JPH04164890A - Method for growing crystal with phase transition - Google Patents

Method for growing crystal with phase transition

Info

Publication number
JPH04164890A
JPH04164890A JP29145390A JP29145390A JPH04164890A JP H04164890 A JPH04164890 A JP H04164890A JP 29145390 A JP29145390 A JP 29145390A JP 29145390 A JP29145390 A JP 29145390A JP H04164890 A JPH04164890 A JP H04164890A
Authority
JP
Japan
Prior art keywords
crystal
growing
melt
phase transition
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29145390A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawakami
博 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP29145390A priority Critical patent/JPH04164890A/en
Publication of JPH04164890A publication Critical patent/JPH04164890A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To control the formed state of a twin and grow an excellent crystal by controlling the shape of a solid-liquid interface in a crystal growing part so as to be flattened or protruded on the crystal side in growing the crystal from a melt of a crystal system causing phase transition in a cooling process after growing the single crystal. CONSTITUTION:A melt 3 of a crystal system (e.g. LaAlO3) capable of causing phase transition in a cooling process after growing a single crystal from a melt by a melt growing method is prepared. A crystal 2 is then pulled up and grown from the aforementioned melt 3 by the Czochralski method, etc. In the process, the shape of the interface 1 between the solid and the liquid in a crystal growing part is controlled so as to be flattened or protruded on the side of the crystal 2. Thereby, the crystal 2 in which a twin enters in one direction in a plane such as (100) can be obtained. A wafer obtained from the aforementioned crystal 2 is suitably used as a material for superconducting thin film substrates, etc., having the high critical temperature.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は相転移のある結晶の育成方法に係り、特に、高
Tc超伝導薄膜用基板材料として一部で注目されている
物質である、ランタン・アルミネート(LaAQOs 
)結晶を融液成長法、例えばチョクラルスキイ法にて育
成する方法において、双晶の形成状態を制御して、良好
な結晶を育成する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for growing crystals with phase transition, and in particular, a material that has attracted some attention as a substrate material for high Tc superconducting thin films. Lantern Aluminate (LaAQOs)
) The present invention relates to a method of growing a crystal by a melt growth method, such as the Czochralski method, by controlling the state of twin crystal formation to grow a good crystal.

[従来の技術] LaAlO3の単結晶は、高Tc超伝導薄膜用基板材料
として、近年、注目を集めている。
[Prior Art] Single crystals of LaAlO3 have recently attracted attention as substrate materials for high Tc superconducting thin films.

ところで、結晶の育成方法としては、従来、チョクラル
スキイ法、ブリッジマン法、フローティングゾーン法等
の融液成長法が提案されており、特にLaAl2O,結
晶の育成には主にチョクラルスキイ法が採用される。こ
れらの融液成長方法、特にチョクラルスキイ法において
、L、a A 120 、 、 N d A 120 
、 、L a G a O、等の冷却過程で相転移があ
る結晶系を、単結晶で育成することは非常に難しい。即
ち、一般に、結晶には、クラック、双晶が入りやすく、
単結晶は得られない。L a A !!、Osでは相転
移度が小さく、クラックの発生は殆ど無視できるが、全
面に双晶が入る。この点について詳細に説明すると、L
aAl2O,結晶は、例えばチョクラルスキイ法を用い
て育成することができるが、この結晶は、結晶育成後の
冷却過程で相転移がある。相転移温度は435〜530
℃辺りで、立方晶系から菱面体系に移るとされており、
その転移度は、6゛程度で非常に小さいものであるが、
この相転移する温度で系内の全面に双晶が入る。そこで
、従来においては、後処理として、温度を加え、かつ応
力を加えることにより、脱安晶化を行なう工夫がなされ
ており、特許出願もなされている。
By the way, melt growth methods such as the Czochralski method, the Bridgman method, and the floating zone method have been proposed as methods for growing crystals, and the Czochralski method is mainly used for growing LaAl2O crystals in particular. In these melt growth methods, especially the Czochralski method, L, a A 120 , , N d A 120
, , L a G a O, etc., which undergo a phase transition during the cooling process, are extremely difficult to grow as single crystals. In other words, crystals are generally prone to cracks and twins;
Single crystals cannot be obtained. L a a! ! , Os, the degree of phase transition is small and the occurrence of cracks can be almost ignored, but twins occur all over the surface. To explain this point in detail, L
The aAl2O crystal can be grown using, for example, the Czochralski method, but this crystal undergoes a phase transition during the cooling process after crystal growth. Phase transition temperature is 435-530
It is said that the cubic crystal system changes to the rhombohedral system around ℃,
The degree of transition is very small, about 6 degrees, but
At this temperature of phase transition, twins form throughout the system. Therefore, in the past, attempts have been made to remove the crystallization by applying temperature and stress as a post-treatment, and a patent application has also been filed.

[発明が解決しようとする課題] しかしながら、高Tc超伝導薄膜用基板材料としての用
途においては、超伝導薄膜作成温度が相転移温度より高
いことから冷却時に相転移が起こり、双晶が生成してし
まうため、脱双晶の(単結晶化)効果が損なわれること
となる。
[Problems to be Solved by the Invention] However, when used as a substrate material for high Tc superconducting thin films, since the superconducting thin film creation temperature is higher than the phase transition temperature, a phase transition occurs during cooling and twins are generated. As a result, the detwinning (single crystallization) effect is impaired.

ところで、双晶は、双晶面と双晶境界で特徴づけられる
。その方位はLaAffO,では(100)であり、(
100)面内では互いに直交する2つの方向がある。今
、この互いに直交する双晶の境界を「面境界」と仮称す
ると、(100)面内の1つの亜境界中に1つの方向の
みの双晶がみられ、隣り合う面境界の双晶の方向とは互
いに直交する傾向がある。従って、面境界の生成を抑制
し、双晶がある面内で1つの方向のみに入るようにする
ことは、2方向に入る場合に比べ、得られる薄膜基板(
ウェハ)の均質性の観点から、意味ある改善であるとい
える。
By the way, twins are characterized by twin planes and twin boundaries. Its orientation is (100) in LaAffO, and (
100) There are two directions perpendicular to each other within the plane. Now, if we tentatively call this mutually orthogonal twin boundary a "plane boundary," then twins in only one direction can be seen in one subboundary in the (100) plane, and the twins of the adjacent plane boundaries The directions tend to be perpendicular to each other. Therefore, by suppressing the generation of plane boundaries and allowing twins to enter only one direction within a certain plane, the resulting thin film substrate (
This is a meaningful improvement from the perspective of wafer homogeneity.

本発明は上記従来の実情に鑑みてなされたものであって
、相転移のある結晶の育成において、面境界の生成を抑
制して、面内で双晶が1つの方向にのみに入った結晶を
得ることができる相転移のある結晶の育成方法を提供す
ることを目的とする。
The present invention has been made in view of the above-mentioned conventional situation, and is aimed at suppressing the generation of plane boundaries in the growth of crystals with phase transitions, and producing crystals with twins in only one direction within the plane. The purpose of the present invention is to provide a method for growing crystals with phase transitions that can obtain .

[課題を解決するための手段] 請求項(1)の相転移のある結晶の育成方法は、融液の
液面から単結晶の固相を引き上げて育成する方法であっ
て、融液より単結晶を育成した後の冷却過程で相転移を
生じる結晶系の融液から結晶を育成する方法において、
結晶育成部の固・液界面の形状を平坦にするか、又は結
晶側に凸になるように制御することを特徴とする 請求項(2)の相転移のある結晶の育成方法は、請求項
(1)の方法において、育成結晶がLaAlO3である
ことを特徴とする。
[Means for Solving the Problem] The method of growing a crystal with a phase transition according to claim (1) is a method of growing a solid phase of a single crystal by pulling it up from the liquid surface of a melt. In a method of growing a crystal from a crystalline melt that undergoes a phase transition during the cooling process after growing the crystal,
The method for growing a crystal with a phase transition according to claim (2), characterized in that the shape of the solid/liquid interface in the crystal growth section is controlled to be flat or convex toward the crystal side. The method (1) is characterized in that the grown crystal is LaAlO3.

以下に本発明を図面を参照して詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の相転移のある結晶の育成方法の一実施
方法を説明する断面図である。
FIG. 1 is a cross-sectional view illustrating one implementation method of the method of growing a crystal with a phase transition according to the present invention.

本発明の方法は、L a A (l Osのよつに、結
晶育成後の冷却過程で相転移を生じる結晶系において、
融液から結晶を育成するにあたり、第1図に示す如く、
固・液界面lの形状をフラットもしくは結晶2側に凸と
なるような形状として、融液3からの結晶2の育成を行
なう。この固・液界面1が過度に結晶2側に凸であると
ボイド(気孔)、収縮孔が生成する傾向にあり好ましく
ない。従って、本発明においては、第1図に示す育成結
晶2の直径dに対して、固・液界面1の結晶2側への凸
部の高さhが0〜0.2d程度となるようにするのが好
ましい。なお、第1図において、Rは結晶の引き上げ方
向を示し、ωは回転方向を示す。
The method of the present invention is applicable to crystal systems that undergo a phase transition during the cooling process after crystal growth, such as L a A (l Os).
When growing crystals from melt, as shown in Figure 1,
The crystal 2 is grown from the melt 3 by making the shape of the solid-liquid interface l flat or convex toward the crystal 2 side. If this solid-liquid interface 1 is excessively convex toward the crystal 2 side, voids (pores) and shrinkage pores tend to be generated, which is not preferable. Therefore, in the present invention, the height h of the convex portion of the solid-liquid interface 1 toward the crystal 2 side is set to be approximately 0 to 0.2 d relative to the diameter d of the grown crystal 2 shown in FIG. It is preferable to do so. In FIG. 1, R indicates the direction of pulling the crystal, and ω indicates the direction of rotation.

なお、本発明の方法は、L a A 120 sに限ら
ず、N d A 120 s 、L a G a O−
等の冷却過程で相転移を生じる他の結晶系にも有効であ
るが、特にLaAlO.に対して有効である。
Note that the method of the present invention is applicable not only to L a A 120 s but also to N d A 120 s , L a Ga O-
It is also effective for other crystal systems that undergo a phase transition during the cooling process, such as LaAlO. It is valid for

[作用] 双晶の生成による結晶の不均質性は、その後の加工工程
に微妙な影響を与えるものと考えられ、均質性に優れた
結晶を得ることは、用途の拡大、製品品質の向上の面で
極めて重要である。このようなことから、前述の如く、
面境界の生成を抑制して、双晶が、(100)、、面内
で一方向にのみ入るようにすることは、良好な結果をも
たらす改善項目であると言える。
[Effect] Crystal heterogeneity due to the generation of twins is thought to have a subtle effect on subsequent processing steps, and obtaining crystals with excellent homogeneity is a key to expanding applications and improving product quality. It is extremely important in terms of For this reason, as mentioned above,
It can be said that suppressing the generation of plane boundaries so that the twins enter only in one direction within the (100) plane is an improvement item that can bring about good results.

本発明者らは、面境界の生成を抑制して、双晶が、(1
001,e面内で一方向にのみ入った、均質性の高い結
晶を得るべく検討を重ね、このためには、相転移時の結
晶の歪み分布をどう制御するかということがポイントに
なること、即ち、結晶育成時の温度勾配、固・液界面の
形状、冷却速度、結晶サイズ等が要因として考えられる
ことに注目した。そして、これらのうち、固・液界面の
形状をとりあげ、検討の初期においで、この固液界面が
融液側に凸となるように、即ち、固液界面を凹にして育
成していたところ、(100)面のファセット成長を予
測させる双晶生成が見られた。これは、イットリューム
・アルミニューム・ガーネットのファセット成長を思わ
せるものであった。つまり、再現性よ<(110)方向
に面境界が生成した。そこで、この界面が結晶側に凸に
なる条件で結晶を育成したところ、面境界が殆ど入らな
いことが判明した。そして、その結果(100)面内で
は一つの方向のみに双晶が入ったウェハを得ることがで
きた。
The present inventors have suppressed the generation of plane boundaries so that the twin crystals (1
We have conducted repeated studies to obtain a highly homogeneous crystal that extends in only one direction within the 001,e plane, and for this purpose, the key point is how to control the strain distribution of the crystal during phase transition. That is, we focused on the fact that the temperature gradient during crystal growth, the shape of the solid/liquid interface, the cooling rate, the crystal size, etc. are considered to be the factors. Among these, we focused on the shape of the solid-liquid interface, and at the beginning of the study, we tried to grow the solid-liquid interface so that it was convex toward the melt side, that is, the solid-liquid interface was concave. , twinning was observed that predicted facet growth of the (100) plane. This was reminiscent of faceted growth of yttrium, aluminum, and garnet. In other words, a surface boundary was generated in the reproducibility<(110) direction. Therefore, when a crystal was grown under conditions in which this interface was convex toward the crystal side, it was found that there were almost no surface boundaries. As a result, it was possible to obtain a wafer with twins in only one direction within the (100) plane.

固・液界面をフラットないし結晶側に凸にすることによ
る作用効果の詳細は明らかではないが。
The details of the effects of making the solid-liquid interface flat or convex toward the crystal side are not clear.

界面が凸の場合、ファセット成長となり、ファセット境
界に大きな歪みが残るのに対し、界面をフラットないし
凹にすると大きな歪みが残らないためであると考えられ
る。
This is thought to be because when the interface is convex, facet growth occurs and a large strain remains at the facet boundary, whereas when the interface is flat or concave, no large strain remains.

[実施例] 以下、実施例及び比較例を挙げて、本発明をより具体的
に説明するが、本発明はその要旨を超えない限り、以下
の実施例に限定されるものではない。なお、説明の便宜
上、まず、比較例を挙げる。
[Examples] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. Note that for convenience of explanation, a comparative example will be given first.

比較例1 110KHzの高周波加熱炉内に、直径50mm、高さ
50mm、厚さ1.5mmのイリジュウム(Ir)製坩
堝を設置し、その中に純度99.99%の酸化ランタン
50モル%及び酸化アルミニウム50モル%の原料を3
20g入れ、N2ガス雰囲気中で融解した。融液を融点
近くまで降温し、LaA氾O3の種結晶(100)を浸
し、25rpmで回転させながら、約2mm/hrの引
き上げ速度、結晶径25mmで180gの結晶を育成し
た。なお、この育成の期間中、固液界面は融液側に約5
mm程度の凸状の形状をしていた。その後、結晶を切り
離し約2日掛けて冷却し、結晶を採り出した。
Comparative Example 1 An iridium (Ir) crucible with a diameter of 50 mm, a height of 50 mm, and a thickness of 1.5 mm was installed in a 110 KHz high-frequency heating furnace, and 50 mol% of lanthanum oxide with a purity of 99.99% and lanthanum oxide with a purity of 99.99% were placed in the crucible. 3 mol% aluminum raw material
20g was added and melted in an N2 gas atmosphere. The temperature of the melt was lowered to near the melting point, a seed crystal (100) of LaA flooded O3 was immersed, and while rotating at 25 rpm, 180 g of crystal was grown at a pulling rate of about 2 mm/hr and a crystal diameter of 25 mm. Note that during this growth period, the solid-liquid interface is approximately 5
It had a convex shape of about mm. Thereafter, the crystals were cut off, cooled for about 2 days, and then collected.

得られた結晶を(100)横断面方向に厚さ5mmで切
り出し、無歪み研磨を行なった後、双晶生成状態を調べ
た。(110)方向及びコア部に面境界が見られた。各
亜境界内では一方向のみに双晶が入り、隣合う境界間で
は互いに直交した双晶が生成していた。
The obtained crystal was cut out to a thickness of 5 mm in the (100) cross-sectional direction, subjected to distortion-free polishing, and then the state of twin formation was examined. Surface boundaries were observed in the (110) direction and in the core. Within each sub-boundary, twins were generated in only one direction, and between adjacent boundaries, twins were generated that were perpendicular to each other.

実施例1 回転数5Orpmとしたこと以外は、比較例1と同様に
して結晶を育成し、後加工を行なった。なお、結晶の育
成の際、固液界面は結晶側に約3mm程凸状の形状をし
ていた。
Example 1 Crystals were grown and post-processed in the same manner as in Comparative Example 1, except that the rotation speed was 5 Orpm. Note that during crystal growth, the solid-liquid interface had a convex shape of about 3 mm toward the crystal side.

得られた結果の双晶生成状態は、比較例1の場合とは大
きく異なり、全面に一方向にのみ双晶が入っており、面
境界は殆ど見られなかった。
The resulting twinning state was significantly different from that of Comparative Example 1, with twins occurring only in one direction over the entire surface, and almost no plane boundaries were observed.

[発明の効果] 以上詳述した通り、本発明の相転移のある結晶の育成方
法によれば、L a A Q O*のような相転移のあ
る結晶系において、(100)のような面内で双晶が一
方向のみにはいった結晶を得ることができる。このよう
な結晶よりなるウェハは、高Tc超伝導薄膜基板等の薄
膜基板材料として、その用途を著しく拡大させるもので
ある。
[Effects of the Invention] As detailed above, according to the method of growing a crystal with a phase transition of the present invention, in a crystal system with a phase transition such as L a A Q O *, a plane such as (100) can be grown. It is possible to obtain a crystal in which the twins are aligned in only one direction. Wafers made of such crystals can be used as thin-film substrate materials such as high-Tc superconducting thin-film substrates, greatly expanding their applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の相転移のある結晶の育成方法の一実施
方法を説明する断面図である。 l・・・固・液界面、2・・・結晶、3・・・融液。 代理人  弁理士  重 野  剛
FIG. 1 is a cross-sectional view illustrating one implementation method of the method of growing a crystal with a phase transition according to the present invention. 1...solid/liquid interface, 2...crystal, 3...melt. Agent Patent Attorney Tsuyoshi Shigeno

Claims (2)

【特許請求の範囲】[Claims] (1)融液の液面から単結晶の固相を引き上げて育成す
る方法であって、融液より単結晶を育成した後の冷却過
程で相転移を生じる結晶系の融液から結晶を育成する方
法において、結晶育成部の固・液界面の形状を平坦にす
るか、結晶側に凸となるように制御することを特徴とす
る相転移のある結晶の育成方法。
(1) A method of growing a solid phase of a single crystal by pulling it up from the liquid surface of the melt, in which a crystal is grown from a crystalline melt that undergoes a phase transition during the cooling process after growing a single crystal from the melt. A method for growing a crystal with a phase transition, characterized in that the shape of the solid-liquid interface in the crystal growth region is controlled to be flat or convex toward the crystal side.
(2)育成結晶がLaAlO_3である請求項(1)に
記載の育成方法。
(2) The growing method according to claim (1), wherein the grown crystal is LaAlO_3.
JP29145390A 1990-10-29 1990-10-29 Method for growing crystal with phase transition Pending JPH04164890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29145390A JPH04164890A (en) 1990-10-29 1990-10-29 Method for growing crystal with phase transition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29145390A JPH04164890A (en) 1990-10-29 1990-10-29 Method for growing crystal with phase transition

Publications (1)

Publication Number Publication Date
JPH04164890A true JPH04164890A (en) 1992-06-10

Family

ID=17769064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29145390A Pending JPH04164890A (en) 1990-10-29 1990-10-29 Method for growing crystal with phase transition

Country Status (1)

Country Link
JP (1) JPH04164890A (en)

Similar Documents

Publication Publication Date Title
JP2009051720A (en) PROCESS FOR PRODUCING Si BULK POLYCRYSTAL INGOT
US5690731A (en) Method of growing single crystal
US6187279B1 (en) Single crystal SIC and method of producing the same
US6143267A (en) Single crystal SiC and a method of producing the same
CN109913945A (en) A method of growing bismuth selenide high-index surface monocrystal thin films on silicon (211) substrate
Tuominen et al. Defect origin and development in sublimation grown SiC boules
JPH04164890A (en) Method for growing crystal with phase transition
JP2018095490A (en) Method for manufacturing silicon single crystal, silicon single crystal and silicon single crystal wafer
Uecker et al. The problem of twinning in NdGaO3 Czochralski crystals
CN110036143B (en) Method for producing single crystal silicon and single crystal silicon wafer
CN111101194A (en) Crystal growth method of monocrystalline silicon crystal bar
JP4201215B2 (en) Single crystal growth method
JP3018738B2 (en) Single crystal manufacturing equipment
KR100513630B1 (en) Silicon single crystal and process for producing it
JP2781857B2 (en) Single crystal manufacturing method
JP2929006B1 (en) Manufacturing method of high quality crystal sheet material
Fox et al. The control of growth orientation during the production of melt-textured YBCO quasi-single crystals
CN115094511A (en) Method for homoepitaxial growth of garnet type ferrite single crystal thick film
JP3461559B2 (en) Cerium-activated gadolinium silicate single crystal growth method
JP3412767B2 (en) Method for producing NdGaO3 single crystal
JP2003226599A (en) Method of manufacturing single crystal
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
Kotelyanskii et al. Neodymium Gallate Substrates
CN111647946A (en) Method for preparing high-quality crystal by rotating magnetic field
JPH0483790A (en) Growing method for lanthanum aluminate single crystal