脂が好適に使用できる。
The alkaline solution used for condensation polymerization is preferably a strongly basic solution with a pH of 11 or higher, and examples of the alkali include sodium hydroxide, potassium hydroxide, calcium hydroxide, quaternary ammonium salt hydroxide, sulfonium salt hydroxide, and strong basic solutions. Ion exchange resins (OH type) can be used, and sodium hydroxide, potassium hydroxide, and strongly basic ion exchange resins are preferably used.

スルホニウム塩基が熱、光、紫外線、強い塩基
性条件等に敏感であり、重合後徐々に脱スルホニ
ウム塩化が起こり、エステル基への置換が有効に
行えなくなるので、縮合重合反応は比較的低温、
すなわち25℃以下、特に5℃以下の温度で反応を
実施することが好ましい。反応時間は重合温度に
より適宜決めればよく、特に限定されないが、通
常1分〜50時間の範囲内である。
Sulfonium bases are sensitive to heat, light, ultraviolet rays, and strong basic conditions, and desulfonium salts gradually occur after polymerization, making it impossible to effectively substitute ester groups. Therefore, condensation polymerization reactions are carried out at relatively low temperatures.
That is, it is preferable to carry out the reaction at a temperature of 25°C or lower, particularly 5°C or lower. The reaction time may be appropriately determined depending on the polymerization temperature and is not particularly limited, but is usually within the range of 1 minute to 50 hours.

本製造方法によれば、重合後、まず、高分子前
駆体はスルホニウム塩、すなわち を側鎖に有する高分子量の高分子電解質(高分子
スルホニウム塩)として生成するが、スルホニウ
ム塩側鎖が溶媒中に添加した有機酸イオン
(R1COO-)と反応し、有機酸よりのエステル基
〔式(1)中のOCOR1に該当する〕が側鎖となる。
According to this production method, after polymerization, the polymer precursor is first converted into a sulfonium salt, i.e. The sulfonium salt side chain reacts with the organic acid ion (R 1 COO - ) added to the solvent, forming an ester from the organic acid. The group [corresponding to OCOR 1 in formula (1)] becomes a side chain.

したがつて、用いる溶媒中には上記のR1COO-
に対応する有機酸イオンを添加することが必須で
ある。これらの有機カルボン酸イオンは重合中ま
たは重合後に重合液に有機カルボン酸またはその
アルカリ金属塩を添加して用いるが、重合後添加
するのが高分子量の重合体を得るので好ましい。
用いる有機カルボン酸イオン量はスルホニウム塩
基に対して0.1から50倍等量用いるのが好ましく、
1〜20倍等量がより好ましい。用いる有機カルボ
ン酸のR1は炭素数1〜10のアルキル基、例えば
メチル、エチル、プロピル、イソプロピル、n−
ブチル、2−エチルヘキシル、フエニル、シクロ
ヘキシル基等が挙げられるが、炭素数1〜6の炭
化水素基が好ましい。スルホニウム塩側鎖は重合
や透析処理に用いる水またはアルコール
(R2OH)と反応し、水酸基またはアルコキシ基
(−OR2)を側鎖とする前駆体を与えるのでエス
テル基との置換反応を妨げる。水酸基への置換反
応に比べアルコキシ基置換反応の方がエステル基
への置換反応をより強く阻害するのでエステル基
置換を効率的に行うには溶媒として水または水/
アルコール混合溶媒を使用するのが効果的であ
り、水含有量が多い方がエステル基への置換に効
果的であるので好ましい。
Therefore, in the solvent used, the above R 1 COO -
It is essential to add organic acid ions corresponding to These organic carboxylic acid ions are used by adding an organic carboxylic acid or an alkali metal salt thereof to the polymerization solution during or after the polymerization, but it is preferable to add the organic carboxylic acid or an alkali metal salt thereof after the polymerization because a high molecular weight polymer can be obtained.
The amount of organic carboxylic acid ion used is preferably 0.1 to 50 times equivalent to the sulfonium base.
1 to 20 times the equivalent amount is more preferable. R 1 of the organic carboxylic acid used is an alkyl group having 1 to 10 carbon atoms, such as methyl, ethyl, propyl, isopropyl, n-
Examples include butyl, 2-ethylhexyl, phenyl, and cyclohexyl groups, but hydrocarbon groups having 1 to 6 carbon atoms are preferred. The sulfonium salt side chain reacts with water or alcohol (R 2 OH) used in polymerization or dialysis treatment to provide a precursor with a hydroxyl group or alkoxy group (-OR 2 ) as a side chain, thus hindering the substitution reaction with an ester group. . Since the alkoxy group substitution reaction inhibits the ester group substitution reaction more strongly than the hydroxyl group substitution reaction, in order to efficiently carry out the ester group substitution, use water or water/water as a solvent.
It is effective to use an alcohol mixed solvent, and a higher water content is preferred because it is more effective for substitution with ester groups.

エステル基との置換反応では反応速度の観点か
ら0℃から50℃が好ましく、より好ましくは0〜
25℃である。エステル基を側鎖に有する高分子は
一般的に用いた混合溶媒に不溶であるので反応の
進行とともに沈澱する。従つて反応時間は沈澱が
充分生ずるまで行うのが効果的であり、好ましく
は15分以上、より好ましくは1時間以上が例示さ
れる。
In the substitution reaction with an ester group, the temperature is preferably 0°C to 50°C, more preferably 0°C to 50°C from the viewpoint of reaction rate.
It is 25℃. Since polymers having ester groups in their side chains are generally insoluble in the mixed solvent used, they precipitate as the reaction progresses. Therefore, it is effective to carry out the reaction until sufficient precipitation occurs, preferably 15 minutes or more, more preferably 1 hour or more.

この様にして得られた高分子前駆体は、沈澱生
成物を濾過することにより分離される。この高分
子前駆体は側鎖にエステル基を有するが、エステ
ル基の含有率は簡便にはH−NMR測定により知
ることが出来る。得られた沈澱を重水素置換ジメ
チルスルホキシドに溶解した場合、4.8と4.5ppm
にアルコキシ基と水酸基が置換したメチン基のシ
グナルが見られるが、エステル基では6.0と
5.8ppm付近にシグナルが見らる。このシグナル
強度比より含有率を調べることができる。4.8と
4.5ppmのシグナル強度の和(B)と6.0と5.8ppmのシ
グナル強度の和(A)の比(A/B)は溶解性、安定
性に効果的であるのは0.05以上であり、また完全
な置換は工業的でないので9以下であり、より好
ましくは0.1〜4である。
The polymer precursor thus obtained is separated by filtering the precipitated product. This polymer precursor has an ester group in its side chain, and the content of the ester group can be easily determined by H-NMR measurement. When the obtained precipitate was dissolved in deuterium-substituted dimethyl sulfoxide, 4.8 and 4.5 ppm
The signal of methine group substituted with alkoxy group and hydroxyl group can be seen in , but the signal of ester group is 6.0.
A signal can be seen around 5.8ppm. The content can be determined from this signal intensity ratio. 4.8 and
The ratio (A/B) of the sum of signal intensities at 4.5 ppm (B) and the sum of signal intensities at 6.0 and 5.8 ppm (A) is 0.05 or more, which is effective for solubility and stability. Since the substitution is not industrially practical, the number is 9 or less, more preferably 0.1 to 4.

高導電性を与える共役系高分子を得るためには
高分子前駆体の分子量が充分大きいことが好まし
く、少なくとも一般式(1)の高分子前駆体のn+m
が4以上、好ましくは10ないし50000有するもの、
例えば分画分子量3500以上の透析膜による透析処
理で透析されない分子量を有するようなものが効
果的に用いられる。
In order to obtain a conjugated polymer that provides high conductivity, it is preferable that the molecular weight of the polymer precursor is sufficiently large, and at least n+m of the polymer precursor of general formula (1)
having 4 or more, preferably 10 to 50,000,
For example, those having a molecular weight that cannot be dialyzed by a dialysis membrane with a molecular weight cutoff of 3500 or more are effectively used.

本発明の特徴はエステル基を側鎖に有する高分
子前駆体は水に不溶であり、ジメチルホルムアミ
ド、ジメチルアセトアミド、ジメチルスホキシ
ド、ジオキサン、クロロホルム等の有機溶媒に可
溶であることであり、また該溶液から任意の形状
の成形物を作ることができ、しかもエステル基の
脱離反応後に生成するポリー2,5−チエニレン
ビニレンがドーピングにより高導電性を与えるこ
とである。高分子成形物を得るには任意の方法が
用いられる。またその形態に関しては例えばフイ
ルム、繊維、塗布膜、その他任意の成形物を選ぶ
ことができる。特に有用な成形方法は高分子前駆
体溶液を用いる方法であり、これからのキヤスト
によるフイルム化または溶液紡糸による繊維化、
基質への溶液塗布を行う方法である。このとき予
め透析処理あるいは再沈澱処理などにより低分子
量物もしくは未反応物を除いた高分子前駆体前駆
体溶液を用いることが好ましい。
A feature of the present invention is that the polymer precursor having an ester group in its side chain is insoluble in water, but soluble in organic solvents such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, dioxane, and chloroform; A molded article of any shape can be made from the solution, and the poly 2,5-thienylene vinylene produced after the elimination reaction of the ester group provides high conductivity through doping. Any method can be used to obtain the polymer molded article. Regarding its form, for example, a film, fiber, coating film, or any other molded product can be selected. A particularly useful forming method is a method using a polymer precursor solution, which can be used to form a film by casting or into a fiber by solution spinning.
This method involves applying a solution to the substrate. At this time, it is preferable to use a polymer precursor solution from which low molecular weight substances or unreacted substances have been removed in advance by dialysis treatment or reprecipitation treatment.

高分子前駆体の側鎖(エステル基および水酸基
および/またはアルコキシ基)の脱離処理により
ポリー2,5−チエニレンビニレンが製造でき
る。該側鎖の脱離処理は熱、光、紫外線などの条
件を適用することにより行うことができるが、加
熱処理が好ましい。また、高分子前駆体の側鎖の
脱離処理は不活性雰囲気で行行うことが好まし
い。ここでいう不活性雰囲気とは処理中に高分子
の酸化等の変質を起こさない雰囲気をいい、一般
には窒素、アルゴン、ヘリウムなどの不活性ガス
を用いて行われるが、真空下あるいは不活性媒体
中でこれを行つても良い。
Poly 2,5-thienylenevinylene can be produced by eliminating side chains (ester groups, hydroxyl groups, and/or alkoxy groups) of a polymer precursor. The side chain elimination treatment can be performed by applying conditions such as heat, light, and ultraviolet rays, but heat treatment is preferable. Further, it is preferable that the removal treatment of the side chain of the polymer precursor is carried out in an inert atmosphere. The inert atmosphere here refers to an atmosphere that does not cause oxidation or other changes in the polymer during processing, and is generally carried out using an inert gas such as nitrogen, argon, helium, etc. You can also do this inside.

熱により側鎖の脱離処理を行う場合、余りの高
熱での熱処理は生成するポリー2,5−チエニレ
ンビニレンの分解をもたらし、低温では生成反応
が遅く実際的でないので、通常処理温度は0℃〜
400℃、好ましくは50℃〜350℃が適する。さらに
好ましくは100℃〜320℃が適する。また、処理時
間は処理温度の兼ね合いで適宜時間を選ぶことが
できるが、1分〜10時間の範囲が工業上実際的で
ある。
When performing side chain removal treatment by heat, heat treatment at too high a temperature will result in decomposition of the poly 2,5-thienylene vinylene produced, and at low temperatures the production reaction is slow and impractical, so the treatment temperature is usually 0. ℃〜
A temperature of 400°C, preferably between 50°C and 350°C is suitable. More preferably, the temperature is 100°C to 320°C. Further, the treatment time can be appropriately selected depending on the treatment temperature, but a range of 1 minute to 10 hours is industrially practical.

このようにして製造されるポリー2,5−チエ
ニレンビニレンは2,5−チエニレンビニレンを
主要な構造単位に含む。本発明の製造方法によれ
ば、2,5−チエニレンビニレンの共役系の繰り
返し単位のみを有するポリー2,5−チエニレン
ビニレンを作ることが可能である他、共役系でな
い2,5−チエニレンビニレン骨格を一部構成単
位に含む重合体を作ることも可能である。
The poly 2,5-thienylene vinylene produced in this manner contains 2,5-thienylene vinylene as a main structural unit. According to the production method of the present invention, it is possible to produce poly-2,5-thienylene vinylene having only conjugated repeating units of 2,5-thienylene vinylene, and also It is also possible to produce a polymer containing a lenevinylene skeleton as a part of its constituent units.

すなわち、不充分な脱離処理を行つた後の高分
子には未だエステル基が不完全な脱離状態にある
2,5−チエニレンエチレン骨格を有する構成単
位が存在することが赤外吸収スペクトル等により
観察される。この場合には柔軟性に富んだポリー
2,5−チエニレンビニレンが製造できる。な
お、2,5−チエニレンビニレン単位に対する
2,5−チエニレンエチレン単位の割合は使用目
的に応じ製造条件を任意に工夫することにより変
えることができる。導電性高分子材料等の目的に
は前者1に対して後者の割合が1以下が好まし
く、より好ましくは1/20以下である。
In other words, the infrared absorption spectrum shows that the polymer after insufficient elimination treatment still contains a structural unit having a 2,5-thienylene ethylene skeleton in which the ester group is in an incompletely eliminated state. It is observed by et al. In this case, poly-2,5-thienylenevinylene having high flexibility can be produced. Note that the ratio of 2,5-thienyleneethylene units to 2,5-thienylenevinylene units can be changed by arbitrarily devising the manufacturing conditions depending on the purpose of use. For purposes such as conductive polymer materials, the ratio of the latter to the former is preferably 1 or less, more preferably 1/20 or less.

また高分子前駆体の成形物を延伸配向させて熱
処理することも出来る。これらの延伸配向処理は
側鎖の脱離処理を行う前、もしくは同時に行うこ
とができる。
It is also possible to heat-treat a molded product of a polymer precursor by stretching and orienting it. These stretching and orientation treatments can be performed before or simultaneously with the side chain elimination treatment.

配向は成形方法を工夫することで、たとえば高
い断力による押し出しなどでもできるが、高分子
前駆体溶液から高分子前駆体成形物を加熱延伸処
理することにより高い配向性を付与することがで
きる。この延伸配向の程度は偏向赤外スペクトル
により赤外二色性が現われることにより確認する
ことができる。
Orientation can be achieved by devising a molding method, such as extrusion using high shear force, but high orientation can be imparted by heating and stretching a polymer precursor molded product from a polymer precursor solution. The extent of this stretching orientation can be confirmed by the appearance of infrared dichroism in a polarized infrared spectrum.

つぎに本発明における側鎖の脱離処理により得
られたポリー2,5−チエニレンビニレンは電子
受容体あるいは電子供与体(ドーパントと称す)
を作用させることにより高導電性組成物を与え
る。
Next, the poly 2,5-thienylene vinylene obtained by the side chain elimination treatment in the present invention is used as an electron acceptor or an electron donor (referred to as a dopant).
A highly conductive composition is provided by the action of

ドーパントとしては公知の導電性高分子化合物
たとえばポリアセチレンなどのドーピング、ある
いはグラフアイトの層間化合物の形成により導電
性向上効果の見出されている化合物が効果的に用
いられ、任意の方法でドーピングすることができ
るが、従来知られている化学ドーピング、電解ド
ーピング、光ドーピング、イオンインプランテー
シヨン等の手法によりドーピングすることが好ま
しい。
As a dopant, a compound that has been found to have an effect of improving conductivity by doping a known conductive polymer compound such as polyacetylene or by forming an intercalation compound of graphite is effectively used, and doping can be done by any method. However, doping is preferably carried out by conventionally known techniques such as chemical doping, electrolytic doping, optical doping, and ion implantation.

具体的には、電子受容体としては ハロゲン化合物類:フツ素、塩素、臭素、ヨウ
素、塩化ヨウ素、三塩化ヨウ素、臭化ヨウ
素 ルイス酸類:五フツ化リン、五フツ化ひ素、五フ
ツ化アンチモン、三フツ化ホウ素、三塩化
ホウ素、三臭化ホウ素、三酸化硫黄 プロトン酸類:フツ化水素、塩化水素、硝酸、硫
酸、過塩素酸、フツ化スルホン酸、塩化ス
ルホン酸、三フツ化メタンスルホン酸 還移金属化物類:四塩化チタン、四塩化ジルコニ
ウム、四塩化ハフニウム、五塩化ニオブ、
五塩化タンタル、五塩化モリブデン、六塩
化タングステン、三塩化鉄 有機化合物類:テトラシアノエチレン、テトラシ
アノキノジメタン、クロラニル、ジクロル
ジシアノベンゾキノン 電子供与体としては アルカリ金属類:リチウム、ナトリウム、カリウ
ム、ルビジウム、セシウム 第四級アンモニウム塩類:テトラアルキルアンモ
ニウムイオン などが例示される。
Specifically, as electron acceptors, halogen compounds: fluorine, chlorine, bromine, iodine, iodine chloride, iodine trichloride, iodine bromide Lewis acids: phosphorus pentafluoride, arsenic pentafluoride, antimony pentafluoride , boron trifluoride, boron trichloride, boron tribromide, sulfur trioxide Protonic acids: hydrogen fluoride, hydrogen chloride, nitric acid, sulfuric acid, perchloric acid, sulfonic fluoride, sulfonic chloride, methanesulfone trifluoride Acid reduction metal compounds: titanium tetrachloride, zirconium tetrachloride, hafnium tetrachloride, niobium pentachloride,
Tantalum pentachloride, molybdenum pentachloride, tungsten hexachloride, iron trichloride Organic compounds: tetracyanoethylene, tetracyanoquinodimethane, chloranil, dichlorodicyanobenzoquinone Electron donors include alkali metals: lithium, sodium, potassium, Examples include rubidium and cesium quaternary ammonium salts: tetraalkylammonium ions.

本発明で得られるポリー2,5−チエニレンビ
ニレンは、未配向のものでもドーピングすること
によつて20S/cmあるいはそれ以上の導電性を有
する高導電性組成物を与える。
Even if the poly 2,5-thienylene vinylene obtained in the present invention is not oriented, it can be doped to provide a highly conductive composition having a conductivity of 20 S/cm or more.

<発明の効果> 以上説明したように、本発明によれば、従来の
ポリー2,5−チエニレンビニレンに比較して高
導電性組成物を与えるポリー2,5−チエニレン
ビニレンを製造することができ、また本発明によ
り電気、電子材料の応用が可能な種々の形状を有
するポリー2,5−チエニレンビニレンが提供さ
れる。
<Effects of the Invention> As explained above, according to the present invention, poly 2,5-thienylene vinylene can be produced which provides a highly conductive composition compared to conventional poly 2,5-thienylene vinylene. Furthermore, the present invention provides poly 2,5-thienylene vinylene having various shapes that can be applied to electrical and electronic materials.

<実施例> 以上本発明を実施例によつてさらに詳細に説明
するが本発明はこれら実施例によつて何ら限定さ
れるものではない 参考例 1 (ポリー2,5−チエニレンビニレンの前駆体の
製造) 2,5−チエニレン−ビス(メチレンジメチル
スルホニウムブロミド)4.0gをイオン交換水100
mlに溶解せしめた後、1規定のNaOH 10mlとイ
オン交換水30mlとの混合溶液を0〜5℃で30分か
けて滴下し、滴下後0〜5℃で30分間攪拌を続け
た。この反応液に酢酸カリウム16gをイオン交換
水50gに溶解せしめた液を添加し、0〜5℃で酢
酸イオンとの反応を行つた。一日放置したところ
黄色の沈澱が生じた。この沈澱物はジメチルアセ
トアミドに100%溶解した。溶液よりキヤストし、
窒素気流下で乾燥し前駆体フイルムを得た。
<Example> The present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. ) 4.0 g of 2,5-thienylene-bis(methylenedimethylsulfonium bromide) and 100 g of ion-exchanged water
ml, a mixed solution of 10 ml of 1N NaOH and 30 ml of ion-exchanged water was added dropwise at 0 to 5°C over 30 minutes, and after the dropwise addition, stirring was continued at 0 to 5°C for 30 minutes. A solution prepared by dissolving 16 g of potassium acetate in 50 g of ion-exchanged water was added to this reaction solution, and a reaction with acetate ions was carried out at 0 to 5°C. When left for one day, a yellow precipitate formed. This precipitate was 100% dissolved in dimethylacetamide. Cast from solution,
A precursor film was obtained by drying under a nitrogen stream.

一方、得られた沈澱を重水素置換ジメチルスル
ホキシドに溶解し、H−NMRを測定したとこ
ろ、6.0ppm、4.8ppm付近にプロトンのシグナル
が見られた。比較例2で述べるように4.8ppmの
シグナルは水酸基置換を反映したものである。新
たに出現した6.0ppmのシグナルはアセチル基に
置換した構造を反映したものと考えられる。
4.8ppmのシグナル強度と6.0ppmのシグナル強度
の比は約2:1であり、アセチル基は約33%置換
している。また、得られた前駆体の赤外吸収スペ
クトルでは1740cm-1にエステル結合の吸収が見ら
れた。これらの分析結果より前駆体高分子は水酸
基に加えてアセチル基を側鎖に有していることを
確認した。また、ジメチルホルムアミドを溶媒と
してゲルパーミエーシヨン・クロマトグラフによ
り重合度を測定したところポリスチレン換算の数
平均分子量から求めた重合度は1200であつた。
On the other hand, when the obtained precipitate was dissolved in deuterium-substituted dimethyl sulfoxide and H-NMR was measured, proton signals were observed at around 6.0 ppm and 4.8 ppm. As described in Comparative Example 2, the signal at 4.8 ppm reflects hydroxyl group substitution. The newly appeared signal at 6.0 ppm is considered to reflect the structure substituted with an acetyl group.
The ratio of the signal intensity of 4.8 ppm to the signal intensity of 6.0 ppm is about 2:1, and the acetyl groups are substituted by about 33%. Furthermore, in the infrared absorption spectrum of the obtained precursor, absorption of ester bond was observed at 1740 cm -1 . These analysis results confirmed that the precursor polymer had an acetyl group in its side chain in addition to a hydroxyl group. Further, the degree of polymerization was measured by gel permeation chromatography using dimethylformamide as a solvent, and the degree of polymerization determined from the number average molecular weight in terms of polystyrene was 1200.

実施例 1 参考例1で得たフイルム(長さ2cm、幅2cm)
を窒素雰囲気下で、横型管状炉を用いて200℃、
30分間で静置加熱処理を行い、金属光沢を有する
黒色ポリー2,5−チエニレンビニレンフイルム
を得た。この構造は元素分析値ならぴに赤外吸収
スペクトルの特性吸収がWittig法で得られた標品
と特性吸収が一致することから確認した。
Example 1 Film obtained in Reference Example 1 (length 2 cm, width 2 cm)
under a nitrogen atmosphere at 200℃ using a horizontal tube furnace.
A stationary heat treatment was performed for 30 minutes to obtain a black poly 2,5-thienylene vinylene film having metallic luster. This structure was confirmed based on the elemental analysis data and the characteristic absorption in the infrared absorption spectrum that matched that of the specimen obtained by the Wittig method.

参考例 2 実施例1で得られたポリー2,5−チエニレン
ビニレンフイルムに電子受容体化合物であるヨウ
素を使用し、常法により室温で気相からのドーピ
ングを行つたところ、4時間で26S/cmの電導度
を示した。なお電導度の測定は四端子法で行つ
た。
Reference Example 2 When the poly 2,5-thienylene vinylene film obtained in Example 1 was doped with iodine, which is an electron acceptor compound, from the gas phase at room temperature by a conventional method, 26S was obtained in 4 hours. It showed an electrical conductivity of /cm. The electrical conductivity was measured using the four-terminal method.

参考例 3 実施例1で得たポリー2,5−チエニレンビニ
レンのフイルムを30%発煙硫酸を発生源として三
酸化硫黄のドーピングを行つたところ、21S/cm
の電導度であつた。
Reference Example 3 When the poly 2,5-thienylene vinylene film obtained in Example 1 was doped with sulfur trioxide using 30% fuming sulfuric acid as a source, 21 S/cm
The conductivity was .

参考例 3 実施例1で得たポリー2,5−チエニレンビニ
レンのフイルム電解液として0.5規定LiC104−ア
セトニトリル溶液を用い、電解ドーピングを行つ
たところ、得られたフイルムは光沢のある黒色と
なり、電導度は18S/cmであつた。
Reference Example 3 The film of poly 2,5-thienylenevinylene obtained in Example 1 was electrolytically doped using a 0.5N LiC104-acetonitrile solution as the electrolyte. The resulting film turned glossy black and was conductive. The degree was 18S/cm.

比較例 1 2,5−チエニレンン−ビス(メチレンジメチ
ルスルホニウムブロミド)4.0gをイオン交換水
100mlに溶解せしめた後、1規定のNaOH10mlと
イオン交換水30mlとの混合溶液を0〜5℃で30分
かけて滴下し、滴下後0〜5℃で30分間攪拌を続
けた。この反応液を一日放置したところ黄色の沈
澱が生じた。この沈澱物はジメチルホルムアミド
に30%溶解した。得られた溶液よりキヤストし、
窒素気流下で乾燥し前駆体フイルムを得た。
Comparative Example 1 4.0g of 2,5-thienylene-bis(methylenedimethylsulfonium bromide) was added to ion-exchanged water.
After dissolving in 100 ml, a mixed solution of 10 ml of 1N NaOH and 30 ml of ion-exchanged water was added dropwise at 0 to 5°C over 30 minutes, and stirring was continued at 0 to 5°C for 30 minutes after the dropwise addition. When this reaction solution was allowed to stand for one day, a yellow precipitate was formed. This precipitate was dissolved 30% in dimethylformamide. Cast from the obtained solution,
A precursor film was obtained by drying under a nitrogen stream.

一方、得られた沈澱を重水素置換ジメチルスル
ホキシドに溶解し、H−NMRを測定したとこ
ろ、水酸基が置換したメチン基のシグナルである
4.8ppm付近にプロトンのシグナルが見られた。
On the other hand, when the obtained precipitate was dissolved in deuterium-substituted dimethyl sulfoxide and H-NMR was measured, it was found that the signal was a methine group substituted with a hydroxyl group.
A proton signal was seen around 4.8 ppm.

得えらたフイルム(長さ2cm、幅2cm)を窒素
雰囲気下で、横型管状炉を用いて200℃、30分間
で静置加熱処理を行い、金属光沢を有する黒色ポ
リー2,5−チエニレンビニレンフイルムを得
た。このフイルムに電子受容体化合物であるヨウ
素を使用し、常法により室温で気相からのドーピ
ングを行つたところ、5時間で21S/cmの電導度
を示した。
The obtained film (length 2 cm, width 2 cm) was subjected to static heat treatment in a nitrogen atmosphere at 200°C for 30 minutes using a horizontal tubular furnace to produce a black poly 2,5-thienylene vinylene with metallic luster. I got the film. When this film was doped with iodine, which is an electron acceptor compound, from the gas phase at room temperature by a conventional method, it showed an electrical conductivity of 21 S/cm in 5 hours.

参考例 4 (ポリー2,5−チエニレンビニレンの前駆体の
製造) 2,5−チエニレン−ビス(メチレンジメチル
スルホニウムブロミド)4.0gをイオン交換水と
メタノール混合溶媒(容量比1:1)100mlに溶
解せしめた後、1規定のNaOH 10mlとメタノー
ル30mlとの混合溶液を−30℃で30分かけて滴下
し、滴下後−30℃で1時間攪拌を続けた。この反
応液をHBrで中和した。この液に酢酸カリウム
20gをイオン交換水50gに溶解せしめた液を添加
し、0〜5℃で酢酸イオンとの反応を行つた。一
日放置したところ黄色の沈澱が生じた。この沈澱
物はジメチルホルムアミドに約100%溶解した。
溶液よりキヤストし、窒素気流下で乾燥し前駆体
フイルムを得た。
Reference Example 4 (Production of poly 2,5-thienylene vinylene precursor) 4.0 g of 2,5-thienylene-bis(methylenedimethylsulfonium bromide) was added to 100 ml of a mixed solvent of ion-exchanged water and methanol (volume ratio 1:1). After dissolving, a mixed solution of 10 ml of 1N NaOH and 30 ml of methanol was added dropwise at -30°C over 30 minutes, and stirring was continued at -30°C for 1 hour after the dropwise addition. This reaction solution was neutralized with HBr. Add potassium acetate to this solution.
A solution obtained by dissolving 20 g of the solution in 50 g of ion-exchanged water was added, and a reaction with acetate ions was carried out at 0 to 5°C. When left for one day, a yellow precipitate formed. This precipitate was approximately 100% dissolved in dimethylformamide.
A precursor film was obtained by casting from the solution and drying under a nitrogen stream.

一方、得られた沈澱を重水素置換ジメチルスル
ホキシドに溶解し、H−NMRを測定したとこ
ろ、6.0ppm、5.8ppm、4.8ppm、4.5ppm付近に
プロトンのシグナルが見られた。比較例2で述べ
るように4.8と4.5ppmのシグナルはアルコキシ基
と水酸基によるものである。新たに出現した6.0
と5.8ppmのシグナルはアセチル基に置換した構
造を反映したものと考えられる。4.8と4.5ppmの
シグナル強度と6.0と5.8ppmのシグナル強度の比
は約3:1であり、アセチル基は約25%置換して
いる。また、得られた前駆体の赤外吸収スペクト
ルでは1740cm-1にエステル結合の吸収が見られ
た。これらの分析結果より前駆体高分子はアルコ
キシ基、水酸基に加えてアセチル基を側鎖に有し
ていることを確認した。
On the other hand, when the obtained precipitate was dissolved in deuterium-substituted dimethyl sulfoxide and H-NMR was measured, proton signals were observed at around 6.0 ppm, 5.8 ppm, 4.8 ppm, and 4.5 ppm. As described in Comparative Example 2, the signals at 4.8 and 4.5 ppm are due to alkoxy groups and hydroxyl groups. The new 6.0
The signal at 5.8 ppm is thought to reflect the structure in which the acetyl group is substituted. The ratio of the signal intensities of 4.8 and 4.5 ppm to the signal intensities of 6.0 and 5.8 ppm is about 3:1, and the acetyl groups are substituted by about 25%. Furthermore, in the infrared absorption spectrum of the obtained precursor, absorption of ester bond was observed at 1740 cm -1 . From these analysis results, it was confirmed that the precursor polymer had an acetyl group in its side chain in addition to an alkoxy group and a hydroxyl group.

実施例 2 参考例4で得たフイルム(長さ2cm、幅2cm)
を窒素雰囲気下で、横型管状炉を用いて200℃、
30分間で静置加熱処理を行い、金属光沢を有する
黒色ポリー2,5−チエニレンビニレンフイルム
を得た。この構造は元素分析値ならびに赤外吸収
スペクトルの特性吸収がWittig法で得られた標品
と特性吸収が一致することから確認した。
Example 2 Film obtained in Reference Example 4 (length 2 cm, width 2 cm)
under a nitrogen atmosphere at 200℃ using a horizontal tube furnace.
A stationary heat treatment was performed for 30 minutes to obtain a black poly 2,5-thienylene vinylene film with metallic luster. This structure was confirmed because the elemental analysis values and the characteristic absorption in the infrared absorption spectrum matched those of the specimen obtained by the Wittig method.

参考例 5 実施例2で得られたポリー2,5−チエニレン
ビニレンのフイルムに電子受容体化合物であるヨ
ウ素を使用し、常法により室温で気相からのドー
ピングを行つたところ、2時間で23S/cmの電導
度を示した。
Reference Example 5 When the poly-2,5-thienylenevinylene film obtained in Example 2 was doped with iodine, which is an electron acceptor compound, from the gas phase at room temperature by a conventional method, the resultant film was doped in 2 hours. It showed an electrical conductivity of 23S/cm.

比較例 2 2,5−チエニレンン−ビス(メチレンジメチ
ルスルホニウムブロミド)7.8gをイオン交換水
とメタノール混合溶媒(容量比1:1)200mlに
溶解せしめた後、1規定のNaOH20mlとメタノ
ール80mlとの混合溶液を−30℃で30分かけて滴下
し、滴下後−30℃で30分間攪拌を続けた。この反
応液を素早く透析膜(セロチユーブ 、分子量分
画8000、ユニオンカーバイド社製)に入れ、0℃
に冷却した水−メタノール混合溶媒(1:1)に
浸して1日間透析処理を行つたところ、透析膜内
に黄色の沈澱が生じた。この沈澱物はジメチルホ
ルムアミドに約80%溶解した。得られた溶液をキ
ヤストし、窒素気流下で乾燥し前駆体フイルムを
得た。また、重水素置換ジメチルスルホキシドに
溶解し、H−NMRではアルコキシ基あるいは水
酸基が置換した部位のメチン基のシグナルである
4.8と4.5ppm付近にプロトンのシグナルが見られ
たが、水や溶媒の為に他のシグナルは不明であつ
た。得られた前駆体の赤外吸収スペクトルでは
1100cm-1にエーテル結合の吸収が見られた。これ
らの分析結果より前駆体高分子はメトキシ基を側
鎖に有していることを確認した。
Comparative Example 2 7.8 g of 2,5-thienylene-bis(methylenedimethylsulfonium bromide) was dissolved in 200 ml of a mixed solvent of ion-exchanged water and methanol (volume ratio 1:1), and then mixed with 20 ml of 1N NaOH and 80 ml of methanol. The solution was added dropwise at -30°C over 30 minutes, and after the dropwise addition, stirring was continued at -30°C for 30 minutes. This reaction solution was quickly poured into a dialysis membrane (Cerotube, molecular weight fraction 8000, manufactured by Union Carbide) and heated to 0°C.
When the membrane was dialyzed for 1 day by immersing it in a water-methanol mixed solvent (1:1) cooled to 100 mL, a yellow precipitate was formed within the dialysis membrane. This precipitate was approximately 80% dissolved in dimethylformamide. The obtained solution was cast and dried under a nitrogen stream to obtain a precursor film. It is also dissolved in deuterium-substituted dimethyl sulfoxide, and in H-NMR it is a signal of methine group at the site substituted with alkoxy group or hydroxyl group.
Proton signals were seen around 4.8 and 4.5 ppm, but other signals were unclear due to water and solvent. In the infrared absorption spectrum of the obtained precursor,
Absorption of ether bond was observed at 1100 cm -1 . From these analysis results, it was confirmed that the precursor polymer had a methoxy group in its side chain.

参考例 6 (ポリー2,5−チエニレンビニレンの前駆体の
製造) 2,5−チエニレン−ビス(メチレンジメチル
スルホニウムブロミド)4.0gをイオン交換水と
メタノール混合溶媒50mlに溶解せしめた後、−30
℃に冷却した。ついであらかじめスルホニウム塩
に対し2倍量に相当するOH型に変換された強塩
基性イオン交換樹脂(Amberlite IRA−401)、
ローム・アンド・ハース社製)を10分間かけて
徐々に加え、−30℃で50分攪拌を続けた。
Reference Example 6 (Production of precursor of poly 2,5-thienylene vinylene) After dissolving 4.0 g of 2,5-thienylene-bis(methylenedimethylsulfonium bromide) in 50 ml of a mixed solvent of ion-exchanged water and methanol, -30
Cooled to ℃. Next, a strongly basic ion exchange resin (Amberlite IRA-401) which had been converted into an OH type in advance in an amount equivalent to twice the amount of the sulfonium salt,
(manufactured by Rohm and Haas) was gradually added over 10 minutes, and stirring was continued at -30°C for 50 minutes.

反応後、反応液をイオン交換樹脂と分離し、過
液を0℃まで昇温し、n−酪酸ナトリウム20gを
イオン交換水50gに溶解せしめた液を加え、0℃
で10時間放置したところ、黄色の沈澱が生じた。
この沈澱をジメチルホルムアミドに溶解後、水で
再沈澱させた。得られた沈澱物をジメチルホルム
アミドに溶解し、キヤストフイルムを得た。この
前駆体フイルムを重水素置換ジメチルスルホキシ
ドを溶媒としてH−NMRスペクトルを測定した
ところ、6.0,5.8,4.8および4.5ppmにプロトン
のシグナルが見られた。また、ジメチルホルムア
ミドを溶媒としてゲルパーミエーシヨン・クロマ
トグラフにより重合度を測定したところポリスチ
レン換算の数平均分子量から求めた重合度は830
であつた。
After the reaction, the reaction solution was separated from the ion exchange resin, the temperature of the filtrate was raised to 0°C, a solution of 20g of sodium n-butyrate dissolved in 50g of ion-exchanged water was added, and the mixture was heated to 0°C.
When the mixture was left for 10 hours, a yellow precipitate formed.
This precipitate was dissolved in dimethylformamide and reprecipitated with water. The obtained precipitate was dissolved in dimethylformamide to obtain a cast film. When the H-NMR spectrum of this precursor film was measured using deuterium-substituted dimethyl sulfoxide as a solvent, proton signals were observed at 6.0, 5.8, 4.8, and 4.5 ppm. In addition, when the degree of polymerization was measured by gel permeation chromatography using dimethylformamide as a solvent, the degree of polymerization determined from the number average molecular weight in terms of polystyrene was 830.
It was hot.

実施例 3 参考例6で得られた高分子前駆体フイルムを窒
素流通下、200℃迄に加熱延伸処理を行い、5倍
に延伸されたポリー2,5−チエニレンビニレン
延伸フイルムを得た。このフイルムの赤外吸収ス
ペクトルの特性吸収は実施例1で得られたものに
一致し、かつ、赤外二色性を示し、配向化してい
ることがわかつた。
Example 3 The polymer precursor film obtained in Reference Example 6 was heated and stretched to 200° C. under nitrogen flow to obtain a poly 2,5-thienylene vinylene stretched film stretched five times. The characteristic absorption of the infrared absorption spectrum of this film matched that obtained in Example 1, and it was found that it exhibited infrared dichroism and was oriented.

参考例 7 実施例3で得たポリー2,5−チエニレンビニ
レンのフイルムに電子受容体化合物であるヨウ素
を使用し、常法により室温で気相からのドーピン
グを行つたところ、1140S/cmの電導度を示し
た。
Reference Example 7 When the poly-2,5-thienylenevinylene film obtained in Example 3 was doped with iodine, which is an electron acceptor compound, from the gas phase at room temperature by a conventional method, a film of 1140 S/cm was obtained. It showed electrical conductivity.

Claims (1)

【特許請求の範囲】 1 一般式(A) および一般式(B) R1:炭素数1〜10の炭化水素基 R2:水素または炭素数1〜10の炭化水素基 で表される繰り返し単位よりなり、且つ(A)単位の
数が2以上の整数、(B)単位の数が2以上の整数
で、(A)単位の数/(B)単位の数=0.05〜9である構
造を有する高分子前駆体の側鎖を脱離処理するこ
とを特徴とする を主要な繰返し単位として含む高導電性ポリー
2,5−チエニレンビニレンの製造方法。 2 該高分子前駆体が一般式(C) R3,R4:炭素数1〜10の炭化水素基 A−:イオン で表されるスルホニウム塩モノマーをアルカリで
重合し、ついで該重合体と有機酸イオン類を反応
せしめて得られたものである特許請求の範囲第1
項記載の製造方法
[Claims] 1 General formula (A) and general formula (B) R1: Hydrocarbon group having 1 to 10 carbon atoms R2: Consisting of repeating units represented by hydrogen or hydrocarbon groups having 1 to 10 carbon atoms, and the number of (A) units is an integer of 2 or more, (B) units is an integer of 2 or more, and the side chain of a polymer precursor having a structure in which the number of (A) units/the number of (B) units = 0.05 to 9 is subjected to elimination treatment. A method for producing highly conductive poly 2,5-thienylene vinylene containing as a main repeating unit. 2 The polymer precursor has the general formula (C) R3, R4: Hydrocarbon group having 1 to 10 carbon atoms A-: A patent obtained by polymerizing a sulfonium salt monomer represented by an ion with an alkali, and then reacting the polymer with organic acid ions. Claim 1
Manufacturing method described in section
JP23625287A 1987-09-22 1987-09-22 Preparation of poly-2,5-thienylenevinylene Granted JPS6479222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23625287A JPS6479222A (en) 1987-09-22 1987-09-22 Preparation of poly-2,5-thienylenevinylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23625287A JPS6479222A (en) 1987-09-22 1987-09-22 Preparation of poly-2,5-thienylenevinylene

Publications (2)

Publication Number Publication Date
JPS6479222A JPS6479222A (en) 1989-03-24
JPH0416489B2 true JPH0416489B2 (en) 1992-03-24

Family

ID=16998029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23625287A Granted JPS6479222A (en) 1987-09-22 1987-09-22 Preparation of poly-2,5-thienylenevinylene

Country Status (1)

Country Link
JP (1) JPS6479222A (en)

Also Published As

Publication number Publication date
JPS6479222A (en) 1989-03-24

Similar Documents

Publication Publication Date Title
Jenekhe et al. Solubilization, solutions, and processing of aromatic heterocyclic rigid rod polymers in aprotic organic solvents: poly (p-phenylene-2, 6-benzobisthiazolediyl)(PBT)
US5196144A (en) Electrically conductive polyaniline
US4528118A (en) Highly electroconductive conjugated polymer composition and process for producing the same
US5053166A (en) Hetero-arylene vinylene polymer and highly conductive composition thereof
US4868284A (en) Process for producing stretched molded articles of conjugated polymers and highly conductive compositions of said polymers
JP3186328B2 (en) Conductive composite and manufacturing method thereof
JP3123724B2 (en) Poly (alkyl-P-thiophenoxyphenylsulfonium salt) compound
EP0545417B1 (en) Water-soluble conducting polymer and method for production thereof
US5064572A (en) Poly (long-chain nuclear substituted phenylene vinylene), precursor therefor and highly conductive composition thereof
JPH048446B2 (en)
JPH0416489B2 (en)
JPH0588855B2 (en)
JPH0360848B2 (en)
JPH0420010B2 (en)
JP2526976B2 (en) Novel polymer compound, method for producing the same, and method for producing a conjugated polymer from the polymer compound
JPH0420929B2 (en)
JPH06239996A (en) Conductive polymer and its preparation
JPH0371453B2 (en)
JP3043290B2 (en) Water-soluble conductive polyaniline and method for producing the same
JPH048445B2 (en)
JPH0433290B2 (en)
JPH0588854B2 (en)
JPS6011528A (en) Substituted polyphenylenevinylene and highly electroconductive composition
JP2835816B2 (en) Method for producing polyaniline composite molded article
JPH0232121A (en) Production of poly-p-phenylene vinylene

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term