JPH0416235B2 - - Google Patents

Info

Publication number
JPH0416235B2
JPH0416235B2 JP7805785A JP7805785A JPH0416235B2 JP H0416235 B2 JPH0416235 B2 JP H0416235B2 JP 7805785 A JP7805785 A JP 7805785A JP 7805785 A JP7805785 A JP 7805785A JP H0416235 B2 JPH0416235 B2 JP H0416235B2
Authority
JP
Japan
Prior art keywords
gelatin
silver
wastewater
concentration
magnesium sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7805785A
Other languages
Japanese (ja)
Other versions
JPS61238392A (en
Inventor
Kenji Katsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP7805785A priority Critical patent/JPS61238392A/en
Publication of JPS61238392A publication Critical patent/JPS61238392A/en
Publication of JPH0416235B2 publication Critical patent/JPH0416235B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(A) 産業上の利用分野 本発明は、ハロゲン化銀写真感光材料製造工程
の廃水から、銀の回収、又は、ゼラチンの除去を
行う廃水処理方法に関する。 (B) 従来技術及びその問題点 ハロゲン化銀写真感光材料(以下単に感光材料
と呼ぶ)には多量の銀が使用されている。そのた
め、貴重な資源としての銀の回収は重要な事項で
あるため、製造工程から、感光材料の処理工程に
至る、あらゆる段階で、積極的に銀の回収が行わ
れている。特に感光材料製造工程から排出される
洗浄廃液や、ハロゲン化銀乳剤の廃残液からの銀
の回収については、幾多の方法が提案され実施さ
れている。 例えばタンパク分解酵素でゼラチンを分解し
てから凝集沈殿処理する。生物処理装置(活性
汚泥法等)でゼラチンを分解してから凝集沈殿す
る、等の方法がある。 これらの方法による銀の回収率は90%以上と言
われ、銀の回収に関しては良好な方法ではある
が、ゼラチンの分解を行う必要があり、必ずしも
効率的とはいえない。 (c) 発明の目的 本発明者等は、ゼラチンの分解処理を行わない
で、凝集沈殿処理のみにより、90%以上の銀の回
収率を得ることが出来ないか、鋭意研究を重ねた
結果、PH10.5以上で、且つ硫酸マグネシウムを使
用すれば、凝集沈殿のみにより、90%以上の銀の
回収が達成され、同時に、ゼラチンによる水質汚
濁防止(BOD、COD除去)を図り得ることを見
いだし、この知見に基づいて、本発明を完成する
に至つた。 本発明の目的はゼラチンの分解を必要としない
凝集沈殿による銀の回収及びゼラチンの除去を行
うことのできる効率のよい廃水の処理方法を提供
することにある。 (D) 発明の構成 すなわち、本明は保護コロイド作用を持つゼラ
チンを分散媒とし、ハロゲン化銀を分散質として
含有する写真感光材料の製造工程廃水から、銀の
回収、又はゼラチンの除去を行う方法において、
前記廃水のPHを10.5以上に保持し、且つ、凝集剤
として硫酸マグネシムを使用することを特徴とす
る廃水の処理方法である。 本発明に適用される感光材料製造工程の廃水
は、一般に銀濃度が通常範囲で20〜100mg/、
ゼラチン濃度は通常500mg/以下、PHは5〜7
であるが特にこれに限定されない。 この感光材料製造工程廃水中には、感光材料製
造に使用されたいかなる原材料、あるいは感光材
料製造により生成したいかなる生成分を含んでい
ても良い。例えば、写真用カプラー、界面活性
剤、カプラー溶媒、ゼラチン硬膜剤等がその一例
である。 この廃水に凝集剤として、硫酸マグネシウムを
添加するが、その添加量は、通常ゼラチン濃度が
500mg/の場合には2000mg/以上、ゼラチン
濃度が250mg/の場合には、1000mg/以上を
必要量とするが、廃水中のゼラチン濃度は、時々
刻々変るのでジヤーテスター等により、最適添加
量を求めた後、添加することが望ましい。 廃水のPHを10.5以上に調整するためのアルカリ
剤としては、一般的に、水酸化ナトリウム、消石
灰が使用されており、そのどちらを用いても良い
が、次工程での固液分離の難易(フロツクの沈降
性、フロツクの脱水性)を考慮すれば、消石灰を
使用することが望ましい。 さらに、生成フロツクの沈降性を良くするた
め、補助凝集剤として、高分子凝集剤を使用して
も、なんらさしつかえがない。 尚、硫酸マグネシウムの添加及びPHの調整の順
序は、特に限定されない。 (E) 実施例(及び比較例) 次に実施例によつて本発明をさらに詳しく説明
する。 実施例 銀濃度50mg/、ゼラチン濃度500mg/及び
250mg/、塩化ナトリウム50mg/、臭化カリ
ウム50mg/の試料1lにPH調整剤の消石灰(10%
液)8ml、アクリルアマイド系高分子凝集剤
(0.1%液)2ml/、硫酸マグネシウム
(MgSO4・7H2O)(10%液)を第1表に記載の量
で添加して凝集沈殿を行なつた。比較として硫酸
マグネシウムを添加しない場合についても実験を
行つた。 以下に実験の結果としての凝集沈殿性を第1表
に示したが、表における凝集沈殿性の評価は、凝
集沈殿後5分時の上澄水中の各指標濃度測定値に
基づいている。
(A) Industrial Application Field The present invention relates to a wastewater treatment method for recovering silver or removing gelatin from wastewater from a process for producing silver halide photographic light-sensitive materials. (B) Prior art and its problems A large amount of silver is used in silver halide photographic light-sensitive materials (hereinafter simply referred to as light-sensitive materials). Therefore, recovery of silver as a valuable resource is an important matter, and therefore silver is actively recovered at every stage from the manufacturing process to the processing process of photosensitive materials. In particular, a number of methods have been proposed and implemented for recovering silver from cleaning waste liquid discharged from photosensitive material manufacturing processes and silver halide emulsion waste residue liquid. For example, gelatin is decomposed with a proteolytic enzyme and then subjected to coagulation and precipitation treatment. There are methods such as decomposing gelatin in a biological treatment device (activated sludge method, etc.) and then coagulating and precipitating it. The recovery rate of silver by these methods is said to be over 90%, and although they are good methods for recovering silver, they require decomposition of gelatin, so they are not necessarily efficient. (c) Purpose of the Invention The inventors of the present invention have conducted extensive research to find out whether it is possible to obtain a silver recovery rate of 90% or more by using only coagulation and sedimentation treatment without decomposing gelatin. We discovered that if the pH is 10.5 or higher and magnesium sulfate is used, more than 90% of silver can be recovered by coagulation and precipitation alone, and at the same time, water pollution can be prevented (BOD, COD removal) using gelatin. Based on this knowledge, we have completed the present invention. An object of the present invention is to provide an efficient wastewater treatment method that can recover silver and remove gelatin by coagulation and precipitation, which does not require gelatin decomposition. (D) Structure of the Invention That is, the present invention recovers silver or removes gelatin from the wastewater of the manufacturing process of photographic light-sensitive materials, which uses gelatin, which has a protective colloid effect, as a dispersion medium and contains silver halide as a dispersoid. In the method,
The wastewater treatment method is characterized by maintaining the pH of the wastewater at 10.5 or higher and using magnesium sulfate as a flocculant. The wastewater from the photosensitive material manufacturing process applied to the present invention generally has a silver concentration in the normal range of 20 to 100 mg/,
Gelatin concentration is usually 500mg/or less, pH is 5-7
However, it is not particularly limited to this. This wastewater from the photosensitive material manufacturing process may contain any raw materials used in the photosensitive material manufacturing or any products produced during the photosensitive material manufacturing. Examples include photographic couplers, surfactants, coupler solvents, and gelatin hardeners. Magnesium sulfate is added to this wastewater as a flocculant, but the amount added usually depends on the gelatin concentration.
If the gelatin concentration is 500mg/, the required amount is 2000mg/ or more, and if the gelatin concentration is 250mg/, the required amount is 1000mg/ or more, but since the gelatin concentration in wastewater changes from time to time, use a jar tester etc. to find the optimal amount to add. It is desirable to add it after Sodium hydroxide and slaked lime are generally used as alkaline agents to adjust the pH of wastewater to 10.5 or higher, and either of these can be used, but it may be difficult to separate solid-liquid in the next process ( It is desirable to use slaked lime, considering the sedimentation properties of flocs and the dehydration properties of flocs. Furthermore, in order to improve the sedimentation properties of the produced flocs, there is nothing wrong with using a polymer flocculant as an auxiliary flocculant. Note that the order of adding magnesium sulfate and adjusting the pH is not particularly limited. (E) Examples (and Comparative Examples) Next, the present invention will be explained in more detail with reference to Examples. Example Silver concentration 50mg/, gelatin concentration 500mg/and
Add slaked lime (10%
Coagulate and precipitate by adding 8 ml of acrylamide-based polymer flocculant (0.1% liquid) and magnesium sulfate (MgSO 4 7H 2 O) (10% liquid) in the amounts listed in Table 1. Summer. For comparison, an experiment was also conducted without adding magnesium sulfate. The coagulation-sedimentation properties as a result of the experiment are shown in Table 1 below, and the evaluation of the coagulation-sedimentation properties in the table is based on the measured value of each index concentration in the supernatant water 5 minutes after the coagulation-sedimentation.

【表】 第1表の結果からも明らかなように、良好な処
理水を得るためには、ゼラチン濃度に従つて、硫
酸マグネシウムの添加量を増減することが必要で
あり、硫酸マグネシウムの添加量が適正であれば
試料2、3、6、の通り、上澄水のCODMo濃度
は1ケタとなり、上澄水中の銀濃度は0.5mg/
程度で、銀回収率は約99%と良好な結果が得られ
る。 尚、ゼラチンのBOD、CODMo負荷は、実測値
で、BOD負荷0.80g/g、COD0.25g/gであつ
た。 (F) 発明の効果 本発明の処理方法によれば、ゼラチンの分解を
必要とせず、処理上澄水中の銀濃度は0.5mg/
程度とすることができ、銀回収率は99%程度が達
成される。又、ゼラチンがほぼ完全に除かれるの
で、ゼラチンによるBOD、COD汚濁は皆無とな
り、水質汚濁防止対策上非常に有効かつ効率的で
ある。
[Table] As is clear from the results in Table 1, in order to obtain good treated water, it is necessary to increase or decrease the amount of magnesium sulfate added according to the gelatin concentration. If the values are appropriate, as shown in samples 2, 3, and 6, the COD Mo concentration in the supernatant water will be in the single digits, and the silver concentration in the supernatant water will be 0.5mg/
The silver recovery rate is approximately 99%, which is a good result. In addition, the BOD and COD Mo loads of gelatin were actually measured values: BOD load 0.80 g/g and COD 0.25 g/g. (F) Effect of the invention According to the treatment method of the present invention, it is not necessary to decompose gelatin, and the silver concentration in the treated supernatant water is 0.5mg/
silver recovery rate of about 99% can be achieved. Furthermore, since gelatin is almost completely removed, there is no BOD or COD pollution caused by gelatin, which is very effective and efficient in terms of water pollution prevention measures.

Claims (1)

【特許請求の範囲】[Claims] 1 保護コロイド作用を持つゼラチンを分散媒と
し、ハロゲン化銀を分散質として含有するハロゲ
ン化銀写真感光材料の製造工程廃水から、銀の回
収、又はゼラチンの除去を行う方法において、前
記廃水のPHを10.5以上に保持し、且つ凝集剤とし
て硫酸マグネシウムを使用することを特徴とする
廃水の処理方法。
1 In a method for recovering silver or removing gelatin from wastewater from the manufacturing process of a silver halide photographic material containing gelatin having a protective colloid effect as a dispersion medium and silver halide as a dispersoid, the pH of the wastewater is 10.5 or higher, and using magnesium sulfate as a flocculant.
JP7805785A 1985-04-12 1985-04-12 Treatment of waste water Granted JPS61238392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7805785A JPS61238392A (en) 1985-04-12 1985-04-12 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7805785A JPS61238392A (en) 1985-04-12 1985-04-12 Treatment of waste water

Publications (2)

Publication Number Publication Date
JPS61238392A JPS61238392A (en) 1986-10-23
JPH0416235B2 true JPH0416235B2 (en) 1992-03-23

Family

ID=13651223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7805785A Granted JPS61238392A (en) 1985-04-12 1985-04-12 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPS61238392A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPM745994A0 (en) * 1994-08-16 1994-09-08 Water Board, The Method of alkaline flocculation for waste water streams

Also Published As

Publication number Publication date
JPS61238392A (en) 1986-10-23

Similar Documents

Publication Publication Date Title
US5266210A (en) Process for removing heavy metals from water
US4343706A (en) Method of removing heavy metals from industrial waste streams
US4013555A (en) Process for reducing BOD in food processing plant wastes
US5336415A (en) Removing polyvalent metals from aqueous waste streams with chitosan and halogenating agents
JP2008110280A (en) Method for treating dyeing waste water
US4448696A (en) Process for recovering and recycling coagulant present in water treatment sludges
EP0165269A1 (en) Process for utilizing spent photographic films and liquids
JPH04503975A (en) How to recover metals from waste liquid
JPH0416235B2 (en)
JPS63258690A (en) Treatment of organic sewage
US5118344A (en) Recovery of silver
US1886267A (en) Treating sewage
JPH05505977A (en) dewatered sludge
US4040955A (en) Method of treating wastewater containing emulsified oils
JP4617637B2 (en) Method for neutralizing acidic waste liquid containing metal ions
JP2619397B2 (en) Treatment method for alkali developing and stripping waste liquid
US4200527A (en) Treating chrome tanning bath recycle stream
JPH1157747A (en) Treatment of fluorine-containing waste water
JPH0299185A (en) Water treatment agent and water treatment process
JPH07216466A (en) Improvement in or relating to recovery of silver
US2290206A (en) Process of metal recovery
JPH06134212A (en) Method for regenerating ferric chloride solution out of waste water sludge
JPH0751203B2 (en) Waste coolant treatment method
JPH01249187A (en) Method for purifying waste containing gallium and arsenic
JP2005296756A (en) Treatment method of ion-exchange resin regeneration waste liquid