JPH04159A - Refrigerating system - Google Patents

Refrigerating system

Info

Publication number
JPH04159A
JPH04159A JP9986490A JP9986490A JPH04159A JP H04159 A JPH04159 A JP H04159A JP 9986490 A JP9986490 A JP 9986490A JP 9986490 A JP9986490 A JP 9986490A JP H04159 A JPH04159 A JP H04159A
Authority
JP
Japan
Prior art keywords
heat
temperature
cooled
hydrogen
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9986490A
Other languages
Japanese (ja)
Other versions
JP2525269B2 (en
Inventor
Yutaka Sato
裕 佐藤
Kenji Niitsu
新津 賢二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichirei Corp
Original Assignee
Nichirei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichirei Corp filed Critical Nichirei Corp
Priority to JP2099864A priority Critical patent/JP2525269B2/en
Publication of JPH04159A publication Critical patent/JPH04159A/en
Application granted granted Critical
Publication of JP2525269B2 publication Critical patent/JP2525269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/044Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines having at least two working members, e.g. pistons, delivering power output
    • F02G1/0445Engine plants with combined cycles, e.g. Vuilleumier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2250/00Special cycles or special engines
    • F02G2250/18Vuilleumier cycles

Abstract

PURPOSE:To utilize cold and hot heat produced by a Vuilleumier cycle heat pump directly or indirectly for cooling by providing a second condenser to which a refrigerant cooled by a cold heat generator device is supplied using the hot heat produced by the pump a heating source of the hydrogen absorbing compound utilization cold heat generator device. CONSTITUTION:A Vuilleumier cycle heat pump is actuated by being changed in a gas pressure distribution therein by being heated externally, and temperature is raised at a portion of the distribution where the gas is increased at a portion of the same when the pressure is reduced. Refrigerated cooled by a low temperature heat exchanger, at the portion of the distribution when the temperature is lowered is sent to a first condenser 28 in a chamber 27 to be cooled which is then cooled by the refrigerant. Hot refrigerant heated by middle temperature heat exchangers 19a, 19b in the refrigerant at a portion of the distribution where the temperature is raised is fed to a hydrogen absorbing alloy utilization cold heat generator device 50 as a heat source for actuating the device 50, whereby hydrogen in a metal hydrogen compound is generated. Refrigerant for a second condenser 37 is cooled by cold heat produced upon the separation of the hydrogen, and the chamber 27 is also cooled by the second condenser 37.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は冷蔵倉庫等の大型室内の冷却用に好適なん凍シ
ステムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigeration system suitable for cooling large rooms such as refrigerated warehouses.

[従来の技術] 冷凍機やエアコン等の冷媒にはフロンガスが使用されて
いるが、大気中に排出されたフロンガスにより成層圏の
オゾン層が破壊され始め、由々しき問題になっているこ
とは周知のとおりである。
[Conventional technology] Freon gas is used as a refrigerant in refrigerators, air conditioners, etc., but it is well known that the ozone layer in the stratosphere is beginning to be destroyed by the gas emitted into the atmosphere, which has become a serious problem. It is as follows.

フロンガスを使用しないヒートポンプには、1918年
にアメリカのルドルフ ブルマ イ ヤ(Rudolp
h Vuilleumier )によッテ発表さレタ熱
サイクル理論を利用したブルマイヤサイクルヒートポン
プがある。
A heat pump that does not use chlorofluorocarbon gas was invented in 1918 by Rudolf Blumyer of the United States.
There is a Blumyer cycle heat pump that utilizes the Letta heat cycle theory, which was published by H. Vuilleumier.

[発明が解決しようとする課題] ブルマイヤサイクルヒートボンプは大気圏破壊のおそれ
はなく、その構造特性より必ず冷熱と温熱を発生し、冷
熱は冷房用等に直接使用しているが、温熱は暖房や給湯
用に使用するか、さもなくば廃棄している。
[Problem to be solved by the invention] Blumyer cycle heat bombs have no danger of atmospheric destruction, and due to their structural characteristics, they always generate cold and hot heat. The cold heat is used directly for cooling, etc., but the hot heat is used for heating. Either they are used for water heating or water supply, or they are discarded.

本発明はブルマイヤサイクルヒートボンブで発生した熱
を冷熱発生装置の熱源に使用することにより、効率の高
い冷凍システムを提供でさるようにした。
The present invention provides a highly efficient refrigeration system by using the heat generated by the Bulmeyer cycle heat bomb as the heat source of the cold heat generating device.

[課題を解決するための手段] 本願発明の冷凍システムは、外部加熱源にて加熱される
ことにより作動し、しかも中温熱交換器と低温熱交換器
を備えるブルマイヤサイクルヒートポンプの前記低温熱
交換器で冷却された冷媒が供給される第1冷却器を被冷
却室内に設け、また、ブルマイヤサイクルヒートポンプ
の前記中温熱交換器からの熱媒が供給されることにより
作動して金属水素化物から水素が分離し、この分離時に
冷熱を発生する水素吸蔵合金応用冷熱発生装置にて冷却
された冷媒が供給される第2冷却器を前記被冷却室に設
は構造のものとしである。
[Means for Solving the Problems] The refrigeration system of the present invention operates by being heated by an external heating source, and is equipped with the low-temperature heat exchanger of the Brumeyer cycle heat exchanger, which is equipped with a medium-temperature heat exchanger and a low-temperature heat exchanger. A first cooler is provided in the room to be cooled, and is operated by being supplied with the heat medium from the intermediate temperature heat exchanger of the Blumyer cycle heat pump, and is operated to cool the metal hydride from the metal hydride. A second cooler is provided in the cooled chamber to which hydrogen is separated and a refrigerant cooled by a hydrogen-absorbing alloy-applied cold-heat generator that generates cold heat at the time of separation is supplied.

[作用] ブルマイヤサイクルヒートポンプは外部から加熱される
ことにより中のガスの圧力分布が変化して作動させられ
る。
[Function] The Brumeyer cycle heat pump is activated by being heated from the outside, which changes the pressure distribution of the gas inside.

ガスの昇圧した部分では温度が上昇し、減圧した部分で
は温度が下がる。
The temperature increases in areas where the pressure of the gas is increased, and the temperature decreases in areas where the pressure is reduced.

温度が下がった部分の低温熱交換器で冷却された冷媒は
被冷却室内の第1冷却器へ送られ、これで被冷却室は冷
却される。
The refrigerant cooled by the low-temperature heat exchanger in the portion where the temperature has decreased is sent to the first cooler in the chamber to be cooled, thereby cooling the chamber to be cooled.

温度が上昇した部分の中温熱交換器にて加温された熱媒
は水素吸蔵合金利用冷熱発生装置へその作動熱源として
供給され、これにより金属水素化物中の水素が分離され
る。
The heat medium heated in the medium temperature heat exchanger in the portion where the temperature has increased is supplied to the cold heat generation device using the hydrogen storage alloy as its operating heat source, thereby separating the hydrogen in the metal hydride.

この水素分離時に発生する冷熱によって被冷却室の第2
冷却器用の冷媒が冷却され、被冷却室は第2冷却器によ
っても冷却される。
The cold heat generated during this hydrogen separation causes the second cooling chamber to be heated.
The refrigerant for the cooler is cooled, and the chamber to be cooled is also cooled by the second cooler.

[実施例] 本発明の実施例を第1図に示す一具体例により説明する
[Example] An example of the present invention will be described using a specific example shown in FIG.

第1図に示すように、ブルマイヤサイクルヒートボンプ
1は高温側シリンダ3と低温側シリンダ7がクランクケ
ース9へ90@の角度で接続された構造をしており、し
かも高温側シリンダ3内に設けた高温側ディスプレーサ
4で高温空間2と中温空間24とに区画され、さらに低
温側シリンダ7内も低温側ディスプレーサ6で低温空間
5と中温空間24とに区画されている。
As shown in Fig. 1, the Brummyer cycle heat pump 1 has a structure in which a high temperature side cylinder 3 and a low temperature side cylinder 7 are connected to the crankcase 9 at an angle of 90@, and the inside of the high temperature side cylinder 3 is The provided high temperature side displacer 4 divides the space into a high temperature space 2 and a medium temperature space 24, and the inside of the low temperature cylinder 7 is also divided into a low temperature space 5 and a medium temperature space 24 by the low temperature side displacer 6.

上記高温側ディスプレーサ4に固定したロッド15はコ
ンロッド13の一端にビン連結せしめてあり、さらにこ
のコンロッド13の他端はクランク軸8に一端を固嵌し
たクランクロッドlOの他端へクランクピン11にて回
転可能に連結しである。
The rod 15 fixed to the high-temperature side displacer 4 is connected to one end of the connecting rod 13 via a pin, and the other end of the connecting rod 13 is connected to the crank pin 11 by connecting the other end of the crank rod 1O, which has one end firmly fitted to the crankshaft 8. It is rotatably connected.

また、低温側ディスプレーサ6に固定したロッド14は
もう一つのクランクロッド12の一端へピンにて連結し
、このクランクロッド12の他端を上記クランクピン1
1へ回転可能に連結しである。
Further, the rod 14 fixed to the low temperature side displacer 6 is connected to one end of another crank rod 12 with a pin, and the other end of this crank rod 12 is connected to the crank pin 1.
It is rotatably connected to 1.

上記高温側シリンダ3上部には、高温再生器17に接続
した加熱器IEIを設けてあり、この高温再生器17は
中温熱交換コイル18を内股した中温熱交換器18aと
接続しである。
A heater IEI connected to a high temperature regenerator 17 is provided above the high temperature side cylinder 3, and this high temperature regenerator 17 is connected to an intermediate temperature heat exchanger 18a having an intermediate temperature heat exchange coil 18 inside.

また、上記中温熱交換器18aは、低温側シリンダ7の
外側に設けた中温熱交換器19bと接続しであるととも
に、高温側シリンダ3の中温空間24に接続してあり、
上記加熱器16の外側近傍にはバーナ等の加熱源48を
設けである。
Further, the medium temperature heat exchanger 18a is connected to a medium temperature heat exchanger 19b provided outside the low temperature side cylinder 7, and is also connected to the medium temperature space 24 of the high temperature side cylinder 3,
A heat source 48 such as a burner is provided near the outside of the heater 16.

前記中温熱交換器19bには中温熱交換コイル20を設
けてあり、また中温熱交換器19bは低温再生器21を
介して低温熱交換器23へ接続せしめてあって、この低
温熱交換器23はその内部に低温熱交換コイル22を備
え、さらに低温側シリンダ7の上部に接続しである。
The medium temperature heat exchanger 19b is provided with a medium temperature heat exchange coil 20, and the medium temperature heat exchanger 19b is connected to a low temperature heat exchanger 23 via a low temperature regenerator 21. is equipped with a low-temperature heat exchange coil 22 therein, and is further connected to the upper part of the low-temperature side cylinder 7.

これら高温空間2、中温空間24、及び低温空間5は同
一圧力空間で、しかもその内部にはヘリウムガスを充填
してあり、これら空間内をヘリウムガスが移動できる、
ようになっている。
These high-temperature space 2, medium-temperature space 24, and low-temperature space 5 are spaces with the same pressure, and are filled with helium gas, and helium gas can move within these spaces.
It looks like this.

上記低温熱交換コイル22はポンプ25を備える冷媒送
液管28にて冷蔵室27内の第1冷却器28に接続せし
めてあり、送液管26内の冷却媒体(例えばブライン)
がこれら低温熱交換コイル22、冷蔵室の第1冷却器2
8を循環させられるようになっている。
The low-temperature heat exchange coil 22 is connected to a first cooler 28 in the refrigerator compartment 27 by a refrigerant liquid sending pipe 28 equipped with a pump 25, and the cooling medium (for example, brine) in the liquid sending pipe 26
These low-temperature heat exchange coils 22 and the first cooler 2 of the refrigerator compartment
8 can be cycled.

また、前記中温熱交換コイル18及び中温熱交換コイル
20は直列接続され、熱媒送液管28で蓄熱槽31内の
放熱フィル51と接続してあって、中温熱交換コイル1
8を出た熱媒(熱水 )は、加圧ポンプ30により蓄熱
槽31の放熱コイル51を通って中温熱交換コイル20
に戻される。
Further, the medium-temperature heat exchange coil 18 and the medium-temperature heat exchange coil 20 are connected in series, and are connected to the heat dissipation filter 51 in the heat storage tank 31 through the heat medium liquid sending pipe 28.
The heat medium (hot water) exiting from the heat exchanger coil 20 is passed through the heat radiation coil 51 of the heat storage tank 31 by the pressurizing pump 30 and transferred to the medium temperature heat exchange coil 20.
will be returned to.

なお、上記送液管29に設けたポンプ30は熱媒送液管
29内の液圧力を高めるものであり、これにより管29
内の熱媒の洟点を高め、熱媒の吸熱容量を高めるように
作用させている。
The pump 30 provided in the liquid transfer pipe 29 increases the liquid pressure within the heat medium liquid transfer pipe 29.
This works to raise the low point of the heat medium inside and increase the heat absorption capacity of the heat medium.

さらに、上記蓄熱槽31には別の送液管34aを接続し
てあって、この送液管34aには三方弁43、弁64、
ポンプ44および冷熱発生装置50の第1貯蔵器AI内
に設けた放熱コイル38aを接続しである。また、上記
三方弁43にて分岐接続した別の送液管34bにも弁5
7と第2貯蔵器A2内に設けた放熱コイル38bを接続
してあり、上記弁64と弁57が交互に開閉されること
と三方弁43の流路切り換えで蓄熱槽31からの熱媒体
がこれら2つの放熱コイル38a 、38bをポンプ4
4で交互に循環させられている。
Further, another liquid sending pipe 34a is connected to the heat storage tank 31, and this liquid sending pipe 34a has a three-way valve 43, a valve 64,
The pump 44 and the heat radiation coil 38a provided in the first storage AI of the cold heat generating device 50 are connected. Further, a valve 5 is also connected to another liquid feeding pipe 34b branched and connected at the three-way valve 43.
7 is connected to a heat dissipation coil 38b provided in the second storage tank A2, and by alternately opening and closing the valves 64 and 57 and switching the flow path of the three-way valve 43, the heat medium from the heat storage tank 31 is These two heat radiation coils 38a and 38b are connected to the pump 4.
4 and are alternately circulated.

また、上記第1貯蔵器A1と第2貯蔵器A2とには、加
冷コイル41a 、 41bをそれぞれ設けてあって、
加冷コイル41aに接続した冷却管35aには三方弁4
5と弁59とを設けてあり、この三方弁45には、弁5
8を備える冷却管35bで第2貯蔵器の加冷コイル41
bを接続しである。
Further, the first storage device A1 and the second storage device A2 are provided with cooling coils 41a and 41b, respectively,
A three-way valve 4 is connected to the cooling pipe 35a connected to the cooling coil 41a.
The three-way valve 45 is provided with a valve 5 and a valve 59.
The cooling coil 41 of the second reservoir with the cooling pipe 35b comprising 8
Connect b.

しかして、弁58.59の開閉切り換えと三方弁45の
流路を切り換えることにより加冷コイル41aまたは4
1bのいずれか一方を冷却水が循環するようにしである
Therefore, by switching the opening and closing of the valves 58 and 59 and the flow path of the three-way valve 45, the cooling coil 41a or
1b so that cooling water is circulated through either one of them.

さらにまた、上記冷熱発生装置50には第3貯蔵器^3
と第4貯蔵器A4とを設けてあって、第3貯蔵器A3に
は成熱コイル42aと冷却コイル39aとを内股してあ
り、第4貯蔵器A4にも成熱コイル42bと冷却コイル
39bを内股しである。
Furthermore, the cold heat generating device 50 includes a third storage device ^3.
The third storage A3 has a heating coil 42a and a cooling coil 39a, and the fourth storage A4 also has a heating coil 42b and a cooling coil 39b. It's an inner thigh.

上記成熱コイル42aには、三方弁4Bと弁63とを設
けた冷却管40aを接続してあって、上記三方弁46に
分岐接続した冷却管40bには第4貯蔵器A4の上記成
熱コイル42bを接続してあり、さらにこの冷却管40
bには弁61を設けである。
A cooling pipe 40a provided with a three-way valve 4B and a valve 63 is connected to the heating coil 42a, and a cooling pipe 40b branch-connected to the three-way valve 46 is connected to the heating coil 42a of the fourth storage device A4. A coil 42b is connected to the cooling pipe 40.
b is provided with a valve 61.

しかして弁81.83の開閉及び三方弁46の流路切り
換えで、冷却水が第3貯蔵器A3の成熱コイル42aま
たは第4貯蔵器Aaの成熱コイル42bのいずれか一方
を循環させられる。
By opening and closing the valves 81 and 83 and switching the flow path of the three-way valve 46, the cooling water can be circulated through either the heating coil 42a of the third storage A3 or the heating coil 42b of the fourth storage Aa. .

第3貯蔵器A3の上記冷却コイル39aには、弁62を
備える冷媒送液管3Elaを接続してあって、この冷媒
送液管3Eiaは第4貯蔵器A4の冷却コイル39b用
冷媒送液管3[ibに設けた三方弁47に接続しである
。また、冷媒送液管3fibはポンプ48、弁60を備
え、冷蔵室27内に設けた第2冷却器37に接続しであ
る。
A refrigerant liquid sending pipe 3Ea provided with a valve 62 is connected to the cooling coil 39a of the third storage device A3, and this refrigerant liquid sending pipe 3Eia is a refrigerant liquid sending pipe for the cooling coil 39b of the fourth storage device A4. 3[ib] is connected to the three-way valve 47 provided at the ib. Further, the refrigerant liquid feeding pipe 3fib includes a pump 48 and a valve 60, and is connected to a second cooler 37 provided in the refrigerator compartment 27.

しかして、これら冷却コイル39a、冷却コイル39b
のいずれか一方を冷媒がポンプ48で循環するように三
方弁47の流路切り換えと弁80.62の開閉切り換え
で行っている。
Therefore, these cooling coils 39a and 39b
The refrigerant is circulated by the pump 48 by switching the flow path of the three-way valve 47 and switching the opening and closing of the valves 80 and 62.

上記第1貯蔵器AI内には水素を吸蔵した第1金属水素
化物にIHを、第2貯蔵器A2内には第1水素吸蔵合金
M、を、第3貯蔵器A3内には第2水素吸蔵合金M2を
、第4貯蔵器A4内には水素を吸蔵した第2金属水素化
物M2Hをそれぞれ貯蔵してあり、Ml 、M2は特性
を異にする。
In the first storage AI, IH is stored in the first metal hydride that stores hydrogen, in the second storage A2, the first hydrogen storage alloy M is stored, and in the third storage A3, the second hydrogen is stored. The storage alloy M2 and the second metal hydride M2H storing hydrogen are stored in the fourth storage device A4, respectively, and Ml and M2 have different characteristics.

上述した冷凍システムは次ぎのように作動する。The refrigeration system described above operates as follows.

ブルマイヤサイクルヒートボンプ1は封入されているヘ
リウムカスが温度分布の変化で圧力分布に変化を起し、
スターリングエンジンのように2個のディスプレーサ4
,6が80°の位相差で往復運動をする。
In Blumyer Cycle Heat Bump 1, the enclosed helium scum causes a change in pressure distribution due to a change in temperature distribution.
Two displacers 4 like a Stirling engine
, 6 reciprocate with a phase difference of 80°.

高温シリフタ3側加熱器16内のヘリウムガスは加熱8
48で加熱されて高温再生器17を通る間に昇圧され、
これにより温度が上昇して中温熱交換器19aへ放熱し
、同熱交換器19aのコイル18内の熱媒(水)を加熱
し、この加熱された熱媒はポンプ30で蓄熱槽31の放
熱コイル51に送り込まれ、放熱コイル51からの熱媒
は再び中温熱交換器19bのコイル20へ戻される。
The helium gas in the heater 16 on the high temperature cylinder 3 side is heated 8
48 and is pressurized while passing through the high temperature regenerator 17,
As a result, the temperature rises and heat is radiated to the medium-temperature heat exchanger 19a, heating the heat medium (water) in the coil 18 of the heat exchanger 19a, and the heated heat medium is transferred to the heat storage tank 31 by the pump 30. The heat medium is fed into the coil 51, and the heat medium from the heat radiation coil 51 is returned to the coil 20 of the medium temperature heat exchanger 19b.

反面において低温シリンダ側のヘリウムガスは減圧され
、これにより温度が低下して低温熱交換器23のコイル
22を通るブラインを冷却し、この冷却されたブライン
は冷蔵室27内に設置した第1冷却器2日へポンプ25
で送られて冷蔵室27内を冷却し、再び低温熱交換器2
3のコイル22へ戻る。
On the other hand, the pressure of the helium gas on the low-temperature cylinder side is reduced, which lowers the temperature and cools the brine passing through the coil 22 of the low-temperature heat exchanger 23, and this cooled brine is transferred to the first cooling unit installed in the refrigerator compartment 27. Pump 25 to 2 days
is sent to cool the inside of the refrigerator compartment 27, and then sent to the low temperature heat exchanger 2 again.
Return to the coil 22 of No. 3.

前述のごとく中温熱交換器19bから蓄熱槽31内へ送
られた熱媒は蓄熱槽31内の熱媒体を加熱し、この加熱
された熱媒体は、弁84を開、弁57を閉にし、かつ三
方弁43の流路切り換えで、第1貯蔵器A里の放熱コイ
ル38aに送られ、第1貯蔵器^1内の第1金属水素化
物MIHに放熱して蓄熱槽31に戻る。
As described above, the heat medium sent from the medium temperature heat exchanger 19b into the heat storage tank 31 heats the heat medium in the heat storage tank 31, and this heated heat medium opens the valve 84 and closes the valve 57. By switching the flow path of the three-way valve 43, the heat is sent to the heat radiation coil 38a of the first storage device A, radiates to the first metal hydride MIH in the first storage device ^1, and returns to the heat storage tank 31.

次に冷熱発生装置50の動作を説明する。Next, the operation of the cold heat generating device 50 will be explained.

(1)蓄熱槽31からの熱媒体が第1貯蔵器A1の加熱
コイル38aへ供給されるばあい。
(1) When the heat medium from the heat storage tank 31 is supplied to the heating coil 38a of the first storage device A1.

弁58.60,83.84は開放、弁57.59,81
.82は閉とし、さらに三方弁43は送液管34a方向
へ、三方弁45は冷却管35b方向へ、三方弁47は冷
媒送液管38b方向へ、三方弁46は冷却管40a方向
へ切り換える。
Valves 58.60, 83.84 are open, valves 57.59, 81
.. 82 is closed, and the three-way valve 43 is switched toward the liquid feeding pipe 34a, the three-way valve 45 is switched toward the cooling pipe 35b, the three-way valve 47 is switched toward the refrigerant liquid feeding pipe 38b, and the three-way valve 46 is switched toward the cooling pipe 40a.

(a)第1貯蔵器AIの加熱コイル38aへ供給される
熱媒体によって第1貯蔵器Al内の第1金属水素化物N
utは昇温、昇圧し、第1金属水素化物M+H中の水素
は分離する。
(a) The first metal hydride N in the first reservoir Al is heated by the heating medium supplied to the heating coil 38a of the first reservoir AI.
ut is heated and pressurized, and hydrogen in the first metal hydride M+H is separated.

所定の温度、圧力になると第1連通管52aのバルブ5
3aが開き、第1貯蔵器Al内の分離している水素は第
3貯蔵器A3へ移動して、同貯蔵器A3の第2水素吸蔵
合金M2と反応し、第2金属水素化物M2Hが生成する
When the predetermined temperature and pressure are reached, the valve 5 of the first communication pipe 52a
3a opens, the separated hydrogen in the first storage A1 moves to the third storage A3 and reacts with the second hydrogen storage alloy M2 in the same storage A3, producing a second metal hydride M2H. do.

この反応時の熱は成熱コイル42aを流れる冷却水に吸
収される(再生処理過程)。
The heat during this reaction is absorbed by the cooling water flowing through the heating coil 42a (regeneration process).

(b)他方第2貯蔵器A2は放冷コイル41bに冷却水
が供給されて降温、降圧する。
(b) On the other hand, in the second storage A2, cooling water is supplied to the cooling coil 41b to lower the temperature and pressure.

第2貯蔵器A2が所定温度、圧力になると、第2連通管
52bのバルブ53bが開き、第4貯蔵器A4内の第2
金属水素化物M2Hの分離水素が第2貯蔵器A2へ移動
し、第2貯蔵器A2内の第1吸蔵合金)11と反応して
第1金属水素化物MIHが生成される。その反応時に発
生した熱は放冷コイル41bを通る冷却水に吸収される
When the second storage A2 reaches a predetermined temperature and pressure, the valve 53b of the second communication pipe 52b opens, and the second
The separated hydrogen of the metal hydride M2H moves to the second storage A2 and reacts with the first storage alloy () 11 in the second storage A2 to produce the first metal hydride MIH. The heat generated during the reaction is absorbed by the cooling water passing through the cooling coil 41b.

この過程における第4貯蔵器A4の第2金属水素化物M
2Hから水素が分離し、第2貯蔵器A2へ移動する際に
冷熱が生じ(冷熱発生過程)、これにより同貯蔵器A4
の冷却コイル39b内ブラインが冷却され、この冷却さ
れたプラインが冷蔵室27の第2冷却器37ヘポンプ4
8で供給され、この冷蔵室27が冷却される。
The second metal hydride M in the fourth storage A4 in this process
When hydrogen separates from 2H and moves to the second storage A2, cold heat is generated (cold heat generation process), which causes the hydrogen to move to the second storage A4.
The brine in the cooling coil 39b is cooled, and the cooled brine is sent to the second cooler 37 in the refrigerator compartment 27 by the pump 4.
8, and this refrigerator compartment 27 is cooled.

(2)蓄熱槽31からの熱媒が第2貯蔵器A2の加熱コ
イル38bへ供給されるばあい。
(2) When the heat medium from the heat storage tank 31 is supplied to the heating coil 38b of the second storage device A2.

弁57,59,61.62は開、弁58.60,63.
64は閉とし、三方弁43は送液管34b方向へ、三方
弁45は冷却管35a方向へ、三方弁47は冷媒送液管
36a方向へ、三方弁46は冷却管40b方向へ切り換
える。
Valves 57, 59, 61.62 are open, valves 58, 60, 63.
64 is closed, the three-way valve 43 is switched in the direction of the liquid feed pipe 34b, the three-way valve 45 is switched in the direction of the cooling pipe 35a, the three-way valve 47 is switched in the direction of the refrigerant liquid pipe 36a, and the three-way valve 46 is switched in the direction of the cooling pipe 40b.

(a)第2貯蔵器A2の加熱コイル38bへ蓄熱槽31
からの熱媒体が供給されることにより同貯蔵器A2が昇
温、昇圧し、中の第2金属水素化物M2Hの水素が分離
する。
(a) Heat storage tank 31 to heating coil 38b of second storage device A2
By supplying the heat medium from the storage tank A2, the temperature and pressure of the storage tank A2 are increased, and hydrogen in the second metal hydride M2H therein is separated.

所定温度、圧力になると第2連通管52bのバルブ53
bが開き、第2貯蔵器A2の分離水素は第4貯蔵器A4
へ移動して、同貯蔵器A4の第2水素吸蔵合金M2と反
応し、第2金属水素化物M2Hが生成する(再生過程)
When the predetermined temperature and pressure are reached, the valve 53 of the second communication pipe 52b is activated.
b is opened, and the separated hydrogen in the second storage A2 is transferred to the fourth storage A4.
and reacts with the second hydrogen storage alloy M2 in the storage A4 to generate a second metal hydride M2H (regeneration process)
.

このときの反応熱は成熱コイル42bを流れる冷却水に
吸収される。
The reaction heat at this time is absorbed by the cooling water flowing through the heating coil 42b.

(b)他方第1貯蔵器A、の放冷コイル41aには冷却
水が供給され、同貯蔵器^lは降温、降圧される。
(b) On the other hand, cooling water is supplied to the cooling coil 41a of the first storage A, and the temperature and pressure of the first storage A are lowered.

所定の温度、圧力になると第1連通管52aのバルブ5
3aが開き、第3貯蔵器A3の再生されている第2金属
水素化物M2H中の水素が分離して、第1貯蔵器A1へ
移動し、同貯蔵器AIの第1水素吸蔵合金M1と反応し
て第1金属水素化物MIHが生成する。
When the predetermined temperature and pressure are reached, the valve 5 of the first communication pipe 52a
3a opens, and the hydrogen in the regenerated second metal hydride M2H in the third storage A3 is separated, moves to the first storage A1, and reacts with the first hydrogen storage alloy M1 in the same storage A1. As a result, a first metal hydride MIH is generated.

第3貯蔵器A3の第2金属水素化物M2Hの水素が分離
し、第1貯蔵器A1へ移動する際に冷熱が発生しく冷熱
発生過程)、この冷熱により冷却コイル39a内のブラ
インが冷却され、冷却されたブラインが引き続き冷蔵室
27の第2冷却器37へ供給される。
When the hydrogen of the second metal hydride M2H in the third storage A3 is separated and transferred to the first storage A1, cold heat is generated (cold heat generation process), and this cold heat cools the brine in the cooling coil 39a, The cooled brine is subsequently supplied to the second cooler 37 of the cold storage compartment 27 .

上記(1)、(2)の過程を交互に繰り繰り返すことに
より、第2冷却器37に冷却されたプラインが送られ、
冷蔵室27の冷却が行なわれる。
By repeating the steps (1) and (2) above alternately, the cooled prine is sent to the second cooler 37,
Cooling of the refrigerator compartment 27 is performed.

なお、上記実施例における水素吸蔵合金としてはCa 
−8厘−Fli、Ca −Ha −Xi −AI等種々
なる物があり、特に限定するものではない。
In addition, as the hydrogen storage alloy in the above example, Ca
There are various types such as -8-Fli, Ca-Ha-Xi-AI, and there are no particular limitations.

また、熱媒送液管29内の熱媒体及び冷媒送液管26内
の冷奴及び他の送液管34a、34b、冷却管35a、
35b、40a、40b 、冷媒送液管38a、36b
、内の媒体についても水、アンモニア等を用いればよく
、特に限定するものではない。
In addition, the heat medium in the heat medium liquid transfer pipe 29 and the chilled tofu in the refrigerant liquid transfer pipe 26 and other liquid transfer pipes 34a and 34b, the cooling pipe 35a,
35b, 40a, 40b, refrigerant liquid transfer pipes 38a, 36b
, water, ammonia, etc. may be used and the medium is not particularly limited.

さらに、冷熱発生装置50を4つの貯蔵器A+ 、A2
 、A3 、A4 を有するものを上側では示したが、
水素吸蔵合金と水素との結合、分離によって冷熱を生成
するものであればいかなる構造のものであってもよい。
Furthermore, the cold heat generating device 50 is connected to four storage units A+ and A2.
, A3 and A4 are shown above,
Any structure may be used as long as it generates cold energy by combining and separating hydrogen storage alloy and hydrogen.

[発明の効果] 以上のように本願発明によれば、ブルマイヤサイクルヒ
ートボンブで生成した冷熱と温熱を、冷熱は直接保冷室
を冷却するために使用し、温熱は水素吸蔵化合物利用冷
熱発生装置の加熱源に使用して、冷熱発生装置で冷却さ
れた冷媒が供給される冷却器でも保冷室を冷却するよう
にしたので、ブルマイヤサイクルヒートボンプで生成さ
れた冷熱と温熱をそれぞれ直接、間接に冷却用に使用で
き、効率の高い冷凍システムを提供できる。
[Effects of the Invention] As described above, according to the present invention, the cold heat and hot heat generated by the Bulmeyer cycle heat bomb are used to directly cool the cold storage room, and the hot heat is generated by the cold heat generating device using a hydrogen storage compound. The cooler is also supplied with refrigerant cooled by the cold heat generating device to cool the cold storage compartment, so the cold and warm heat generated by the Blumyer cycle heat pump can be used directly and indirectly, respectively. can be used for cooling, providing a highly efficient refrigeration system.

しかも、フロンカスの場合のような環境破壊のおそれは
殆ど発生しないという利点がある。
Moreover, there is an advantage that there is almost no risk of environmental destruction as in the case of Froncas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明の一実施例を示すものであり、第2図
は第1水素吸蔵合金M1、第2水素吸蔵合金M2の水素
圧カー温度特性図である。 図  中 ■@lIプルマイヤサイクルヒートポンプ2・・高温空
間   3・・高温側シリング4・・高温側ディスプレ
ーサ 5・・低温空間 6・・低温側ディスプレーサ 7・・低温側シリング8・・クランク軸9・・クランク
ケース1OII−クランクシャフト11・争クランクビ
ン 12,13 −コンロッド14.15  −ロッド
  16−―加熱器170高温再生器 18.20 0中温熱交換コイル 19a、19b  ・中温熱交換器 21・・低温再生器 22・・低温熱交換コイル 23・・低温熱交換器 24・・中温空間25・・ポン
プ    26・・冷媒送液管27・・冷蔵室    
28・・第1冶却器28・・熱媒送液管  30・・加
圧用ポンプ31−−蓄熱槽    A1・拳第1貯蔵器
A2・・第2貯蔵器  A3・・第3貯蔵器A4・・第
4貯蔵器  34a、34b  ・送液管35a、35
b、40a、40b  ・冷却管38a、38b  ・
冷媒送液管 37−・第2冷却器  38a、38b ・放熱コイル
39a、38b  −冷却コイル 41a、41b  ・放冷コイル 42a、41b  、収態コイル 43.45.46.47 ・三方弁 44・Oポンプ 57.58,53ftO,131,62,63,644
8−−ポンプ 49・・加熱源 51・中放熱コイル 52b・第2連通管 52a、  ・第1連通管 50・・冷熱発生装置 53a、53b  ・バルブ ・弁 出願人 株式会社 ニ チ し イ 代理人 弁理士 前 1)清 美 第16図 温 度(℃) +0050   0
FIG. 1 shows an embodiment of the present invention, and FIG. 2 is a hydrogen pressure car temperature characteristic diagram of the first hydrogen storage alloy M1 and the second hydrogen storage alloy M2. Diagram Middle■@lI Plumyer cycle heat pump 2...High temperature space 3...High temperature side sill 4...High temperature side displacer 5...Low temperature space 6...Low temperature side displacer 7...Low temperature side sill 8...Crankshaft 9. - Crank case 1OII - Crankshaft 11 - Crankbin 12, 13 - Connecting rod 14.15 - Rod 16 - Heater 170 High temperature regenerator 18.20 0 Medium temperature heat exchange coils 19a, 19b - Medium temperature heat exchanger 21... Low-temperature regenerator 22...Low-temperature heat exchange coil 23...Low-temperature heat exchanger 24...Medium temperature space 25...Pump 26...Refrigerant liquid sending pipe 27...Refrigerating room
28..First heat exchanger 28..Heat medium liquid transfer pipe 30..Pump for pressurization 31--Heat storage tank A1..First storage device A2..Second storage device A3..Third storage device A4.・Fourth reservoir 34a, 34b ・Liquid feeding pipe 35a, 35
b, 40a, 40b ・Cooling pipes 38a, 38b ・
Refrigerant liquid sending pipe 37 - Second cooler 38a, 38b - Radiation coil 39a, 38b - Cooling coil 41a, 41b - Cooling coil 42a, 41b, Accommodation coil 43.45.46.47 - Three-way valve 44.O Pump 57.58, 53ftO, 131, 62, 63, 644
8--Pump 49...Heat source 51, Medium heat dissipation coil 52b, Second communication pipe 52a, - First communication pipe 50...Cold heat generators 53a, 53b, Valves, Valve Applicant Nichi Shii Co., Ltd. Agent Patent Attorney Mae 1) Kiyomi Figure 16 Temperature (℃) +0050 0

Claims (1)

【特許請求の範囲】[Claims] 外部加熱源にて加熱されることにより作動し、しかも中
温熱交換器と低温熱交換器を備えるブルマイヤサイクル
ヒートポンプの前記低温熱交換器で冷却された冷媒が供
給される第1冷却器を被冷却室内に設け、また、ブルマ
イヤサイクルヒートポンプの前記中温熱交換器からの熱
媒が供給されることにより作動して金属水素化物から水
素が分離し、この分離時に冷熱を発生する水素吸蔵合金
応用冷熱発生装置にて冷却された冷媒が供給される第2
冷却器を前記被冷却室に設けたことを特徴とする冷凍シ
ステム。
The Bulmeyer cycle heat pump operates by being heated by an external heating source and is equipped with a medium-temperature heat exchanger and a low-temperature heat exchanger. A hydrogen storage alloy application that is installed in a cooling chamber and operates by being supplied with a heat medium from the medium temperature heat exchanger of a Brumeyer cycle heat pump to separate hydrogen from metal hydrides and generate cold heat during this separation. A second section to which the refrigerant cooled by the cold heat generating device is supplied.
A refrigeration system characterized in that a cooler is provided in the room to be cooled.
JP2099864A 1990-04-16 1990-04-16 Refrigeration system Expired - Fee Related JP2525269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2099864A JP2525269B2 (en) 1990-04-16 1990-04-16 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2099864A JP2525269B2 (en) 1990-04-16 1990-04-16 Refrigeration system

Publications (2)

Publication Number Publication Date
JPH04159A true JPH04159A (en) 1992-01-06
JP2525269B2 JP2525269B2 (en) 1996-08-14

Family

ID=14258673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2099864A Expired - Fee Related JP2525269B2 (en) 1990-04-16 1990-04-16 Refrigeration system

Country Status (1)

Country Link
JP (1) JP2525269B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217497A (en) * 1994-02-01 1995-08-15 Shimane Pref Gov Power generation method using gas adsorption and desorption and device therefor
ES2703809A1 (en) * 2017-09-12 2019-03-12 Penalonga Teijeiro Luis Jose Exothermic hot air motor (Machine-translation by Google Translate, not legally binding)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217497A (en) * 1994-02-01 1995-08-15 Shimane Pref Gov Power generation method using gas adsorption and desorption and device therefor
ES2703809A1 (en) * 2017-09-12 2019-03-12 Penalonga Teijeiro Luis Jose Exothermic hot air motor (Machine-translation by Google Translate, not legally binding)

Also Published As

Publication number Publication date
JP2525269B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
KR100358338B1 (en) Driving method and apparatus of refrigeration system
JP2003075014A (en) Absorption refrigerating machine
US3817044A (en) Pulse tube refrigerator
JPH04159A (en) Refrigerating system
JP3936117B2 (en) Pulse tube refrigerator and superconducting magnet system
US10837682B2 (en) Devices with hybrid vapour compression-adsorption cycle and method for implementation thereof
CN112611133B (en) Regenerative refrigerator and refrigerator adopting same
US3580003A (en) Cooling apparatus and process for heat-actuated compressors
JPH0336468A (en) Cooling warehouse
JP2809853B2 (en) Heat pump system with cold / hot latent heat storage
JPH085173A (en) Pulse tube refrigerator
JPH10259966A (en) Rankine piston refrigerating machine
JPH0996480A (en) Low-temperature storage box
JP2600720B2 (en) Cryogenic refrigerator
Vasiliev Sorption machines with a heat pipe thermal control
KR0125912Y1 (en) A refrigerator using stirling cycle
JP3363697B2 (en) Refrigeration equipment
KR930000941B1 (en) Stirling cycle type refrigerator
JPH01208668A (en) Heat storage type cold and hot heat generating device
JPS6256420B2 (en)
JP2002098428A (en) Refrigerating/freezing apparatus
JPH02259375A (en) Cooling apparatus using metal hydride
Vasiliev Heat pipe thermal control for sorption machines
JP3276853B2 (en) Heat source machine
JPH03267662A (en) Heat drive type cold device using metallic hydrogenide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees