JPH04164218A - Detecting method for gas pressure in casting mold - Google Patents

Detecting method for gas pressure in casting mold

Info

Publication number
JPH04164218A
JPH04164218A JP29015090A JP29015090A JPH04164218A JP H04164218 A JPH04164218 A JP H04164218A JP 29015090 A JP29015090 A JP 29015090A JP 29015090 A JP29015090 A JP 29015090A JP H04164218 A JPH04164218 A JP H04164218A
Authority
JP
Japan
Prior art keywords
gas pressure
test piece
pressure
sand mold
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29015090A
Other languages
Japanese (ja)
Other versions
JPH0676935B2 (en
Inventor
Noriaki Suzuki
鈴木 法明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP29015090A priority Critical patent/JPH0676935B2/en
Publication of JPH04164218A publication Critical patent/JPH04164218A/en
Publication of JPH0676935B2 publication Critical patent/JPH0676935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To detect the gas pressure in a casting mold by inserting a test piece into an electric furnace, by taking out the gas generated along with heating, by measuring the pressure of the gas and by estimating the gas pressure in a casting mold when molten metal is poured with an actual core incorporated. CONSTITUTION:A test piece 1 comprises a container 10 made of stainless steel, sand mold section 11 and pressure in-take pipe 12 made of stainless steel. The test piece 1 fitted in a mold is inserted in the furnace chamber of a pipe-like electric furnace 4 and heated with the pressure in-take pipe 12 and a manometer 3 connected to a tube 3a. The gas generated in the sand mold section 11 caused by heating is introduced into the manometer 3 through the air flowing pass 12a of the pressure in-take pipe 12 and the tube 3a to be measured. The actual gas pressure in a casting mold when molten metal is poured with an actual core incorporated can be estimated from the value of gas pressure thus measured.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はシェル中子、有機系や無機系の粘結剤を配合し
た砂型から発生するガスの圧力を検知する鋳型内ガス圧
検知方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for detecting gas pressure in a mold for detecting the pressure of gas generated from a sand mold containing a shell core and an organic or inorganic binder. .

[従来の技術] シェル中子等の砂型に含まれている粘結剤は鋳込み時に
分解してガスを発生ずる。このガスは、鋳物の品質とり
わけブローホール、ピンホール等のガス欠陥に大きな影
響を与える。例えば、鋳込み時において鋳型内に発生し
たガス圧が溶湯圧以上の場合には上記ガス欠陥が発生し
易い。  −そこで従来より、鋳込み時に鋳型内に発生
するガス圧を測定する方法として、シェル中子を配置し
た主型にガス圧センサを設置した状態で、主型のキャビ
ティ内に溶湯を注ぎ、そしてシェル中子から発生するガ
スのガス圧をガス圧センサで検出する方法が知られてい
る(鋳物協会発行 鋳物第54巻 第2号 第125頁
〜第127頁)。
[Prior Art] A binder contained in a sand mold such as a shell core decomposes during casting and generates gas. This gas greatly affects the quality of castings, especially gas defects such as blowholes and pinholes. For example, when the gas pressure generated in the mold during casting is higher than the molten metal pressure, the above gas defects are likely to occur. -Therefore, as a conventional method to measure the gas pressure generated in the mold during casting, a gas pressure sensor is installed in the main mold in which the shell core is placed, and molten metal is poured into the cavity of the main mold. A method is known in which the gas pressure of gas generated from the core is detected using a gas pressure sensor (Castance Vol. 54, No. 2, pp. 125 to 127, published by Japan Foundry Association).

[発明が解決しようとする課題] ところで上記した方法では実際に溶湯を注がねばならず
、金属溶解用の高周波溶解炉や低周波溶解炉、更には主
型造形機、中子造形機などの鋳造設備を必要とし、これ
らの設備をもたない一般の実験室での測定は困難である
[Problems to be Solved by the Invention] However, the method described above requires actually pouring the molten metal, and it is difficult to use a high-frequency melting furnace or a low-frequency melting furnace for metal melting, as well as a main mold forming machine, a core forming machine, etc. It requires casting equipment and is difficult to measure in general laboratories that do not have such equipment.

本発明は上記した実情に鑑み開発されたものであり、そ
の課題は、溶湯を注ぐことなくガス圧を検知できる鋳型
内ガス圧検知方法を提供することにある。
The present invention was developed in view of the above-mentioned circumstances, and an object of the present invention is to provide a method for detecting gas pressure in a mold that can detect gas pressure without pouring molten metal.

[課題を解決するための手段] 本発明の鋳型内ガス圧検知方法は、少なくとも一端が開
口した所定断面形状をもつ容器と容器内に装填され実物
中子の粘結剤配合量に対応した粘結剤配合量をもつ砂型
部と一端部が容器の開口を介して砂型部に挿入され他端
部が砂型部から突き出た通気路をもつ圧力取出し管とを
もつナス1〜ピースを得る工程と、 ガス圧検出手段と、電気炉とを用い、 テストピースを電気炉の炉室に装入し、テストピースの
砂型部の粘結剤の分解温度以上にテストピースを加熱す
るとともに、加熱に伴い発生したガスを圧力取出し管の
通気路を通してガス圧検出手段に導入してガス圧検出手
段でそのガス圧を測定し、そのガス圧の測定値から、実
物中子を組込んだ注湯時の鋳型内における実際のガス圧
を推定する工程とを順に実施することを特徴とするもの
である。
[Means for Solving the Problems] The in-mold gas pressure detection method of the present invention includes a container having a predetermined cross-sectional shape with at least one open end, and a container filled with a viscous material corresponding to the binder content of the actual core. A step of obtaining an eggplant 1 to piece having a sand mold part having a binding agent content and a pressure outlet pipe having one end inserted into the sand mold part through the opening of the container and having an air passage projecting from the sand mold part at the other end. , Using a gas pressure detection means and an electric furnace, the test piece is charged into the furnace chamber of the electric furnace, and the test piece is heated to a temperature higher than the decomposition temperature of the binder in the sand mold part of the test piece. The generated gas is introduced into the gas pressure detection means through the air passage of the pressure extraction pipe, the gas pressure is measured by the gas pressure detection means, and from the measured value of the gas pressure, it is possible to determine when pouring with a real core installed. This method is characterized in that the steps of estimating the actual gas pressure in the mold are sequentially performed.

本発明で用いるテストピースの容器は少なくとも一端が
開口している。この容器はパイプ状とすることができる
。パイプ状とした場合、内径か10〜15mm程度、長
さが100〜150mm程度であることが好ましく、内
径が小さすぎると砂型部の作成が困難となり、内径が大
きすぎると砂型部の中央域の焼成処理が良好でなくなる
等の不都合が生じ易い。また容器の長さが短かすぎると
ガス圧が検出されにくくなり、長ずざると測定時の温度
分布がばらつき易くなる。テストピースの圧力取出し管
は、その一端部が容器の開口を介して砂型部に挿入され
ている。圧力取出し管は、内径が2〜3mm程度が好ま
しく、内径が小さすぎると砂型部の砂が詰まるおそれが
あり、内径が大きすぎると砂型部の作成が困難となる。
At least one end of the test piece container used in the present invention is open. This container can be pipe-shaped. If it is made into a pipe shape, it is preferable that the inner diameter is about 10 to 15 mm and the length is about 100 to 150 mm. If the inner diameter is too small, it will be difficult to create the sand mold, and if the inner diameter is too large, the central area of the sand mold will be damaged. Inconveniences such as poor firing treatment are likely to occur. Furthermore, if the length of the container is too short, it will be difficult to detect the gas pressure, and if it is not long, the temperature distribution during measurement will tend to vary. One end of the pressure extraction tube of the test piece is inserted into the sand mold part through the opening of the container. The pressure extraction pipe preferably has an inner diameter of about 2 to 3 mm; if the inner diameter is too small, the sand mold section may be clogged with sand, and if the inner diameter is too large, it becomes difficult to create the sand mold section.

圧力取出し管の長さは電気炉等の長さを考慮すると25
0〜300mm程度が好ましい。
Considering the length of the electric furnace, etc., the length of the pressure extraction pipe is 25
Approximately 0 to 300 mm is preferable.

テストピースの砂型部の粘結剤配合量は、実物中子の粘
結剤配合量に対応して設定する。
The amount of binder compounded in the sand mold part of the test piece is set in accordance with the amount of binder compounded in the actual core.

本発明で用いるガス圧検出手段はマノメータ、半導体ダ
イヤフラム式ガス圧計等を採用できる。
The gas pressure detecting means used in the present invention may be a manometer, a semiconductor diaphragm type gas pressure gauge, or the like.

また電気炉は公知のものを採用できる。Further, a known electric furnace can be used.

本発明ではテストピースを加熱する温度は砂型部の種類
に応じて適宜選択するが、例えば250〜300 ’C
にすることができる。
In the present invention, the temperature at which the test piece is heated is appropriately selected depending on the type of sand mold part, and is, for example, 250 to 300'C.
It can be done.

[実施例] 以下、本発明の鋳型内ガス圧検知方法を各実施例に従っ
て説明する。
[Example] Hereinafter, the method for detecting gas pressure in a mold according to the present invention will be explained according to each example.

(実施例1) まず第2図に示すテストピース1を製造する。(Example 1) First, a test piece 1 shown in FIG. 2 is manufactured.

テストピース1はステンレス鋼製の容器10と砂型部1
1とステンレス鋼製の圧力取出し管12とをもつ。容器
10は両端に開口10a、10bをもつパイプ形状であ
り、内径が’13mm、長さが150mmである。圧力
取出し管12は通気路12aをもち、一端部12bが開
口10bを介して砂型部11に挿入され他端部12Gが
砂型部11から突き出ている。圧力取出し管12は内径
が2゜5mm、長さが250mmである。砂型部11は
容器10内に装填されたシェル砂から形成されている。
The test piece 1 is a stainless steel container 10 and a sand mold part 1.
1 and a pressure outlet pipe 12 made of stainless steel. The container 10 has a pipe shape with openings 10a and 10b at both ends, and has an inner diameter of 13 mm and a length of 150 mm. The pressure extraction pipe 12 has a ventilation passage 12a, one end 12b is inserted into the sand mold 11 through the opening 10b, and the other end 12G protrudes from the sand mold 11. The pressure outlet pipe 12 has an inner diameter of 2.5 mm and a length of 250 mm. The sand mold section 11 is formed from shell sand loaded into the container 10.

砂型部11は実際の鋳造ラインで用いる実物シェル中子
の粘結剤配合量に対応した粘結剤配合量をもつ。
The sand mold part 11 has a binder compounding amount corresponding to the binder compounding amount of the actual shell core used in the actual casting line.

実施例1のテストピース1は次のように製造した。即ち
、160’Cに加熱したフーカ砂8kgにノボラック型
フェノール樹脂160gを添加して25秒間攪拌し、こ
れに、ヘキサメチレンテトラミン(以下、ヘキサミンと
いう)32gと水12oqよりなる水溶液を添加して2
5秒間攪拌し、更に、8qのステアリン酸カルシウムを
添加して20秒間攪拌してレジンコーテツドサンドを得
た。
Test piece 1 of Example 1 was manufactured as follows. That is, 160 g of novolac type phenolic resin was added to 8 kg of Fuqua sand heated to 160'C, stirred for 25 seconds, and an aqueous solution consisting of 32 g of hexamethylenetetramine (hereinafter referred to as hexamine) and 12 oz of water was added.
The mixture was stirred for 5 seconds, and further 8 q of calcium stearate was added and stirred for 20 seconds to obtain resin coated sand.

そして容器10の中心部に圧力取出し管12を通すと共
に、このレジンコーテツドサンドを容器1O内に充填す
る。
Then, the pressure outlet pipe 12 is passed through the center of the container 10, and the resin coated sand is filled into the container 1O.

更に焼成処理で用いる金型2を第3図に示す。Further, FIG. 3 shows a mold 2 used in the firing process.

金型2は、溝部20をもつ一対の型部21と、型部21
を開閉可能に保持するヒンジ部22とからなる。そして
溝部20にテストピース1を嵌めた状態で温度調節器に
より金型2を300’C±2℃に設定し、これによりレ
ジンコーテツドサンドを2分間焼成した。
The mold 2 includes a pair of mold parts 21 having a groove part 20 and a mold part 21.
It consists of a hinge part 22 that holds the holder so that it can be opened and closed. Then, with the test piece 1 fitted into the groove 20, the mold 2 was set at 300'C±2C using a temperature controller, and the resin coated sand was fired for 2 minutes.

その後、ガス圧検出手段としてのマノメータ3、石英管
40を配置した管状電気炉4とを用い、電気炉4の炉室
に第1図に示すようにテストピース1を装入すると共に
、圧力取出し管12とマノメータ3とをチューブ3aで
接続した状態で、テストピース1を加熱した。加熱温度
は1300±10℃とした。なお電気炉4の温度設定は
熱電対45、熱電対温度計46を用いて行った。またマ
ノメータ3には水3Cが注入されている。電気炉4はシ
リコ三ツ上管状電気炉とした。
Thereafter, using a manometer 3 as a gas pressure detection means and a tubular electric furnace 4 in which a quartz tube 40 is arranged, the test piece 1 is charged into the furnace chamber of the electric furnace 4 as shown in FIG. 1, and the pressure is taken out. Test piece 1 was heated with tube 12 and manometer 3 connected through tube 3a. The heating temperature was 1300±10°C. Note that the temperature of the electric furnace 4 was set using a thermocouple 45 and a thermocouple thermometer 46. Furthermore, water 3C is injected into the manometer 3. The electric furnace 4 was a silico three-top tubular electric furnace.

そして、加熱に伴い砂型部11から発生したガスを圧力
取出し管12の通気路12a、チューブ3aを通してマ
ノメータ3に導入し、マノメータ3でそのガス圧を30
分間測定した。
Then, the gas generated from the sand mold part 11 due to heating is introduced into the manometer 3 through the air passage 12a of the pressure extraction pipe 12 and the tube 3a, and the manometer 3 increases the gas pressure by 30°C.
Measured for minutes.

測定結果を第4図の特性線A1に示す。特性線A1に示
すように山なり形状を呈し、加熱初期においてはガス圧
は比較的緩かに増加したが、はぼ60秒経過したときに
ガス圧はほぼ25 CI / artであり、その後ガ
ス圧は次第に低下した。
The measurement results are shown in characteristic line A1 in FIG. As shown in characteristic line A1, the gas pressure increased relatively slowly in the initial stage of heating, but after about 60 seconds, the gas pressure reached approximately 25 CI/art, and then the gas pressure increased. The pressure gradually decreased.

(実施例2) ノボラック型フェノール樹脂を144CI、ヘキサミン
を28.8gとした以外は実施例1と同じ条件で、実施
例2にかかるレジンコーテツドサンドを得た。そして、
実施例1と同様に、このレジンコーテツドサンドで砂型
部11をもつテストピース1を形成し、ガス圧を測定し
た。その測定結果を第4図の特性線A2に示す。特性線
A2に示すように、加熱初期においてはガス圧は比較的
緩かに増加したが1、・はぼ60秒経過したときにガス
圧はほぼ16〜17C1/cfflであり、その後ガス
圧は次第に低下した。
(Example 2) A resin-coated sand according to Example 2 was obtained under the same conditions as in Example 1 except that the novolac type phenol resin was 144 CI and the hexamine was 28.8 g. and,
As in Example 1, a test piece 1 having a sand mold part 11 was formed from this resin-coated sand, and the gas pressure was measured. The measurement results are shown in characteristic line A2 in FIG. As shown in characteristic line A2, the gas pressure increased relatively slowly in the initial stage of heating, but when approximately 60 seconds had elapsed, the gas pressure was approximately 16 to 17C1/cffl, and then the gas pressure decreased. It gradually decreased.

(実施例3) ヘキサミンを240とした以外は実施例1と同じ条件で
、実施例3にかかるレジンコーテツドサンドを得た。こ
のレジンコーテツドサンドで砂型部11をもつテストピ
ース1を形成し、ガス圧を測定した。その測定結果を特
性線A3に示す。特性線A3に示すように、加熱初期に
おいてはガス圧は比較的緩かに増加したが、はぼ60秒
経過し□たときにガス圧はほぼ23 Q / crtr
であり、その後ガス圧は次第に低下した。
(Example 3) A resin coated sand according to Example 3 was obtained under the same conditions as in Example 1 except that hexamine was changed to 240. A test piece 1 having a sand mold part 11 was formed using this resin coated sand, and the gas pressure was measured. The measurement results are shown in characteristic line A3. As shown in characteristic line A3, the gas pressure increased relatively slowly in the initial stage of heating, but when approximately 60 seconds had passed, the gas pressure increased to approximately 23 Q/crtr.
After that, the gas pressure gradually decreased.

(比較例1) 実施例1で得られたレジンコーテツドサンドを用い、3
00’Cで2分間焼成し、第6図〜第8図に示す実物中
子7を得た。この実物中子7は砂型部70と砂型部70
に挿入された圧力取出し管71とからなる。なお砂型部
70は22mmx22mmx200mmの大きさである
。圧力取出し管71は内径が2.5mm、長さが250
mmである。
(Comparative Example 1) Using the resin coated sand obtained in Example 1, 3
The product was fired at 00'C for 2 minutes to obtain the actual core 7 shown in FIGS. 6 to 8. This actual core 7 has a sand mold part 70 and a sand mold part 70.
It consists of a pressure extraction pipe 71 inserted into. Note that the sand mold part 70 has a size of 22 mm x 22 mm x 200 mm. The pressure extraction pipe 71 has an inner diameter of 2.5 mm and a length of 250 mm.
It is mm.

そして第6図〜第8図に示すようにキャビティ60をも
つ主型6に実物中子7を配置すると共に、圧力取出し管
71をガス圧計につなぎ、その状態でキャビティ60に
高温の溶湯を流しガス圧計で1分間ガス圧を測定した。
Then, as shown in FIGS. 6 to 8, the actual core 7 is placed in the main mold 6 having a cavity 60, and the pressure outlet pipe 71 is connected to a gas pressure gauge, and in this state, the high temperature molten metal is poured into the cavity 60. Gas pressure was measured for 1 minute using a gas pressure gauge.

その測定結果を特性線B1に示す。なお溶湯の材質はF
e12で、注湯温度は1400℃である。特性線B1に
示す様に、注湯初期の段階でガス圧は急激に立上がり、
はぼ20秒経過時にガス圧はほぼ23g/crirであ
った。
The measurement results are shown in characteristic line B1. The material of the molten metal is F.
At e12, the pouring temperature is 1400°C. As shown in characteristic line B1, gas pressure rises rapidly at the initial stage of pouring.
After about 20 seconds, the gas pressure was approximately 23 g/crir.

(比較例2) 実施例2で得られたレジンコーテツドサンドを用い、比
較例1と同様に実物中子7を得、その中   ゛子7を
主型6に配置した状態でキャビティ60に溶湯を流し、
ガス圧を測定した。その測定結果を特性線B2に示す。
(Comparative Example 2) Using the resin coated sand obtained in Example 2, an actual core 7 was obtained in the same manner as in Comparative Example 1, and the molten metal was poured into the cavity 60 with the core 7 placed in the main mold 6. flowing,
Gas pressure was measured. The measurement results are shown in characteristic line B2.

特性線B2に示す様に、注湯初期の段階でガス圧は急激
に立上がり、はぼ20秒経過時にガス圧はほぼ16〜1
7q/cdであった。
As shown in characteristic line B2, the gas pressure rises rapidly at the initial stage of pouring, and after about 20 seconds, the gas pressure reaches approximately 16 to 1
It was 7q/cd.

(比較例3) 実施例3で得られたレジンコーテツドサンドを用い、比
較例1と同様に実物中子7を得、その実物中子7を主型
6に配置した状態でキャビティ6Oに溶湯を流し、ガス
圧を測定した。その測定結果を特性線B3に示す。特性
線B3に示す様に、注湯初期の段階でガス圧は急激に立
上がり、はぼ20秒経過時にガス圧はほぼ22q/cm
であった。
(Comparative Example 3) Using the resin coated sand obtained in Example 3, a real core 7 was obtained in the same manner as in Comparative Example 1, and with the real core 7 placed in the main mold 6, molten metal was poured into the cavity 6O. was flown through the pipe, and the gas pressure was measured. The measurement results are shown in characteristic line B3. As shown in characteristic line B3, the gas pressure rises rapidly at the initial stage of pouring, and after about 20 seconds, the gas pressure reaches approximately 22q/cm.
Met.

(評価) 上記説明したように実施例1〜3と比較例1〜3とを比
較すると、加熱初期にお(プるガス圧の増加形態は異な
るものの、ガス圧の最高値をみると実施例1は比較例1
に対応し、実施例2は比較例2に対応し、実施例3は比
較例3に対応する。従って実際に溶湯を注いだ場合のガ
ス圧は、実施例1〜3の測定結果から推定できる。
(Evaluation) As explained above, when comparing Examples 1 to 3 and Comparative Examples 1 to 3, it is found that although the increase form of the gas pressure (increased) at the initial stage of heating is different, looking at the highest value of gas pressure, 1 is comparative example 1
, Example 2 corresponds to Comparative Example 2, and Example 3 corresponds to Comparative Example 3. Therefore, the gas pressure when molten metal is actually poured can be estimated from the measurement results of Examples 1 to 3.

[発明の効果] 本発明の鋳型内ガス圧検知方法によれば、実際に溶湯を
注ぐことなくガス圧を測定でき、従って溶解炉や造形機
などの鋳造設備のない場所においても鋳型内のガス圧を
検知できる。
[Effects of the Invention] According to the method for detecting gas pressure in a mold of the present invention, gas pressure can be measured without actually pouring molten metal, and therefore gas pressure in a mold can be measured even in a place without casting equipment such as a melting furnace or a molding machine. Can detect pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は測定方法を示す構成図、第2図はテストピース
を示ず断面図、第3図はデス1〜ピースのレジンコーテ
ツドサンドを金型で焼成している状態の斜視図である。 第4図は実施例にかかる測定結果を示すグラフであり、
第5図は比較例にかかる測定結果を示すグラフである。 第6図、第7図および第8図は比較例で用いる主型を示
し、第6図は平面図、第7図は正面図、第8図は側面図
である。 図中、1はテストピース、10は容器、11は砂型部、
12は圧力取出し管、3はマノメータ、4は電気炉を示
ず。 特許出願人 アイシン化工株式会社
Figure 1 is a configuration diagram showing the measurement method, Figure 2 is a sectional view without the test piece, and Figure 3 is a perspective view of the resin coated sand of Death 1 to Piece being fired in a mold. . FIG. 4 is a graph showing the measurement results according to the example,
FIG. 5 is a graph showing the measurement results of the comparative example. 6, 7, and 8 show the main mold used in the comparative example, with FIG. 6 being a plan view, FIG. 7 being a front view, and FIG. 8 being a side view. In the figure, 1 is a test piece, 10 is a container, 11 is a sand mold part,
12 is a pressure extraction pipe, 3 is a manometer, and 4 is an electric furnace (not shown). Patent applicant Aisin Kako Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも一端が開口した所定断面形状をもつ容
器と該容器内に装填され実物中子の粘結剤配合量に対応
した粘結剤配合量をもつ砂型部と一端部が該容器の開口
を介して該砂型部に挿入され他端部が該砂型部から突き
出た通気路をもつ圧力取出し管とをもつテストピースを
得る工程と、ガス圧検出手段と、電気炉とを用い、 該テストピースを該電気炉の炉室に装入し、該テストピ
ースの砂型部の粘結剤の分解温度以上に該テストピース
を加熱するとともに、加熱に伴い発生したガスを該圧力
取出し管の通気路を通して該ガス圧検出手段に導入して
該ガス圧検出手段でそのガス圧を測定し、そのガス圧の
測定値から、実物中子を組込んだ注湯時の鋳型内におけ
る実際のガス圧を推定する工程とを順に実施することを
特徴とする鋳型内ガス圧検知方法。
(1) A container with a predetermined cross-sectional shape with at least one open end, a sand mold part loaded into the container and having a binder content corresponding to the binder content of the actual core, and one end with an open end of the container. A step of obtaining a test piece having a pressure extraction pipe inserted into the sand mold part through the sand mold part and having a ventilation passage whose other end protrudes from the sand mold part, using a gas pressure detection means, and an electric furnace, the test The test piece is charged into the furnace chamber of the electric furnace, and the test piece is heated to a temperature higher than the decomposition temperature of the binder in the sand mold part of the test piece, and the gas generated during heating is passed through the air passage of the pressure extraction pipe. The gas pressure is introduced into the gas pressure detection means through the gas pressure detection means, and the gas pressure is measured by the gas pressure detection means, and from the measured value of the gas pressure, the actual gas pressure in the mold when pouring into which the actual core is installed is determined. A method for detecting gas pressure in a mold, characterized in that the steps of estimating are carried out in order.
JP29015090A 1990-10-26 1990-10-26 Gas pressure detection method in mold Expired - Lifetime JPH0676935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29015090A JPH0676935B2 (en) 1990-10-26 1990-10-26 Gas pressure detection method in mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29015090A JPH0676935B2 (en) 1990-10-26 1990-10-26 Gas pressure detection method in mold

Publications (2)

Publication Number Publication Date
JPH04164218A true JPH04164218A (en) 1992-06-09
JPH0676935B2 JPH0676935B2 (en) 1994-09-28

Family

ID=17752426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29015090A Expired - Lifetime JPH0676935B2 (en) 1990-10-26 1990-10-26 Gas pressure detection method in mold

Country Status (1)

Country Link
JP (1) JPH0676935B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021564A (en) * 2001-07-05 2003-01-24 Toyota Motor Corp Prediction method for gas pressure in mold component by model
CN114235661A (en) * 2021-12-08 2022-03-25 潍柴动力股份有限公司 Visual test system and test method for gas generation and exhaust performance of sand core

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347792A (en) * 1993-06-02 1994-12-22 Ono Gijutsu Kenkyusho:Kk Edge light illumination plate partially provided with light transmission communicating section between light transmission plate and plane reflection member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021564A (en) * 2001-07-05 2003-01-24 Toyota Motor Corp Prediction method for gas pressure in mold component by model
JP4730575B2 (en) * 2001-07-05 2011-07-20 トヨタ自動車株式会社 Gas pressure prediction method of mold parts by model
CN114235661A (en) * 2021-12-08 2022-03-25 潍柴动力股份有限公司 Visual test system and test method for gas generation and exhaust performance of sand core
CN114235661B (en) * 2021-12-08 2024-05-17 潍柴动力股份有限公司 Visual testing system and method for gas emission and exhaust performance of sand core

Also Published As

Publication number Publication date
JPH0676935B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
US3367189A (en) Apparatus for preparing metal test samples from molten metal baths
US4358948A (en) Method and apparatus for predicting metallographic structure
JPH04164218A (en) Detecting method for gas pressure in casting mold
US3813944A (en) Molten metal sampling device
US4023268A (en) Method of producing vent holes in tire molds
US4105191A (en) Crucible for the thermal analysis of aluminum alloys
Wan et al. Research on testing method of resin sand high temperature compressive strength
Samuels et al. Measurement of gas evolution from PUNB bonded sand as a function of temperature
Budavári et al. The Effect of Coremaking Parameters on the Thermal Distortion Behaviour of Resin-Coated Sand
WO2005081785A2 (en) Method of drying a sand mold using a vacuum
US2504143A (en) Process and apparatus for testing gas evolution characteristics of molding sand
US2452613A (en) Method of determining effect of mold conditions on metal castings
US3537295A (en) Method and apparatus for testing foundry mold materials
GB1600876A (en) Method and apparatus for prediciting metallographic structure
Zych et al. Thermal Volumetric Analysis (TVA): A New Test Method of the Kinetics of Gas Emissions from Moulding Sands and Protective Coatings Heated by Liquid Alloy Additional information is available at the end of the chapter
JP4100819B2 (en) Mold cracking test method and test apparatus therefor
JPH0596365A (en) Method for deciding shrinkage property of molten metal
JPH04172240A (en) Decomposition temperature measuring apparatus
Ferro et al. Thermal analyses from thermally-controlled solidification (TCS) trials on large investment castings
JPS6035885Y2 (en) Cast iron graphite shape furnace test equipment
US2485981A (en) Method of and device for testing foundry sand
JPS63230252A (en) Method for deciding hardened condition in mold
Stachanczyk et al. Permeability of Ceramic Moulds Manufactured by the Lost Wax Process, Determined at the Temperature Range 20-900 deg C
Mabilais et al. Mould-Making With Polystyrene Patterns and Binderless Sand. II
Deb et al. Prediction of temperature during processing through ladle furnace in LD 2