JPH04162564A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04162564A
JPH04162564A JP2288810A JP28881090A JPH04162564A JP H04162564 A JPH04162564 A JP H04162564A JP 2288810 A JP2288810 A JP 2288810A JP 28881090 A JP28881090 A JP 28881090A JP H04162564 A JPH04162564 A JP H04162564A
Authority
JP
Japan
Prior art keywords
layer
insulating
film
resist
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2288810A
Other languages
Japanese (ja)
Inventor
Tsuneo Mizuno
水野 恒生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2288810A priority Critical patent/JPH04162564A/en
Publication of JPH04162564A publication Critical patent/JPH04162564A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To make it possible to combine a resist process with an ion implantation process into a single process by depositing either a silicon oxide film, a silicon nitride film, or an undoped AlGaAs film as an insulation film on a semi-insulating GaAs substrate, implanting ions which penetrates said insulation film, and forming a channel layer having different threshold voltage. CONSTITUTION:An undoped GaAs buffer layer 2 and an insulating AlGaAs layer 3 are formed on the surface of a semi-insulating GaAs substrate 1. Then, an E-FET region is covered with a resist 13 and the insulating AlGaAs layer 3 is selectively etched in a phosphoric acid group-etching solution. Then Si<+> ions are implanted with a resist 13a as a mask where an E-FET N<+> type layer 4 and a D-FET N type layer 5 are simultaneously doped. Then, a gate metal is deposited and selectively etched with a resist b as a mask, thereby forming a gate electrode 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、E−D MES
FET構成のGaAsICに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and relates to an E-D MES
This relates to a GaAs IC having an FET configuration.

〔従来の技術〕[Conventional technology]

従来技術によるGaAsICの断面図を第4図に示す。 A cross-sectional view of a GaAs IC according to the prior art is shown in FIG.

半絶縁性(Seat−Insulating ) Ga
As基板1にテール分布補償用のP型層12が形成され
たところへ、E−FET用N−型層4とD−FET用N
型層5とが形成されている。
Semi-insulating Ga
At the place where the P-type layer 12 for tail distribution compensation is formed on the As substrate 1, an N-type layer 4 for E-FET and an N-type layer 4 for D-FET are formed.
A mold layer 5 is formed.

このときD−FET部を覆うレジストを形成し、イオン
注入してN−型層4のドーピングを行ない、E−FET
部を覆・うレジストを形成し、異なる条件゛でイオン注
入してN型層5のドーピングを行なう、。
At this time, a resist is formed to cover the D-FET portion, and ions are implanted to dope the N-type layer 4.
A resist is formed to cover the N-type layer 5, and ions are implanted under different conditions to dope the N-type layer 5.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

E−FET用N−型層とD−FETJfIN型層とのキ
ャリア濃度を変えるために、交互に注入しない領域をレ
ジストで覆ってイオン注入していた゛。
In order to change the carrier concentration of the N-type layer for E-FET and the JfIN-type layer for D-FET, ions were implanted while covering the regions not to be implanted alternately with resist.

すなわちレジスト工程とイオン注入工程とを各2回実施
しなければならないという欠点があった。
That is, there was a drawback that the resist process and the ion implantation process had to be performed twice each.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、半絶縁性GaAs基
板に絶縁膜として酸化シリコン膜、窒化シリコン膜、ア
ンドープAJGaAs膜のいずれかを堆積し、その絶縁
膜を透過してイオン注入することにより、異なるしきい
値電圧のチャネル層を形成するものである。
The method for manufacturing a semiconductor device of the present invention includes depositing any one of a silicon oxide film, a silicon nitride film, and an undoped AJGaAs film as an insulating film on a semi-insulating GaAs substrate, and implanting ions through the insulating film. This forms channel layers with different threshold voltages.

〔実施例〕〔Example〕

本発明の第1の実施例について、第1図(a)〜(e)
を参照して説明する。
Regarding the first embodiment of the present invention, FIGS. 1(a) to (e)
Explain with reference to.

はじめに第1図(a)に示すように、半絶縁性GaAs
基板1の表面にMO−CVD法またはMBE法により厚
さ200〜400人のアンドープGaAsバッファ層2
と厚さ150〜200人の絶縁性AlGaAs層3とを
成長する。
First, as shown in Figure 1(a), semi-insulating GaAs
An undoped GaAs buffer layer 2 with a thickness of 200 to 400 nm is formed on the surface of the substrate 1 by MO-CVD or MBE.
and an insulating AlGaAs layer 3 having a thickness of 150 to 200 nm.

つぎにE−FET領域をレジスト13で覆い、燐酸系の
エツチング液で絶縁性AlGaAs層3を選択工・ンチ
ングする。
Next, the E-FET region is covered with a resist 13, and the insulating AlGaAs layer 3 is selectively etched using a phosphoric acid-based etching solution.

つぎに第1図(b)に示すように、レジスト13aをマ
スクとして、Si+イオンを注入エネルギー’E=3C
1−50keV、注入量(ドース)φ□5〜7X1.0
12c++−2注入してE−FET用N−型層4と叶F
ET用N型層5とを同時にドーピングする。
Next, as shown in FIG. 1(b), using the resist 13a as a mask, Si+ ions are implanted at an energy of 'E=3C.
1-50keV, implantation amount (dose) φ□5-7X1.0
12c++-2 implanted into N-type layer 4 and leaf F for E-FET
The N-type layer 5 for ET is doped at the same time.

D−FET用N型層5のv、rで注入量(ドース)を設
定した。
The implantation amount (dose) was set by v and r of the N-type layer 5 for D-FET.

E−FET用N−型層4のVTは、第2図に示すイオン
注入の深さ方向分布を用いて、絶縁性AlGaAs層3
で余分の不純物をキャンセルするような厚さを設定した
The VT of the N- type layer 4 for E-FET is determined by using the depth distribution of ion implantation shown in FIG.
The thickness was set to cancel out any extra impurities.

つぎに第1図(c)に示すように、ゲート金属を堆積し
てからレジスト13bをマスクとして選択エツチングし
てゲート電極7を形成する。
Next, as shown in FIG. 1(c), gate metal is deposited and selectively etched using the resist 13b as a mask to form the gate electrode 7.

つぎにSi”イオンを注入してN+型オーミック層6を
形成する。
Next, Si'' ions are implanted to form an N+ type ohmic layer 6.

つぎに第1図(d)に示すように、周知のリフトオフ法
によりAuGe/Niからなるソース電極8とドレイン
電極9とを形成する。
Next, as shown in FIG. 1(d), a source electrode 8 and a drain electrode 9 made of AuGe/Ni are formed by a well-known lift-off method.

つぎに第1図(e)に示すように、SiO□からなる眉
間絶縁膜11を被覆して、スルーホールを開口し金属配
線10を形成して素子部が完成する。
Next, as shown in FIG. 1(e), a glabellar insulating film 11 made of SiO□ is coated, through holes are opened, and metal wiring 10 is formed to complete the element section.

ここでは、絶縁膜として絶縁性AlGaAs層を用いた
が、AlGaAs層の替りにCVD法などによるSiO
□膜やSiN膜などを用いても同様の効果が得られる。
Here, an insulating AlGaAs layer was used as the insulating film, but instead of the AlGaAs layer, SiO
Similar effects can be obtained by using a □ film, a SiN film, or the like.

′ つぎに本発明の第2の実施例について、第3図を参照し
て説明する。
' Next, a second embodiment of the present invention will be described with reference to FIG.

はじめに半絶縁性GaAs基板1の表面にMO−CVD
法またはMBE法により厚さ200〜400人のアンド
ープGaAsバッファ層2と厚さ150〜200人の絶
縁性AlGaAs層3とを成長する。
First, MO-CVD was applied to the surface of a semi-insulating GaAs substrate 1.
An undoped GaAs buffer layer 2 with a thickness of 200 to 400 thick and an insulating AlGaAs layer 3 with a thickness of 150 to 200 thick are grown by a method or an MBE method.

つぎにE−FET領域をレジスト13で覆い、燐酸系の
エツチング液で絶縁性AlGaAs層3を途中まで選択
エツチングしてD−FET領域にも薄い絶縁性A1Ga
As層3aを残す。
Next, the E-FET area is covered with a resist 13, and the insulating AlGaAs layer 3 is selectively etched halfway with a phosphoric acid-based etching solution, and the D-FET area is also covered with a thin insulating AlGaAs layer 3.
As layer 3a is left.

このあとSi+イオンを注入することにより、E−FE
T用N−型層4とD−FET用N型層5とを同時にドー
ピングする。
After this, by implanting Si+ ions, E-FE
The N-type layer 4 for T and the N-type layer 5 for D-FET are doped at the same time.

絶縁性AlGaAs層3と絶縁性AlGaAs層3aと
の厚さが異なるなめ、E−FET用N−型層4とD−F
ET用N型層5とで異なるVTを有するチャネル層を同
時に形成することができる。
Since the thickness of the insulating AlGaAs layer 3 and the insulating AlGaAs layer 3a are different, the N- type layer 4 for E-FET and the D-F
A channel layer having a different VT from the N-type layer 5 for ET can be formed at the same time.

さらにE−FETにおいては絶縁性lGaAs層3の上
に、D−FETにおいては薄い絶縁性AlGaAs層3
aの上にゲート電極7が形成されているので、いずれも
ショットキ障壁ΦBが高くなるという効果がある。
Furthermore, in the E-FET, a thin insulating AlGaAs layer 3 is placed on the insulating IGaAs layer 3, and in the D-FET, the thin insulating AlGaAs layer 3 is placed on the insulating IGaAs layer 3.
Since the gate electrode 7 is formed on a, both have the effect of increasing the Schottky barrier ΦB.

〔発明の効果〕〔Effect of the invention〕

従来技術においては交互に注入しない領域をレジストで
覆ってイオン注入して、2回に分けてE−FET用チャ
ネル層とD−FET用チャネル層とを形成していたが、
本発明においてはレジスト工程とイオン注入工程とをま
とめて1回に削減することができた。
In the conventional technology, regions that are not implanted alternately are covered with a resist and ions are implanted to form the E-FET channel layer and the D-FET channel layer in two steps.
In the present invention, the resist process and the ion implantation process can be reduced to one process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明の第1の実施例を示す断
面図、第2図はイオン注入の深さ方向の不純物分布を示
すグラフ、第3図は本発明の第2の実施例を示す断面図
、第4図は従来技術によるGaAs1Cの断面図である
。 l・・・半絶縁性GaAs基板、2・・・アンドープG
aAs/<ッコア層、3・・・絶縁性AlGaAs層、
3a・・・薄い絶縁性AlGaAs層、4 ・E−FE
T用N−型層、5−D−FET用N型層、6・・・N1
型オーミック層、7・・・ゲート電極、8・・・ソース
電極、9・・・ドレイン電極、10・・・金属配線、1
1・・・層間絶縁膜、12・・・P型層、13.13a
・・・レジスト。
1(a) to (e) are cross-sectional views showing the first embodiment of the present invention, FIG. 2 is a graph showing the impurity distribution in the depth direction of ion implantation, and FIG. 3 is a cross-sectional view showing the first embodiment of the present invention. FIG. 4 is a cross-sectional view of GaAs1C according to the prior art. l... Semi-insulating GaAs substrate, 2... Undoped G
aAs/<ccoa layer, 3... insulating AlGaAs layer,
3a... Thin insulating AlGaAs layer, 4 ・E-FE
N-type layer for T, N-type layer for 5-D-FET, 6...N1
type ohmic layer, 7... gate electrode, 8... source electrode, 9... drain electrode, 10... metal wiring, 1
1... Interlayer insulating film, 12... P-type layer, 13.13a
...Resist.

Claims (1)

【特許請求の範囲】 1、半絶縁性GaAs基板に絶縁膜として酸化シリコン
膜、窒化シリコン膜、アンドープAlGaAs膜のうち
1つを堆積し、前記絶縁膜を透過してイオン注入するこ
とにより、異なるしきい値電圧を有するチャネル層を形
成することを特徴とする半導体装置の製造方法。 2、半絶縁性GaAs基板にアンドープのIII−V族化
合物混晶膜を堆積してから、該半導体膜を選択エッチン
グして、イオン注入することにより、AlGaAs/G
aAsヘテロ接合型電界効果トランジスタとGaAsホ
モ接合型電界効果トランジスタとを同一基板上に形成す
る請求項1記載の半導体装置の製造方法。
[Claims] 1. By depositing one of a silicon oxide film, a silicon nitride film, and an undoped AlGaAs film as an insulating film on a semi-insulating GaAs substrate, and implanting ions through the insulating film, different A method for manufacturing a semiconductor device, comprising forming a channel layer having a threshold voltage. 2. After depositing an undoped III-V group compound mixed crystal film on a semi-insulating GaAs substrate, selectively etching the semiconductor film and implanting ions, AlGaAs/G
2. The method of manufacturing a semiconductor device according to claim 1, wherein the aAs heterojunction field effect transistor and the GaAs homojunction field effect transistor are formed on the same substrate.
JP2288810A 1990-10-25 1990-10-25 Manufacture of semiconductor device Pending JPH04162564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2288810A JPH04162564A (en) 1990-10-25 1990-10-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2288810A JPH04162564A (en) 1990-10-25 1990-10-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04162564A true JPH04162564A (en) 1992-06-08

Family

ID=17735028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2288810A Pending JPH04162564A (en) 1990-10-25 1990-10-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04162564A (en)

Similar Documents

Publication Publication Date Title
US4583105A (en) Double heterojunction FET with ohmic semiconductor gate and controllable low threshold voltage
EP0725432B1 (en) Refractory gate heterostructure field effect transistor and method
US5350709A (en) Method of doping a group III-V compound semiconductor
EP0206274B1 (en) High transconductance complementary ic structure
JPS63252478A (en) Insulated-gate semiconductor device
JPH0324782B2 (en)
JP3368449B2 (en) Semiconductor device and manufacturing method thereof
US5389807A (en) Field effect transistor
JPH04162564A (en) Manufacture of semiconductor device
JPH01236657A (en) Semiconductor device and manufacture thereof
KR910006698B1 (en) Semiconductor device
JP2708492B2 (en) Method for manufacturing semiconductor device
JPH0810701B2 (en) Method for manufacturing junction field effect transistor
JP3407926B2 (en) Doping method, semiconductor device, resistance layer, method of manufacturing field effect transistor, method of manufacturing semiconductor circuit element, method of manufacturing electric conduction region, method of forming quantum wire, method of forming quantum box, quantum wire transistor, semiconductor integrated circuit Manufacturing method, electron wave interference device
JPS61160978A (en) Semiconductor device
JPS60136380A (en) Semiconductor device
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JP2514948B2 (en) Method for manufacturing semiconductor device
JPS63196079A (en) Hetero-junction fet
JPS63219176A (en) Manufacture of field-effect transistor
JPS60263476A (en) Manufacture of semiconductor device
JPS60134479A (en) Semiconductor device
JPH06177168A (en) Compound semiconductor device and manufacture thereof
JPS6143443A (en) Manufacture of semiconductor device
JPS6390172A (en) Field effect transistor and manufacture thereof