JPH04161072A - Low ripple power supply - Google Patents

Low ripple power supply

Info

Publication number
JPH04161072A
JPH04161072A JP28581990A JP28581990A JPH04161072A JP H04161072 A JPH04161072 A JP H04161072A JP 28581990 A JP28581990 A JP 28581990A JP 28581990 A JP28581990 A JP 28581990A JP H04161072 A JPH04161072 A JP H04161072A
Authority
JP
Japan
Prior art keywords
power supply
current
voltage
ripple
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28581990A
Other languages
Japanese (ja)
Inventor
Noriko Kawakami
紀子 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28581990A priority Critical patent/JPH04161072A/en
Publication of JPH04161072A publication Critical patent/JPH04161072A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)

Abstract

PURPOSE:To reduce the capacity of a high speed power supply by providing a low-pass filter for a current reference in a high speed power supply which can control the current thereby preventing an excessively high current from being fed to the side of a smoothing filter. CONSTITUTION:A low ripple power supply mainly comprises an AC bus 1, a transformer 2 for rectifier, a control rectifier 3, a DC reactor 4, a capacitor 5, an active filter 6, a constant current control circuit 11B in a high speed power supply unit 16, and the like. Cut-off frequency of a low-pass filter 17 is set lower than six times of the basic frequency of power supply f0 and ripple components, which are not required to be compensated for a current reference 54 in the high speed power supply unit 16, are eliminated. Ripple voltages having frequency higher than six times of the basic frequency f0 of power supply are sufficiently damped through a smoothing filter comprising the reactor 4 and the capacitor 5. Since high frequency ripple current does not flow through the capacitor 5 in the smoothing filter, the high speed power supply is prevented from increasing in capacity.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は加速器用コイル電源、超電導コイル電源1強磁
場コイル電源などにおいて必要とされる低リップル電源
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a low ripple power supply required in an accelerator coil power supply, a superconducting coil power supply 1 strong magnetic field coil power supply, and the like.

(従来の技術) 近年、加速器や強磁場発生用コイルの様な各種物理実験
用電源として、高安定低リップルの電源が必要とされて
いる。これらの電源はIXIG−’の安定度とリップル
含有率が要求されるのが一般的である。これらの要求を
満足する電源として。
(Prior Art) In recent years, highly stable and low ripple power sources have been required as power sources for various physical experiments such as accelerators and coils for generating strong magnetic fields. These power supplies are generally required to have IXIG-' stability and ripple content. As a power source that satisfies these demands.

出力電圧範囲が数十V以下の場合には、制御整流装置の
直流出力側にリップル電流制御用トランジスタを接続し
た電源が使用される。このような電源はトランジスタド
ロッパ方式と呼ばれ、低電圧小容量の範囲では非常に優
れた特性を有する。しかし電圧が100v以上、容量が
数百kW以上になると、トランジスタの容量の関係がら
非常に不経済となり実用的でない、このため大容量の低
リップル電源装置とし、では、第4図に示すようなアク
ティブフィルタ方式の低リップル電源装置が使用されて
いる。第4WIはアクティブフィルタ方式の低リップル
電源装置のブロック図である。第4図におと)て、1は
交流母線、2は整流器用変圧量。
When the output voltage range is several tens of volts or less, a power source is used in which a ripple current control transistor is connected to the DC output side of the controlled rectifier. Such a power supply is called a transistor dropper type, and has very excellent characteristics in a low voltage and small capacity range. However, when the voltage exceeds 100V and the capacity exceeds several hundred kW, it becomes extremely uneconomical and impractical due to the capacity of the transistor.Therefore, a large-capacity, low-ripple power supply device is used, as shown in Figure 4. An active filter type low ripple power supply is used. The fourth WI is a block diagram of an active filter type low ripple power supply device. In Figure 4), 1 is the AC bus, and 2 is the rectifier transformer.

3は交流電圧を直流電圧に変換する制御整流装置。3 is a controlled rectifier that converts AC voltage into DC voltage.

4はおもに高調波のリップルを除去する平滑フィルタの
直流リアクトル、5は同じく平滑フィルタのコンデンサ
、6は電源基本周波数から高域までリップルを除去する
アクティブフィルタ、7は負荷、8は制御整流装置3を
制御する点弧角の基準を検出するための計器用変圧器、
15は計器用変圧器8の出力を電子レベルの電圧に変換
する補助変圧量、9は制御整流装置3の出力電圧を検出
する直流電圧検出器、11は直流基準信号51と直流電
流検出器10で検出した直流電流5Zとの差を入力して
電流を一定に制御する定電流制御回路、12は定電流制
御回路11の出力と直流電圧検出器9の出力との差を入
力してマイナループで高速に電圧を制御する定電圧制御
回路、13は定電圧制御回路14の出力と補助変圧器1
5との出力から9点弧相と点弧タイミングを決定する位
相制御回路、14はパルスアンプである。
4 is a DC reactor of a smoothing filter that mainly removes harmonic ripples, 5 is a capacitor that is also a smoothing filter, 6 is an active filter that removes ripples from the power supply fundamental frequency to high frequencies, 7 is a load, and 8 is a controlled rectifier 3 Potential transformer for detecting the firing angle reference, which controls the
15 is an auxiliary transformer that converts the output of the instrument transformer 8 into an electronic level voltage, 9 is a DC voltage detector that detects the output voltage of the control rectifier 3, and 11 is a DC reference signal 51 and a DC current detector 10. 12 is a constant current control circuit that inputs the difference between the detected DC current 5Z and controls the current to be constant; 12 is a minor loop that inputs the difference between the output of the constant current control circuit 11 and the output of the DC voltage detector 9; A constant voltage control circuit that controls the voltage at high speed, 13 is the output of the constant voltage control circuit 14 and the auxiliary transformer 1
A phase control circuit 9 determines the ignition phase and ignition timing from the output of 5, and 14 is a pulse amplifier.

第4図において、制御整流装置3が三相全波整流回路で
あれば、制御整流装置の直流出力側には、電源基本周波
数f、の6倍の周波数(6fe)成分の高周波リップル
電圧が最も多く含まれ、その他は、制御整流装置の点弧
角のバラツキによる電源基本周波数fllと同一の周波
数のリップル電圧、交流電圧の3相関の不平衡による電
源基本周波数の2倍の周波数(2f+ )のリップル電
圧等が発生する。
In FIG. 4, if the controlled rectifier 3 is a three-phase full-wave rectifier circuit, the DC output side of the controlled rectifier has the highest high-frequency ripple voltage of a frequency (6fe) component six times the power supply fundamental frequency f. Others include ripple voltage at the same frequency as the power supply fundamental frequency full due to variations in the firing angle of the controlled rectifier, and ripple voltage at a frequency twice the power supply fundamental frequency (2f+) due to unbalance of the three correlations of AC voltage. Ripple voltage, etc. occurs.

これらのリップル電圧のうち6倍の高周波リップル電圧
は、直流リアクトル4とコンデンサ5で構成される平滑
フィルタにより減衰させ、残りは、基本波のリップル電
圧を含めてアクティブフィルタ6によって減衰させる。
Of these ripple voltages, six times the high frequency ripple voltage is attenuated by a smoothing filter composed of a DC reactor 4 and a capacitor 5, and the rest, including the ripple voltage of the fundamental wave, is attenuated by an active filter 6.

アクティブフィルタのリップル補償を低周波数側に広げ
ようとすると、リアクトルトランス6の電圧時間積(Δ
V−t)が大きくなるためリアクトルトランスの外形寸
法が大きくなりすぎる等の不具合があり、性能的にも経
済的にも実用に供しない、そのため、従来のアクティブ
フィルタは、主に電源基本周波数からその2倍の周波数
の範囲のリップルを減衰させる目的で設計されていた。
When trying to extend the ripple compensation of the active filter to the lower frequency side, the voltage-time product (Δ
V-t) increases, which causes problems such as the external dimensions of the reactor transformer becoming too large, making it impractical in terms of performance and economy.For this reason, conventional active filters mainly reduce the power supply fundamental frequency. It was designed to attenuate ripples in the twice the frequency range.

すなわち、アクティブフィルタ方式の低リップル電源に
おいては、変動周波数成分が電源基本周波数以上であれ
ば通常の変動値内ではアクティブフィルタで補償でき、
また非常にゆっくりした電圧値の変動に対しては定電流
制御回路10、定電圧制御回路11によって補償できた
が、IHz程度〜電源基本周波数の帯域の電圧変動に対
しては、リップル電圧を十分減衰できないという不具合
があった。
In other words, in a low ripple power supply using an active filter method, if the fluctuating frequency component is higher than the power supply fundamental frequency, it can be compensated by the active filter within the normal fluctuation value.
Furthermore, although the constant current control circuit 10 and the constant voltage control circuit 11 were able to compensate for very slow fluctuations in the voltage value, the ripple voltage cannot be sufficiently compensated for against voltage fluctuations in the range from about IHz to the power supply fundamental frequency. There was a problem that it could not be attenuated.

第3図は、前記不具合を解消するための回路である。第
3図において第4図と同一の要素は同一の符号とし説明
を省略する。
FIG. 3 shows a circuit for solving the above problem. In FIG. 3, the same elements as in FIG. 4 are designated by the same reference numerals, and their explanations will be omitted.

第3図において、16はリップル分及び変動分を補償す
るために高速に電流制御を行なう高速電源装置、54は
高速電源装置16の電流基準、55は直流電流検出器1
0Bで検出された高速電源装置16の出力電流、IIB
は高速電源装置16の定電流制御回路である。第3図に
おいて、直流電流検出@IOAにより検出された電流値
52と、直流電流基準値51の差を入力し電流を一定に
制御する定電流制御回路11Aと、定電流制御回路11
Aの出力と、直流電圧検出@9で検出された直流電圧値
53の差を入力してマイナーループで電圧を制御する定
電圧制御回路12とで、交流電圧等のゆっくりとした変
動を補償する。コンデンサS、リアクトル4から成る平
滑フィルタによって電源基本周波数f0の6倍の周波数
(6f、)以上の周波数のリップル電圧を除去する。第
3図において、電流基準51と制御整流装置の出力電流
52の差の信号54を並列に設けた高速電源装置で供給
すれば、負荷には基準どうりの電流が流れる。
In FIG. 3, 16 is a high-speed power supply that performs current control at high speed to compensate for ripples and fluctuations, 54 is a current reference for the high-speed power supply 16, and 55 is a DC current detector 1.
Output current of high-speed power supply 16 detected at 0B, IIB
is a constant current control circuit of the high-speed power supply device 16. In FIG. 3, a constant current control circuit 11A that inputs the difference between a current value 52 detected by DC current detection @IOA and a DC current reference value 51 to control the current to a constant value, and a constant current control circuit 11
The constant voltage control circuit 12 inputs the difference between the output of A and the DC voltage value 53 detected by the DC voltage detection @ 9 and controls the voltage in a minor loop, compensating for slow fluctuations in AC voltage, etc. . A smoothing filter consisting of a capacitor S and a reactor 4 removes ripple voltage having a frequency equal to or higher than six times the power supply fundamental frequency f0 (6f). In FIG. 3, if a signal 54 representing the difference between a current reference 51 and an output current 52 of the controlled rectifier is supplied by a high-speed power supply device provided in parallel, a current equal to the reference will flow through the load.

(発明が解決しようとする課題) しかし、第3図の回路において、高速電源装置16から
みたインピーダンスは、負荷と平滑フィルタのコンデン
サとが並列になっている。従って。
(Problems to be Solved by the Invention) However, in the circuit shown in FIG. 3, the impedance seen from the high-speed power supply device 16 is such that the load and the capacitor of the smoothing filter are in parallel. Therefore.

高速電源装置16が負荷のリップル電流を補正しようと
しても、平滑フィルタのコンデンサにも流れてしまい、
高速電源装置の電流容量が大きくなってしまう0例えば
負荷定数が1■H−10wiΩ、フィルタのコンデンサ
が5−Fの場合、各周波数におけるインピーダンスを計
算すると、第1表のようになる。
Even if the high-speed power supply device 16 tries to correct the ripple current of the load, it will also flow to the capacitor of the smoothing filter.
For example, when the load constant is 1 H-10 Ω and the filter capacitor is 5-F, the impedance at each frequency is calculated as shown in Table 1.

第1表(単位Ω) 第1表からもわかるように1周波数が高くなる程フィル
タのインピーダンスが小さくなり、高速電源装置16が
負荷電流リップルを補正しようとしても、負荷にはほと
んど流れずに、フィルタコンデンサに流れてしまうこと
になる。
Table 1 (unit: Ω) As can be seen from Table 1, the higher the frequency, the smaller the impedance of the filter, and even if the high-speed power supply 16 tries to correct the load current ripple, almost no current flows to the load. It will flow into the filter capacitor.

従って、高速電源装置16は負荷への電流だけでなく、
フィルタへの電流分の容量を持たなくてはならない。
Therefore, the high speed power supply 16 not only carries current to the load;
It must have the capacity for the current to the filter.

本発明の目的は前述した不具合を解決し、高速電源装置
の電流容量を不必要な大きくせずに、同様の効果を得る
ことが出来る低リップル電源装置を提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a low-ripple power supply device that can obtain similar effects without unnecessarily increasing the current capacity of the high-speed power supply device.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は前述目的を達成するために、系統電圧を所望の
交流電圧に変圧する変圧器と、この変圧器の出力交流を
直流に変換する制御整流器と、この制御整流器の直流出
力を平滑する平滑フィルタと、この平滑フィルタを介し
て得られる直流電圧が印加される負荷と、前記制御整流
器とは別に設けられ前記負荷に流れる電流を高速に制御
出来る高速電源装置から成る低リップル電源装置におい
て、前記高速電源装置を制御する電流制御回路の電流基
準に低域通過フィルタを設けたことを特徴とするもので
ある。
(Means for Solving the Problems) In order to achieve the above-mentioned objects, the present invention provides a transformer that transforms grid voltage into a desired AC voltage, a controlled rectifier that converts the output AC of this transformer into DC, and a controlled rectifier that converts the output AC of this transformer into DC. A smoothing filter that smoothes the DC output of a controlled rectifier, a load to which the DC voltage obtained through the smoothing filter is applied, and a high-speed power supply device that is provided separately from the controlled rectifier and can control the current flowing to the load at high speed. A low ripple power supply device comprising: a low-ripple power supply device characterized in that a low-pass filter is provided as a current reference of a current control circuit that controls the high-speed power supply device.

(作用) 前述のように、前記高速電源装置を制御する電流制御回
路の電流基準に低域通過フィルタを設けることにより、
高速電源装置が補償するリップル周波数は制限されるこ
とになり、高周波のりップル電流は平滑フィルタのコン
デンサに流れないため高速電源装置の容量の増大を防ぐ
ことが出来る。
(Function) As mentioned above, by providing a low-pass filter in the current reference of the current control circuit that controls the high-speed power supply,
The ripple frequency compensated by the high-speed power supply is limited, and the high-frequency ripple current does not flow to the capacitor of the smoothing filter, thereby preventing an increase in the capacitance of the high-speed power supply.

(実施例) 第1図に本発明の一実施例のブロック図を示す、第1図
において、第3図と同一部には同一符号を付して、その
説明を省略する。第1図において、高速電源装置16を
制御する電流制御回路11Bの電流基準に設けた17は
一定周波数以上の入力を減衰させる低減通過フィルタで
ある。
(Embodiment) FIG. 1 shows a block diagram of an embodiment of the present invention. In FIG. 1, the same parts as in FIG. 3 are given the same reference numerals, and the explanation thereof will be omitted. In FIG. 1, reference numeral 17 provided at the current reference of the current control circuit 11B that controls the high-speed power supply device 16 is a low-pass filter that attenuates inputs above a certain frequency.

電源基本周波数f、の6倍の周波数(6f、 )以上の
周波数のリップル電圧は、リアクトル4.コンデンサ5
からなる平滑フィルタによって十分減衰するので、高速
電源装置16で補償する必要はない。
Ripple voltage at a frequency higher than six times the power supply fundamental frequency f (6f, ) is caused by reactor 4. capacitor 5
Since it is sufficiently attenuated by the smoothing filter made up of

そこで高速電源装置16の電流基準54に補償する必要
のないリップル分を除去する低域通過フィルタ17を設
ける。低域通過フィルタ17のカットオフ周波数は電源
基本周波数f0の6倍の周波数(6f、)より低域側に
設定する。
Therefore, a low-pass filter 17 is provided in the current reference 54 of the high-speed power supply 16 to remove ripples that do not need to be compensated. The cutoff frequency of the low-pass filter 17 is set lower than a frequency (6f,) that is six times the power source fundamental frequency f0.

第2図は本発明の他の実施例を示すブロック図。FIG. 2 is a block diagram showing another embodiment of the present invention.

第2図は第1図の回路にリアクトルトランスによるアク
ティブフィルタを加えた回路である。第2図においては
、電源基本周波数f0の6倍の周波数(6f、)成分の
高周波リップル電圧は直流リアクトル4と、コンデンサ
5で構成される平滑フィルタにより減衰させ、基本波か
ら6f、成分のリップル電圧はアクティブフィルタ6に
よって減衰させる。非常にゆっくりした電圧の変動に対
しては定電流制御回路10、定電圧制御回路11によっ
て補償する。そして、IHz程度〜電源基本周波数の帯
域の電圧変動に対して、高速電源装置16で補償する。
FIG. 2 shows a circuit in which an active filter using a reactor transformer is added to the circuit of FIG. 1. In Fig. 2, the high frequency ripple voltage of the frequency (6f,) component which is six times the power supply fundamental frequency f0 is attenuated by a smoothing filter consisting of the DC reactor 4 and the capacitor 5, and the ripple voltage of the 6f, component from the fundamental wave is The voltage is attenuated by an active filter 6. A constant current control circuit 10 and a constant voltage control circuit 11 compensate for very slow voltage fluctuations. Then, the high-speed power supply device 16 compensates for voltage fluctuations in a band from about IHz to the power source fundamental frequency.

低域通過フィルタ17は電源基本周波数前後の周波数を
カットオフ周波数とし、高速電源装置16はIHz程度
〜電源基本周波数の帯域の電圧変動だけを補償するよう
にし1、容量を低減する。
The low-pass filter 17 has a cutoff frequency around the power supply fundamental frequency, and the high-speed power supply 16 compensates only for voltage fluctuations in the band from approximately IHz to the power supply fundamental frequency 1, and reduces the capacity.

〔発明の効果〕〔Effect of the invention〕

以上説明のように、本発明は、高速に電流制御可能な高
速電源装置の電流基準に低減通過フィルタを設けること
により、高速電源装置が負荷よりも平滑フィルタ側に不
必要に多くの電流を流すことを防止し、高速電源装置の
容量を低減することが出来る。
As explained above, the present invention prevents the high-speed power supply from flowing unnecessarily more current to the smoothing filter than to the load by providing a reduced pass filter in the current reference of the high-speed power supply that can control the current at high speed. This can be prevented and the capacity of the high-speed power supply device can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は本発
明の他の実施例を示す構成図、第3図。 第4図は従来のそれぞれ異なる低リップル電源装置の構
成図である。 1・・・交流母線、  2・・・整流量用変圧器、3・
・・制御整流装置、  4・・・直流リアクトル、5・
・・平滑フィルタコンデンサ、 6・・・アクティブフィルタ、   7・・・負荷、8
・・・計器用変圧器、  9・・・直流電圧検出器、1
0A、IOB・・・直流電流検出器、11A、IIB・
・・定電流制御回路。 12・・・定電圧制御回路、  13・・・位相制御回
路、14・・・パルスアンプ、  15・・・補助変圧
器、16・・・高速電源装置、  17・・・低減通過
フィルタ。 51・・・電流基準552・・・制御整流装置出力電流
、53・・・制御整流装置出力電圧、54・・・補助電
流基準、55・・・高速電源装置出力電流。 第1図 第2図 第3図
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a block diagram showing another embodiment of the present invention, and FIG. 3 is a block diagram showing another embodiment of the present invention. FIG. 4 is a configuration diagram of different conventional low ripple power supply devices. 1... AC bus, 2... Rectifier transformer, 3...
・・Control rectifier, 4・DC reactor, 5・
...Smoothing filter capacitor, 6...Active filter, 7...Load, 8
...Instrument transformer, 9...DC voltage detector, 1
0A, IOB...DC current detector, 11A, IIB・
・・Constant current control circuit. 12... Constant voltage control circuit, 13... Phase control circuit, 14... Pulse amplifier, 15... Auxiliary transformer, 16... High speed power supply device, 17... Reduced pass filter. 51... Current reference 552... Controlled rectifier output current, 53... Controlled rectifier output voltage, 54... Auxiliary current reference, 55... High speed power supply device output current. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 系統電圧を所望の交流電圧に変圧する変圧器と、この変
圧器の出力交流を直流に変換する制御整流器と、この制
御整流器の直流出力を平滑する平滑フィルタと、この平
滑フィルタを介して得られる直流電圧が印加される負荷
と、前記制御整流器とは別に設けられ前記負荷に流れる
電流を高速に制御出来る高速電源装置から成る低リップ
ル電源装置において、前記高速電源装置を制御する電流
制御回路の電流基準に低域通過フィルタを設けたことを
特徴とする低リップル電源装置。
A transformer that transforms the grid voltage into a desired AC voltage, a controlled rectifier that converts the output AC of this transformer into DC, a smoothing filter that smoothes the DC output of this controlled rectifier, and the AC voltage obtained through this smoothing filter. In a low ripple power supply device comprising a load to which a DC voltage is applied and a high-speed power supply device that is provided separately from the control rectifier and can control the current flowing to the load at high speed, the current of a current control circuit that controls the high-speed power supply device. A low ripple power supply device characterized by providing a low-pass filter as a reference.
JP28581990A 1990-10-25 1990-10-25 Low ripple power supply Pending JPH04161072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28581990A JPH04161072A (en) 1990-10-25 1990-10-25 Low ripple power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28581990A JPH04161072A (en) 1990-10-25 1990-10-25 Low ripple power supply

Publications (1)

Publication Number Publication Date
JPH04161072A true JPH04161072A (en) 1992-06-04

Family

ID=17696499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28581990A Pending JPH04161072A (en) 1990-10-25 1990-10-25 Low ripple power supply

Country Status (1)

Country Link
JP (1) JPH04161072A (en)

Similar Documents

Publication Publication Date Title
US6295216B1 (en) Power supply apparatus with selective rectifier harmonic input current suppression and methods of operation thereof
EP0906654B1 (en) Power line harmonic reduction by hybrid parallel active/passive filter system with square wave inverter and dc bus control
Moran et al. A three-phase active power filter operating with fixed switching frequency for reactive power and current harmonic compensation
US7778053B2 (en) Power system having a voltage regulator with a notch filter
EP0372109B1 (en) Reactive power controller
JPS62272824A (en) Method of attenuating electric overtone
EP0215362B1 (en) Ac power supply device
JPH04161072A (en) Low ripple power supply
Gazoli et al. Resonant (P+ RES) controller applied to voltage source inverter with minimum DC link capacitor
JP3095570B2 (en) Low ripple power supply
JPH04150774A (en) Low-ripple power unit
JP3963549B2 (en) Harmonic voltage detection circuit of voltage detection type active filter
JP3541544B2 (en) Neutral potential control method
JP3215127B2 (en) Switching power supply control circuit
JPS6022418A (en) Low ripple power source
JPH0382338A (en) Higher harmonic voltage suppressing apparatus
JP3319010B2 (en) Static reactive power adjustment device
Zheng et al. Inverter admittance phase-reshaping strategy for enhancing its robustness to grid impedance
JPS6315672A (en) Inverter device
JP4373614B2 (en) Harmonic suppression device
JP2637601B2 (en) Control method of harmonic suppression device
Gao et al. Passivity-Based Design of a Harmonic Voltage-Controlled Active Power Filter
Tian et al. Fast Harmonic compensation in hybrid HVDC offshore system
JP3133772B2 (en) Inverter device
JPH07107669A (en) Restraining method for higher harmonic of capacitor for power factor improvement