JPH04163983A - Semiconductor optical element - Google Patents

Semiconductor optical element

Info

Publication number
JPH04163983A
JPH04163983A JP28964390A JP28964390A JPH04163983A JP H04163983 A JPH04163983 A JP H04163983A JP 28964390 A JP28964390 A JP 28964390A JP 28964390 A JP28964390 A JP 28964390A JP H04163983 A JPH04163983 A JP H04163983A
Authority
JP
Japan
Prior art keywords
layer
light
semiconductor optical
regions
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28964390A
Other languages
Japanese (ja)
Other versions
JP3043797B2 (en
Inventor
Michiyo Nishimura
西村 三千代
Atsushi Nitta
淳 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2289643A priority Critical patent/JP3043797B2/en
Publication of JPH04163983A publication Critical patent/JPH04163983A/en
Application granted granted Critical
Publication of JP3043797B2 publication Critical patent/JP3043797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To increase the degree of freedoms of a design of an optical element having a light emission and a light reception by forming first and second regions to be formed to become an active layer or a light absorption layer in the same waveguide, and providing means for independently controlling the first and second regions. CONSTITUTION:Since electric connections are conducted in a passage of a p-type electrode 22, a p-type clad layer 18, an active layer 18, a first n-type clad layer 19 and an n-type electrode 24 in a light emitting unit, if a forward bias is applied between the electrodes 22 and 24, a current flows in this passage, carrier is injected to an active layer 14, a population inversion takes place, and an inductive emission occurs. On the other hand, in a light receptor, electric connections are conducted in a passage of the electrode 22, the layer 18, a light absorption layer 16, a second n-type clad layer 21, and an n-type electrode 23. Accordingly, if a reverse bias is applied between the electrodes 22 and 23, a light is detected in the layer 16.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体光素子に関し、より詳しくは半導体発
光及び受光素子を兼ねられる他、新たな機能を備えたシ
ステムの構成要素として期待される半導体光素子に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor optical device, and more specifically, it is expected to serve as a semiconductor light emitting and light receiving device as well as a component of a system with new functions. Related to semiconductor optical devices.

[従来の技術] 従来、半導体発光素子と受光素子とを兼ね備えた半導体
光素子は幾つか提案されており、多機能な素子として各
種のシステムに応用されている。
[Prior Art] Several semiconductor optical devices that have both a semiconductor light-emitting device and a light-receiving device have been proposed in the past, and are applied to various systems as multifunctional devices.

最も一般的な従来例を第7図に示す。この従来例では、
半導体レーザ素子の共振器の一部に活性層75を越えて
垂直な端面を有した平行な溝78を設け、更に各々の部
分に独立した電極79a、79bを備えることによって
(80は共通電極)、片側に形成された発光部76と、
もう片側に形成され、発光部76から出射し再び活性層
75へ人力する光を受光する受光部77とに分離してい
る。この従来例においては、同一の活性層75を用いて
、発光、受光の機能を部分的に分担させるものであり、
受光部77からの光信号を発光部76に帰還させAPC
(自動発光量制御)を行なうことが提案されている。
The most common conventional example is shown in FIG. In this conventional example,
By providing a parallel groove 78 with a vertical end surface beyond the active layer 75 in a part of the resonator of the semiconductor laser element, and further providing independent electrodes 79a and 79b in each part (80 is a common electrode). , a light emitting section 76 formed on one side;
It is separated into a light receiving part 77 which is formed on the other side and receives light emitted from the light emitting part 76 and inputted to the active layer 75 again. In this conventional example, the same active layer 75 is used to partially share the functions of light emission and light reception.
The optical signal from the light receiving section 77 is returned to the light emitting section 76 and APC is performed.
It has been proposed to perform (automatic light emission amount control).

[発明が解決しようとする課題] この様な発光、受光を兼ね備えた素子では、両者(発光
部と受光部)間の光及び電気的な分離の方法が重要であ
り、それにより使用される機能も決定される。従って、
光学的及び電気的な分離に自由度がある構成はど、設計
の任意度が増し更に新しい機能が期待できることになる
[Problems to be Solved by the Invention] In such an element that has both light emission and light reception, the method of optical and electrical separation between the two (the light emitting part and the light receiving part) is important, and the functions used thereby are important. is also determined. Therefore,
A configuration in which there is a degree of freedom in optical and electrical separation increases the degree of freedom in design, and new functions can be expected.

しかし、上記従来例では、光学的な分離と電気的な分離
が同時に行われていて、機能も限定されていた。例えば
、受光部77で検出できるのは発光部76から放出され
た光であり、発光部76内部の光は検出できないことに
なる。
However, in the conventional example described above, optical separation and electrical separation are performed at the same time, and the functions are also limited. For example, the light receiving section 77 can detect only the light emitted from the light emitting section 76, and cannot detect the light inside the light emitting section 76.

発光部内部の光を検出する為には1発光部と受光部の光
学的分離がなく電気的分離が行なわれる必要があるが、
しかし上記従来例では、その様な構成をとる程、分離の
自由度がない。
In order to detect the light inside the light emitting part, there is no optical separation between the light emitting part and the light receiving part, but it is necessary to electrically separate the light emitting part and the light receiving part.
However, in the conventional example described above, there is not enough freedom in separation to adopt such a configuration.

また、上記従来例では、発光と受光を行なうのに同一の
活性層75を用いている為、両者の特性を同時に最適化
することは困難であった。詰まり、発光部の特性(発光
スペクトルなど)を最適化しても、受光効率(感度)は
必ずしも発光波長でJ’l適化されるとは言えないとい
う欠点がある。
Furthermore, in the conventional example described above, since the same active layer 75 is used for light emission and light reception, it is difficult to optimize both characteristics at the same time. Even if the characteristics of the light emitting section (such as the emission spectrum) are optimized, the light reception efficiency (sensitivity) cannot necessarily be said to be optimized at the emission wavelength.

よって、本発明の目的は、上記の課題に鑑み、設計の自
由度が高く、要求に対して柔軟に対処できる構成を有し
た半導体光素子を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a semiconductor optical device having a structure that has a high degree of freedom in design and can flexibly respond to requests.

[課題を解決する為の手段] 上記目的を達成する為の本発明による半導体光素子にお
いては、活性層と光吸収層のうちの一方になるべく構成
された第11Jj域と第2領域が、例えば、互いに導波
モードを共有する様に、同一の導波路中に形成され、更
に上記第1及び第2fiR@を独立に制御する手段(を
流注入、電界印加、光励起などによって〕が設けられて
いる。
[Means for Solving the Problems] In the semiconductor optical device according to the present invention for achieving the above object, the 11th Jj region and the second region preferably configured as one of the active layer and the light absorption layer are, for example, , are formed in the same waveguide so as to share the waveguide mode with each other, and further provided with a means (by flow injection, electric field application, optical excitation, etc.) for independently controlling the first and second fiR@. There is.

より具体的には、第1領域と第2領域の一方は活性層と
して、他方は光吸収層として形成されたり、前記制御手
段が活性層に反転分布を形成する為の電極と光吸収層か
らの電界を検出する為の電極とを備えた電気的制御手段
であったり、光吸収層及び光吸収層を制御する電気的制
御手段から成る受光部で検出する光信号を利用して、活
性層及び活性層を制御する電気的制御手段から成る発光
部に対して制御を与える構成となっていたり、上記同一
の光導波路へ外部からの光信号を人出力する手段を有し
、この光信号は導波路中を伝搬することで光増幅され、
入出方間増幅率が常に一定になる様に受光部で検出され
る光信号によって発光部が制御される構成となっていた
りする。
More specifically, one of the first region and the second region is formed as an active layer and the other is formed as a light absorption layer, or the control means is formed from an electrode and a light absorption layer for forming population inversion in the active layer. The active layer can be detected by using an optical signal detected by a light receiving section consisting of an electric control means comprising an electrode for detecting the electric field of the active layer, or a light absorption layer and an electric control means for controlling the light absorption layer. and an electrical control means for controlling the active layer, the light emitting section is configured to be controlled, and it has a means for outputting an optical signal from the outside to the same optical waveguide, and this optical signal is Light is amplified by propagating through a waveguide,
The light emitting section may be controlled by the optical signal detected by the light receiving section so that the amplification factor between input and output is always constant.

この様に、本発明によれば、発光部又は受光部となるべ
く形成された2つの領域が同一の導波路中に作製され、
これらが別々に制御される構成となっているので、自由
度の高い発光受光素子などになる半導体光素子が実現さ
れる。
In this way, according to the present invention, two regions preferably formed as a light emitting part or a light receiving part are created in the same waveguide,
Since these are configured to be controlled separately, a semiconductor optical device that can be used as a light emitting/receiving device with a high degree of freedom can be realized.

[実施例] 第1図は本発明の第1実施例の斜視図であり、第2図は
第1実施例を用いたシステムの例を示す第1図において
、半絶縁性の(以下、SIと記す)GaAs基板11上
に、厚さILLmの5I−GaAsバッファFJ12、
厚さ1.5umの5I−Alo、i Gaa、y As
クラッド層、厚さ0. 1&imのノンドープA 1 
o、 osG a o、 *sA S活性層14、厚さ
0.3μmのS I−A 1 a、z G ao、s 
Asクラッド層15、厚さ0.1μmのノンドープA 
1 o、 osG a o、 *sA S吸収層16.
厚さ1μmのS I  A 1o、x Gao、y A
sクラッド層17を分子線エピタキシャル法を用いて順
次積層した。
[Example] Fig. 1 is a perspective view of a first embodiment of the present invention, and Fig. 2 shows an example of a system using the first embodiment. ) A 5I-GaAs buffer FJ12 with a thickness ILLm is placed on the GaAs substrate 11,
5I-Alo, i Gaa, y As with a thickness of 1.5 um
Cladding layer, thickness 0. 1&im non-doped A 1
o, osG ao, *sA S active layer 14, 0.3 μm thick S I-A 1 a,z G ao,s
As cladding layer 15, non-doped A with a thickness of 0.1 μm
1 o, osG a o, *sA S absorption layer 16.
1 μm thick S I A 1o, x Gao, y A
S cladding layers 17 were sequentially laminated using the molecular beam epitaxial method.

次に、ストライブの領域を残して活性層14を越え、ク
ラッド層13に至るまでをエツチングした。その後、ス
トライブ及びストライブの片側にマスクをし、ストライ
ブの片側(第1図右側)のみをp−A l o、z G
 ao、t A sクラッド層18で液相エピタキシャ
ル法を用いて埋め込んだ。
Next, etching was performed beyond the active layer 14 and up to the cladding layer 13, leaving the stripe region. After that, mask the stripe and one side of the stripe, and mask only one side of the stripe (right side in Figure 1).
The ao, t As cladding layer 18 was embedded using a liquid phase epitaxial method.

更に、マスクを取り除き、先程残したストライブのもう
片側(第1図左側)を第1n−Alo、sG a o、
 y A sクラッド層19. Alo、i Gao、
yAs高抵抗層20、第2 n  A l o、s G
 ao、y Asクラッド層21で同じく液相エピタキ
シャル用いて埋め込んだ。この際、S I −A 1 
o、w Ga。
Furthermore, the mask was removed and the other side of the stripe left earlier (left side in Figure 1) was used as the 1st n-Alo, sG ao,
y As cladding layer 19. Alo, i Gao,
yAs high resistance layer 20, second n A lo, s G
The ao, y As cladding layer 21 was similarly filled using liquid phase epitaxial method. At this time, S I -A 1
o, w Ga.

。Asクラッド層15のほぼ中間位置に高抵抗層20が
来るように、各々の厚みを制御した。
. The thickness of each layer was controlled so that the high resistance layer 20 was located approximately in the middle of the As cladding layer 15.

更に、ストライブから数μm離れてストライブに沿って
1部分的に高抵抗層20までをエツチングにより取り除
いた。
Furthermore, a portion up to the high-resistance layer 20 was removed along the stripe by etching at a distance of several μm from the stripe.

更に、p−電極22をp−クラツド層18上部に、n−
’を極23.24をそれぞれ第1及び第2n−クラッド
層19.21上部に、オーミックコンタクトがとれるよ
う前処理をした後に形成した本実施例は発光部と受光部
を同一導波路中に備えたのが特徴であり、発光部と受光
部夫々に対し電気的制御を与えることのできる電極構造
を有している。
Furthermore, a p-electrode 22 is placed on top of the p-cladding layer 18, and an n-electrode 22 is placed on top of the p-clad layer 18.
The poles 23 and 24 were formed on the first and second n-cladding layers 19 and 21 after pretreatment to establish ohmic contact.This embodiment has a light emitting part and a light receiving part in the same waveguide. The feature is that it has an electrode structure that can electrically control the light emitting part and the light receiving part.

第1実施例の動作を説明する。The operation of the first embodiment will be explained.

発光部においては、p−電極22→p−クラツド層18
→活性層14→第1n−クラッド層19−In−電極2
4を通る経路で電気的接続が成されているので、画電極
22.24間に順バイアスを与えれば、この経路で電流
が流れ、活性層14にキャリアが注入されて反転分布が
形成され誘導放出が生じる。
In the light emitting part, p-electrode 22→p-cladding layer 18
→Active layer 14→First n-cladding layer 19-In-electrode 2
Since electrical connection is made through the path passing through the picture electrodes 22 and 24, if a forward bias is applied between the picture electrodes 22 and 24, a current will flow through this path, carriers will be injected into the active layer 14, a population inversion will be formed, and induction will occur. A release occurs.

一方、受光部においては、p−電極22→p−クラッド
層18−光吸収層16→第2nクラッド層21→n−電
極23の経路で電気的接続が成されている。よって、画
電極22.23に逆バイアスを与えれば光吸収層16で
光が検出されることになる。
On the other hand, in the light receiving section, electrical connection is made through the path of p-electrode 22 -> p- cladding layer 18 - light absorption layer 16 -> second n-cladding layer 21 -> n-electrode 23 . Therefore, if a reverse bias is applied to the picture electrodes 22 and 23, light will be detected by the light absorption layer 16.

この際、活性層14と光吸収層16とは光学的に結合し
ていて両者は1つの導波路を形成しているので、発光部
内部の光パワーを検出することができる。即ち、本実施
例では、検出されるのは素子内部の光パワーであり、上
記従来例の様な発光部外へ放出される光ではない。よっ
て、本実施例のものを半導体レーザとして使用する場合
、検出されるのは素子内部の光パワーであることに留意
する必要がある。
At this time, since the active layer 14 and the light absorption layer 16 are optically coupled and form one waveguide, the optical power inside the light emitting section can be detected. That is, in this embodiment, what is detected is the optical power inside the element, and not the light emitted outside the light emitting section as in the conventional example. Therefore, when using the device of this example as a semiconductor laser, it is necessary to keep in mind that what is detected is the optical power inside the device.

上記実施例の構成において、電極22.23間及び電極
22.24間の両方ともに順バイアスを与えれば、上記
発光部、受光部共に発光部となり通1常の半導体レーザ
として機能させることも可能である。
In the configuration of the above embodiment, if a forward bias is applied between both the electrodes 22 and 23 and between the electrodes 22 and 24, the light emitting section and the light receiving section both become light emitting sections and can function as a normal semiconductor laser. be.

また、電極22.23又は電極22.24の一方の組の
みを利用し、各々の働きのみを個別に行なわせることも
出来る。詰まり、発光部のみに順バイアスを与えれば半
導体レーザとなり、受光部のみに逆バイアスを与えれば
pin−PDとして機能する。
It is also possible to use only one set of electrodes 22.23 or 22.24 and have each function performed individually. If forward bias is applied only to the light emitting part, it becomes a semiconductor laser, and if reverse bias is applied only to the light receiving part, it functions as a pin-PD.

更に、第7図の従来例の如く、共振器方向に、活性層1
4に至るまでの溝を設け、片側を発光部、もう片側を受
光部として用いることも可能である。こうして、APC
制御を行なえる等のことが出来る。また、本実施例の素
子では、発光部の発光特性に合わせて光吸収層16の設
計が行なえる、即ち、光吸収部16の層構成(組成、ド
ープ量)を独自に変え、受光効率の向上などの特性の向
上を行なえる。
Furthermore, as in the conventional example shown in FIG.
It is also possible to provide grooves up to 4 and use one side as a light emitting section and the other side as a light receiving section. Thus, APC
It is possible to do things such as control. Furthermore, in the device of this example, the light absorption layer 16 can be designed in accordance with the light emission characteristics of the light emitting part. In other words, the layer structure (composition, doping amount) of the light absorption part 16 can be independently changed to improve the light reception efficiency. You can improve characteristics such as improvement.

さて、本実施例は発光部と受光部とを同時に且つ独立に
駆動でき、発光部内部の光パワーを検出できるという新
しい機能を有するのであるが、これを利用したシステム
例を第2図に沿って説明する。第2図において、25は
第1実施例を光増幅素子30として利用すべく両端面に
施されたARココ−ィング、26は光ファイバ、27は
AGC回路である。
Now, this embodiment has a new function of being able to drive the light emitting part and the light receiving part simultaneously and independently, and detecting the optical power inside the light emitting part.An example of a system using this is shown in Figure 2. I will explain. In FIG. 2, 25 is an AR co-coating applied to both end faces in order to use the first embodiment as an optical amplification element 30, 26 is an optical fiber, and 27 is an AGC circuit.

本システムは光中継システムとなっており、光ファイバ
26で伝送された信号が半導体光素子内部を導波する際
に増幅され、もう一方の光ファイバ26へと出力される
This system is an optical relay system, in which a signal transmitted through an optical fiber 26 is amplified while being guided inside the semiconductor optical device, and is output to the other optical fiber 26.

その際、増幅度は常に一定になることが望まれる。本シ
ステムでは、増幅器30内部の光を受光部で受光し、発
光部へ帰還してここへの電流量を制御する様なオートゲ
インコントロールを行なうことが出来る。信号光の検出
は、受光部に信号光の周波数に合わせた復調回路を持た
せることで(これはAGC回路27中に設けられる)D
Cレベルである光増幅器30の自然放出光と分離してこ
れを行なうことが出来る。
In this case, it is desired that the degree of amplification is always constant. In this system, the light inside the amplifier 30 is received by the light receiving section, and the light is returned to the light emitting section to perform auto gain control such as controlling the amount of current thereto. The signal light can be detected by providing the light receiving section with a demodulation circuit that matches the frequency of the signal light (this is provided in the AGC circuit 27).
This can be done separately from the C-level spontaneous emission light of the optical amplifier 30.

信号光のない場合の自然放出光のレベルを検出してAG
Cを行なうことも考えられる。
AG by detecting the level of spontaneous emission light when there is no signal light
It is also possible to do C.

1更に、受光部の電極23を共振方向で分割し、入力側
で受光する信号レベルと出力側で受光する信号レベルを
比較し、それらの比を一定にする様に発光部に帰還をか
けてAGCを行なうことも出来る。
1 Furthermore, the electrode 23 of the light receiving section is divided in the resonance direction, the signal level received on the input side and the signal level received on the output side are compared, and feedback is applied to the light emitting section so as to keep the ratio constant. AGC can also be performed.

従来の光増幅器でもAGCは必要とされており、一般に
は出力信号光の一部を分離する為にビームスプリッタや
ファイバ型分波器などが用いられている。これに比べ、
本システムでは分離の必要がな(装置が非常に簡略化さ
れる。
Conventional optical amplifiers also require AGC, and generally a beam splitter, fiber type demultiplexer, or the like is used to separate a part of the output signal light. Compared to this,
This system does not require separation (the equipment is greatly simplified).

第1図の第1実施例では、活性層14と光吸収層16と
を同じ組成、同じ膜厚で構成した。従って、前述したこ
とからも分かる様に、構成をそのままにし電極22.2
3及び22.24間のバイアス状態を全く逆にすれば、
活性層14を受光部として光吸収層16を発光部として
用いられる。
In the first embodiment shown in FIG. 1, the active layer 14 and the light absorption layer 16 have the same composition and the same film thickness. Therefore, as can be seen from the above, the structure remains the same and the electrodes 22.2
If the bias conditions between 3 and 22.24 are completely reversed,
The active layer 14 is used as a light receiving part and the light absorbing layer 16 is used as a light emitting part.

但し、受光部は発光部にとって損失となり1発光部の特
性を劣化させていることにもなり、必ずしも発光部と受
光部を同等にする必要はない。むしろ1発光部は発光特
性に合わせて、受光部は受光特性に合わせて最適化する
のが良く、各々を独立に設計できるのが本実施例の特徴
でもある。その設計は、期待される機能に合わせて行な
われるのがよい。
However, the light receiving section causes a loss to the light emitting section and deteriorates the characteristics of one light emitting section, so it is not necessarily necessary to make the light emitting section and the light receiving section the same. Rather, it is better to optimize one light-emitting section according to the light-emitting characteristics and one light-receiving section according to the light-receiving characteristics, and the feature of this embodiment is that each can be designed independently. Its design should be tailored to the expected functionality.

第2図におけるシステムでの光増幅素子30の設計例を
第3図(a)〜(d)に示す。
Design examples of the optical amplifying element 30 in the system shown in FIG. 2 are shown in FIGS. 3(a) to 3(d).

第3図(a)は第1図の第1実施例で説明した構成の伝
導帯のバンド構造である。
FIG. 3(a) shows the band structure of the conduction band of the configuration explained in the first embodiment of FIG.

第2図におけるシステムでは、増幅特性が劣化しない方
がよく、従って発光部の特性を重視し、第3図(b)の
様に、導波モードの中心部に活性層14を配!し、導波
モードの裾となる部分に光吸収層16を形成すれば第3
図(a)に比べ増幅率の向上が期待される。
In the system shown in FIG. 2, it is better not to deteriorate the amplification characteristics, so we place emphasis on the characteristics of the light emitting part, and arrange the active layer 14 in the center of the waveguide mode, as shown in FIG. 3(b). However, if the light absorption layer 16 is formed in the part that becomes the tail of the waveguide mode, the third
It is expected that the amplification factor will be improved compared to Figure (a).

また、第3図(c)の様に、活性層14と光吸収層16
を量子井戸構造とし、更に導波構造の両側にGRIN 
(graded  1ndex)構造を設けることも考
えられる。量子井戸を用いる場合、組成や障壁の幅等を
変えて、使用される用途に適した発光、受光特性が任意
に設計できる。
In addition, as shown in FIG. 3(c), the active layer 14 and the light absorption layer 16
has a quantum well structure, and GRIN is installed on both sides of the waveguide structure.
It is also possible to provide a (graded 1ndex) structure. When using quantum wells, the composition, barrier width, etc. can be changed to arbitrarily design light emission and light reception characteristics suitable for the intended use.

更に、第3図(d)の様に活性層14と光吸収層16の
中間に超格子構造の層31を設け、構造的に高抵抗層を
実現して両者間の半絶縁性を確実なものとする設計も考
えられる。
Furthermore, as shown in FIG. 3(d), a layer 31 with a superlattice structure is provided between the active layer 14 and the light absorption layer 16 to realize a structurally high resistance layer and ensure semi-insulation between the two. It is also possible to consider a design in which

第4図は第2実施例を示す。本実施例は4電極で構成さ
れている。第1図と同じ部材には同じ番号が付されてい
る。本実施例では4極構造とする為に、基板部分を取り
除き、その下部に電極を設けている。こうして、電気的
接続は、高抵抗j120、SI−クラッド層15を境と
して発光部(下部)と受光部(上部)で上下に全(分離
されている。発光部は、p型電極45−p型層41−活
性層14→n型層43→n型電極47で接続され、受光
部は、p型電極46→p型層42→光吸収層】6−〇型
層44→n型電極48で接続されている。光学的には、
第1実施例と変わらず、動作、効果も同じである。
FIG. 4 shows a second embodiment. This embodiment is composed of four electrodes. Components that are the same as in FIG. 1 are given the same numbers. In this embodiment, in order to obtain a four-pole structure, the substrate portion is removed and electrodes are provided under it. In this way, the electrical connection is completely separated vertically between the light emitting part (lower part) and the light receiving part (upper part) with the high resistance j120 and the SI-cladding layer 15 as boundaries. The type layer 41 - the active layer 14 → the n-type layer 43 → the n-type electrode 47 are connected, and the light receiving part is connected to the p-type electrode 46 → p-type layer 42 → light absorption layer] 6-〇-type layer 44 → n-type electrode 48 Optically, the
This embodiment is the same as the first embodiment, and has the same operation and effect.

第5図は第3実施例を示す。同図において、n−GaA
s基板51上に、厚さIgmのn−GaAsバッファ層
52、厚さ1.5gmのn−Alo、x G aa、t
 A Sクラッド層53、厚さ0.1umのノンドープ
A l a、osG ao、ssA s活性層54、厚
さ1.5μmのp−A 1 o、z Gao、t As
クラッド層55を積層する。次に、ストライブをエツチ
ングにより作製し、ストライブ以外の底面部分に高抵抗
N56を作製する。さらに、ストライプ以外の部分に厚
さ0.1μmのノンドープAla、 osG a o、
 eaA S光吸収層57、更にストライブを埋め込む
ようにn”A1゜ユG a O,? A sクラッド層
58を積層させる。更に、ストライブ上部にn型電極6
0を、基板51下部にn型電極61を、そしてストライ
ブ両脇のn−クラツド層58上部にn型電極62を形成
する。
FIG. 5 shows a third embodiment. In the same figure, n-GaA
On the s substrate 51, an n-GaAs buffer layer 52 with a thickness of Igm, an n-Alo with a thickness of 1.5 gm, x Gaa, t
AS cladding layer 53, 0.1 μm thick non-doped Al a, osG ao, ssAs active layer 54, 1.5 μm thick p-A 1 o, z Gao, t As
A cladding layer 55 is laminated. Next, a stripe is produced by etching, and a high resistance N56 is produced on the bottom surface portion other than the stripe. Furthermore, non-doped Ala with a thickness of 0.1 μm, osG ao,
The eaAS light absorption layer 57 is further laminated with an n''A1゜GaO,?A s cladding layer 58 so as to embed the stripe.Furthermore, an n-type electrode 6 is formed on the top of the stripe.
0, an n-type electrode 61 is formed at the bottom of the substrate 51, and an n-type electrode 62 is formed at the top of the n-cladding layer 58 on both sides of the stripe.

本実施例の電気的接続は次の様になっている。The electrical connections in this embodiment are as follows.

先ず、発光部はp型電極6O−p−クラッド層55−活
性層54−n−クラッド層53−I n−バッファ層5
2→n−基板51−n[極61のように接続されている
。次に、受光部は、n型電極60→p−クラツド層55
→光吸収層57→n−クラッド層58−nt電極62よ
うに接続されている本実施例では、前の第1,2実施例
と異なり、導波モードは、発光部の構成でほぼ決定され
ている。その為に、本実施例では、特に発光部の特性(
発光スペクトル等)の向上が効果として期待される。す
なわち、本実施例では、発光部を主とする導波モードの
界分布の一部に受光部がある。第6図に第4実施例を示
す。本実施例の構成を説明する。
First, the light emitting part is composed of p-type electrode 6O-p-cladding layer 55-active layer 54-n-cladding layer 53-In-buffer layer 5
2→n-substrate 51-n [connected like pole 61; Next, the light-receiving section consists of the n-type electrode 60→p-clad layer 55.
→ light absorption layer 57 → n-cladding layer 58 - nt electrode 62 In this embodiment, unlike the previous first and second embodiments, the waveguide mode is almost determined by the configuration of the light emitting part. ing. Therefore, in this example, the characteristics of the light emitting part (
The expected effect is an improvement in the emission spectrum (emission spectrum, etc.). That is, in this embodiment, the light receiving section is located in a part of the field distribution of the waveguide mode, which mainly includes the light emitting section. FIG. 6 shows a fourth embodiment. The configuration of this embodiment will be explained.

p−GaAs基板63に、厚さlumのp−GaAsバ
ッファ層64、厚さ1.5umのp−A10.3 G 
ao、y A Sクラッド層65、厚さ0. 1umの
ノンドープA 10. (IsG a o、 esA 
S活性層66、厚さ0.15μmのn −A 1 o、
i G ao、a Asクラッド層67を積層する。次
に、ストライブを形成する為に活性層66を越えてp−
クラッド層65までエツチングする。その後、ストライ
プ以外をS I −A 1 o、z Gao、i As
クラッド層68で埋め込む。さらに、厚さO,lumの
n−Alo、aGao、s A sキャラプ層69、厚
さ0.1umのn−A lo、* Gao、s Asク
ラッド層70、厚さ0.1amのノンドープA l o
、 oaG a o@sAs光吸収層71、厚さ1.5
umのpAlo。
A p-GaAs buffer layer 64 with a thickness of lum and a p-GaAs buffer layer 64 with a thickness of 1.5 um are formed on a p-GaAs substrate 63.
ao,y A S cladding layer 65, thickness 0. 1um of non-doped A 10. (IsG ao, esA
S active layer 66, n −A 1 o with a thickness of 0.15 μm,
i G ao, a As cladding layer 67 is laminated. Next, the p-
Etching is performed up to the cladding layer 65. After that, S I -A 1 o, z Gao, i As except for the stripe
It is filled with a cladding layer 68. Further, an n-Alo, aGao, s As cap layer 69 with a thickness of O, lum, an n-A lo, *Gao, s As cladding layer 70 with a thickness of 0.1 um, and a non-doped Al with a thickness of 0.1 um. o
, oaG ao@sAs light absorption layer 71, thickness 1.5
pAlo of um.

s Gas、t Asクラッド層72を成膜する1次に
、ストライブ部分を残してn−キャップ層69までを取
り除き、その上部にnt電極73形成する。また、スト
ライブ上部にはp電極74、基板63下部にp電極75
を形成する。
In the first step of forming the sGas, tAs cladding layer 72, the n-cap layer 69 is removed except for the stripe portion, and an nt electrode 73 is formed on top of the n-cap layer 69. Furthermore, a p-electrode 74 is provided above the stripe, and a p-electrode 75 is provided below the substrate 63.
form.

本実施例の電気的接続は次の様になっている。The electrical connections in this embodiment are as follows.

発光部は、piii極75−p基板63−jp−バッフ
ァ層64→p−クラツド層65→活性層66−6 n−
クラッド層67−n−キャップ層69→n電極73と接
続されている。一方、受光部は、pif極74−p−ク
ラッド層72→光吸収層7l−1n−クラッド層70→
n−キャップ層69→n @ tM73と接続されてい
る。
The light emitting part is composed of piii pole 75-p substrate 63-jp-buffer layer 64→p-cladding layer 65→active layer 66-6n-
The cladding layer 67-n-cap layer 69 is connected to the n-electrode 73. On the other hand, the light-receiving part has the pif pole 74-p-cladding layer 72→light absorption layer 7l-1n-cladding layer 70→
It is connected to the n-cap layer 69→n@tM73.

また、光学的には、n−キャップ層69でストライブは
一時中断するものの、上下のストライブの効果により1
つの導波路として扱って差し支えな(、第1実施例とほ
ぼ変わりはない。
Optically, although the stripe is temporarily interrupted at the n-cap layer 69, the effect of the upper and lower stripes makes it possible to
It can be treated as one waveguide (there is almost no difference from the first embodiment).

1従って、本素子も第1実施例と変わらない効果が得ら
れる。
1. Therefore, this device also provides the same effects as the first embodiment.

以上の第1〜第4実施例では構成材料はGaAS系で説
明したが、GaAS系に限らず、InP系など他の■−
V系或はII−Vl系などの他事導体材料で構成されて
もよい。
In the first to fourth embodiments described above, the constituent material is GaAS-based, but it is not limited to GaAS-based, and other materials such as InP-based
It may also be made of other conductive materials such as V-based or II-Vl-based.

また、活性層、光吸収層として量子井戸などで説明した
が、夫々が多重量子井戸構造や量子細線などであっても
よい。
Further, although the active layer and the light absorption layer are described using quantum wells, each of them may have a multi-quantum well structure, a quantum wire, or the like.

製造方法も、制御性や再現性に優れた公知の成膜装置、
エツチング装置ならどの様なものを用いてもよい。
The manufacturing method uses well-known film forming equipment with excellent controllability and reproducibility.
Any etching device may be used.

更に、活性層や光吸収層の形成される導波路も単一モー
ド矩形導波路、多モード導波路など用途に合ったものと
して構成すればよい。
Further, the waveguide on which the active layer and the light absorption layer are formed may be configured as a single mode rectangular waveguide, a multimode waveguide, or the like depending on the application.

[発明の効果] 以上説明した様に、本発明によれば、活性層又は光吸収
層になるべく構成された第1領域と第2領域が同一の導
波路中に作製され、この第1及び第2領域を独立に別個
に制御する手段が設けられているので、例えば、発光、
受光を兼ね備えた光素子として設計の自由度が増す。
[Effects of the Invention] As explained above, according to the present invention, the first region and the second region, which are preferably configured as an active layer or a light absorption layer, are fabricated in the same waveguide, and the first and second regions are formed in the same waveguide. Since means are provided to independently and separately control the two regions, for example, light emission,
As an optical element that also receives light, the degree of freedom in design increases.

それにより、発光部、受光部独自の設計を行なうことが
でき、特性の向上が図られる。また、従来の構成に加え
、新しい機能を備えたシステムを構成することが可能と
なる。
Thereby, the light emitting part and the light receiving part can be designed uniquely, and the characteristics can be improved. In addition to the conventional configuration, it is also possible to configure a system with new functions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体素子の第1実施例を示す図
、第2図は第1実施例を使用して構成する光中継システ
ムを示す図、第3図は(a)〜(d)は層構成のいくつ
かの例を説明する図、第4図は第2実施例を示す図、第
5図は第3実施例を示す図、第6図は第4実施例を示す
図、第7図は従来例を示す図である。 11.51.63・・・・・基板、工2.52.64・
・・・・・バッファ層、13.15.18.19.21
.53.55.58・・・・・クラッド層、14.54
.66・・・・・活性層、16.57.71・・・・・
光吸収層%20.56・・・・・高抵抗層、22.23
.24.45.46、47.48、60. 62.73
、74、75・・・・・電極、25・・・・・ARココ
−ィング、26・・・・・光ファイバ、27・・・・・
AGC回路、30・・・・・光増幅器、31・・・・・
超格子層(SL層)、41.42・・・・・p型層、4
3.44・・・・・n型層、69・・・・・n−キャッ
プ層
FIG. 1 is a diagram showing a first embodiment of a semiconductor device according to the present invention, FIG. 2 is a diagram showing an optical relay system configured using the first embodiment, and FIG. 3 is a diagram showing (a) to (d). 4 is a diagram showing the second embodiment, FIG. 5 is a diagram showing the third embodiment, FIG. 6 is a diagram showing the fourth embodiment, FIG. 7 is a diagram showing a conventional example. 11.51.63... Board, engineering 2.52.64.
...Buffer layer, 13.15.18.19.21
.. 53.55.58...Clad layer, 14.54
.. 66... Active layer, 16.57.71...
Light absorption layer% 20.56...High resistance layer, 22.23
.. 24.45.46, 47.48, 60. 62.73
, 74, 75...electrode, 25...AR cocoing, 26...optical fiber, 27...
AGC circuit, 30... Optical amplifier, 31...
Superlattice layer (SL layer), 41.42...p-type layer, 4
3.44...n-type layer, 69...n-cap layer

Claims (1)

【特許請求の範囲】 1、活性層と光吸収層のうちの一方になるべく構成され
た第1領域と第2領域が同一の導波路内に形成され、該
第1及び第2領域を独立に制御する手段が設けられてい
ることを特徴とする半導体光素子。 2、前記第1領域と第2領域の一方は活性層であり、他
方は光吸収層である請求項1記載の半導体光素子。 3、前記制御手段は活性層に反転分布を形成する為の電
極と光吸収層からの電界を検出する為の電極とを備えた
電気的制御手段である請求項2記載の半導体光素子。 4、前記光吸収層及び光吸収層を制御する電気的制御手
段から成る受光部で検出する光信号を利用して、前記活
性層及び活性層を制御する電気的制御手段から成る発光
部に対して制御を与える構成となっている請求項3記載
の半導体光素子。 5、前記導波路へ外部からの光信号を入出力する手段を
有し、この光信号は該導波路中を伝搬することで光増幅
され、入出力間増幅率が常に一定になる様に前記受光部
で検出される光信号によって前記発光部が制御される構
成となっている請求項4記載の半導体光素子。 6、前記第1及び第2領域が半絶縁性の層を介して対抗
している請求項1記載の半導体光素子。 7、前記第1及び第2領域が互いに導波モードを共有し
ている請求項1記載の半導体光素子。 8、前記第1及び第2領域は、両領域の一方を主とする
導波モードの光電界分布の一部に他方の領域が存在する
請求項1記載の半導体光素子。 9、前記第1及び第2領域が量子井戸構造である請求項
7記載の半導体光素子。 10、前記第1及び第2領域がp又はn型の極性を持つ
層を介して対向しており、更に両領域の外側の層が該層
と逆の極性を持つ層で構成されている請求項1記載の半
導体光素子。
[Claims] 1. A first region and a second region preferably configured as one of the active layer and the light absorption layer are formed in the same waveguide, and the first and second regions are independently formed. A semiconductor optical device characterized in that it is provided with means for controlling. 2. The semiconductor optical device according to claim 1, wherein one of the first region and the second region is an active layer, and the other is a light absorption layer. 3. The semiconductor optical device according to claim 2, wherein the control means is an electrical control means comprising an electrode for forming population inversion in the active layer and an electrode for detecting an electric field from the light absorption layer. 4. A light emitting section comprising the active layer and an electrical control means for controlling the active layer using a light signal detected by a light receiving section comprising the light absorption layer and an electric control means for controlling the light absorption layer. 4. The semiconductor optical device according to claim 3, wherein the semiconductor optical device is configured to provide control. 5. It has a means for inputting and outputting an optical signal from the outside to the waveguide, and this optical signal is optically amplified by propagating in the waveguide, and the amplification factor between input and output is always constant. 5. The semiconductor optical device according to claim 4, wherein said light emitting section is controlled by an optical signal detected by a light receiving section. 6. The semiconductor optical device according to claim 1, wherein the first and second regions are opposed to each other with a semi-insulating layer interposed therebetween. 7. The semiconductor optical device according to claim 1, wherein the first and second regions share a waveguide mode with each other. 8. The semiconductor optical device according to claim 1, wherein the other region of the first and second regions exists in a part of the optical electric field distribution of the waveguide mode mainly in one of the two regions. 9. The semiconductor optical device according to claim 7, wherein the first and second regions have a quantum well structure. 10. The first and second regions are opposed to each other via a layer having p-type or n-type polarity, and further, the outer layer of both regions is composed of a layer having a polarity opposite to that of the first and second regions. Item 1. Semiconductor optical device according to item 1.
JP2289643A 1990-10-27 1990-10-27 Semiconductor optical device Expired - Fee Related JP3043797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2289643A JP3043797B2 (en) 1990-10-27 1990-10-27 Semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2289643A JP3043797B2 (en) 1990-10-27 1990-10-27 Semiconductor optical device

Publications (2)

Publication Number Publication Date
JPH04163983A true JPH04163983A (en) 1992-06-09
JP3043797B2 JP3043797B2 (en) 2000-05-22

Family

ID=17745896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2289643A Expired - Fee Related JP3043797B2 (en) 1990-10-27 1990-10-27 Semiconductor optical device

Country Status (1)

Country Link
JP (1) JP3043797B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568502A (en) * 1994-08-22 1996-10-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568502A (en) * 1994-08-22 1996-10-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device

Also Published As

Publication number Publication date
JP3043797B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
US5305412A (en) Semiconductor diode optical switching arrays utilizing low-loss, passive waveguides
US7190872B2 (en) Semiconductor optical amplifier and optical module using the same
US5604628A (en) Optical laser amplifier combined with a spontaneous emission filter
US4742378A (en) Junction-type semiconductor light emitting device with mesa
JP2980435B2 (en) Semiconductor device
US7421002B2 (en) Laser-induced optical wiring apparatus
CN107611778A (en) Photocell
JPH0281494A (en) Diode laser equipped with improved means which electrically modulates emission beam intensity inclusive of turn-on and turn-off and electrically controls the position of emitted laser beam spot
JPH0834330B2 (en) Semiconductor laser device
US5239600A (en) Optical device with an optical coupler for effecting light branching/combining by splitting a wavefront of light
JPH04163983A (en) Semiconductor optical element
JPH08330678A (en) Semiconductor laser
JPH04348084A (en) Light functional element
JPH04144182A (en) Optical semiconductor device array
JPS6146084A (en) Optical amplifier
JP3006797B2 (en) Semiconductor laser
EP0491152B1 (en) Semiconductor laser devices with a plurality of light emitting layers having different bands gaps and methods for driving the same
JPH04234188A (en) Optoelectronic element and laser and their uses in optical detector manufacture
JP2891753B2 (en) Optical semiconductor device
JPH05267795A (en) Semiconductor light amplifying element and use thereof
JP2005079541A (en) Semiconductor optical amplifier and its manufacturing method
Zou et al. Low‐threshold InGaAs/GaAs/AlGaAs quantum‐well laser with an intracavity optical modulator by impurity‐induced disordering
JPH01282883A (en) Semiconductor laser device
JPH07106687A (en) Semiconductor laser
JPH01287980A (en) Semiconductor laser device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees