JPH041599A - Reducing method for radioactive material of atomic energy power plant - Google Patents

Reducing method for radioactive material of atomic energy power plant

Info

Publication number
JPH041599A
JPH041599A JP2100348A JP10034890A JPH041599A JP H041599 A JPH041599 A JP H041599A JP 2100348 A JP2100348 A JP 2100348A JP 10034890 A JP10034890 A JP 10034890A JP H041599 A JPH041599 A JP H041599A
Authority
JP
Japan
Prior art keywords
iron
water
nuclear power
concentration
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2100348A
Other languages
Japanese (ja)
Inventor
Motohiro Aizawa
元浩 会沢
Katsumi Osumi
大角 克己
Fumio Mizuniwa
水庭 文雄
Kazunobu Suzuki
鈴木 和伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Hitachi Kyowa Engineering Co Ltd
Original Assignee
Hitachi Kyowa Kogyo Ltd
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kyowa Kogyo Ltd, Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Kyowa Kogyo Ltd
Priority to JP2100348A priority Critical patent/JPH041599A/en
Publication of JPH041599A publication Critical patent/JPH041599A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To improve reliability for the control of iron density by injecting soluble iron salt in a method by which the density of a radioactive material in nuclear reactor water can be reduced by controlling the density of iron and nickel in supply water. CONSTITUTION:The supply of pure water to a dissolver 1 is performed by a supply water piping 21, and the supply and the stoppage of the supply water are performed with a valve 22. Also, it is possible to attach controllability to perform the adjustment of a water level by a water level meter 19, and to automatically close the valve 22 by an instruction for an upper limit water level, and to automatically open the valve by the instruction for a low limit water level. A diffusion tube 23 and a supply pipe 24 for nitrogen gas and carbon dioxide gas connected to the tube 23 are provided to obtain carbonic acid required for the dissolution of ferrous carbonic acid. The quantity of dissolution of the ferrous carbonic acid is adjusted by varying water carbonic acid density by the voltage division control of the carbon dioxide. In such a case, the quantity of dissolution can be stabilized by controlling the temperature of liquid by keeping constant by a humidifier 18 and a thermometer 20.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は沸騰水型原子力発電プラントにおいて炉水中の
放射能濃度を低減するために給水中の鉄濃度を鉄注入す
ることによってコントロールする方法において、安定し
た鉄の供給が可能となる溶解性の鉄塩を供給する方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for controlling the iron concentration in the feed water by injecting iron in order to reduce the radioactivity concentration in the reactor water in a boiling water nuclear power plant. , relates to a method for supplying a soluble iron salt that enables a stable supply of iron.

〔従来の技術〕[Conventional technology]

沸騰水型原子力発電プラント(以下BWRプラント)の
系統編成を第2図を用いて示す6原子炉1内のウラン燃
料から発生する熱で原子炉内の冷却水は蒸気となり主蒸
気配管2を通りタービン3に導かれて仕事をする。その
後、蒸気は、復水器4で凝縮水(復水)となり、復水ポ
ンプ5で給水ヒータ6に送られる。この開腹水中の腐食
生成物等の不純物は、復水ろ過装置7および復水脱塩装
置8で浄化される。給水タービンで昇温された冷却水は
、再び、原子炉1に戻る。
The system organization of a boiling water nuclear power plant (hereinafter referred to as a BWR plant) is shown in Figure 2. 6 Cooling water inside the reactor turns into steam due to the heat generated from the uranium fuel in the reactor 1 and passes through the main steam pipe 2. Work is guided by Turbine 3. Thereafter, the steam becomes condensed water (condensate) in the condenser 4 and is sent to the feed water heater 6 by the condensate pump 5. Impurities such as corrosion products in this laparotomy water are purified by a condensate filtration device 7 and a condensate desalination device 8. The cooling water heated by the water supply turbine returns to the reactor 1 again.

一方、原子炉水は、常時、原子炉再循環系配管9、およ
び、ポンプ10で原子炉内を循環するとともに、原子炉
水の一部は、原子炉浄化系11に導かれ、−度、熱交換
器12で冷却され浄化装置13で浄化される。
On the other hand, the reactor water is constantly circulated within the reactor by the reactor recirculation system piping 9 and the pump 10, and a part of the reactor water is led to the reactor purification system 11, and is It is cooled by a heat exchanger 12 and purified by a purification device 13.

一般に、プラントを構成している配管、ポンプ。In general, the piping and pumps that make up a plant.

熱交換器等の構成材料からは金属イオン成分や不溶解性
成分等の腐食生成物が溶出する。ここで、前述のように
、復水浄化装置の上流側のタービン系で発生した腐食生
成物の大部分は復水ろ過装置7および復水脱塩装置8で
除去されるが、復水浄化装置下流側の給水系14で発生
する腐食生成物は浄化されずに原子炉内に流入する。
Corrosion products such as metal ion components and insoluble components are eluted from the constituent materials of heat exchangers and the like. Here, as mentioned above, most of the corrosion products generated in the turbine system on the upstream side of the condensate purification device are removed by the condensate filtration device 7 and the condensate desalination device 8, but the condensate purification device Corrosion products generated in the downstream water supply system 14 flow into the reactor without being purified.

原子炉1内に持込まれた腐食生成物は燃料表面で起る冷
却水の沸騰蒸発現象に伴い燃料表面に付着蓄積される。
Corrosion products brought into the reactor 1 adhere to and accumulate on the fuel surface as a result of boiling and evaporation of cooling water occurring on the fuel surface.

燃料表面に付着した腐食生成物の一部は中性子照射を受
け、放射性物質となる。
Some of the corrosion products attached to the fuel surface are irradiated with neutrons and become radioactive substances.

例えば、NiやGoなどの腐食生成物は中性子照射によ
って5δCoや80COなどの長半減期をもつ放射性物
質になる。燃料棒に付着して放射性を帯びるようになっ
た腐食生成物の一部は、再び。
For example, corrosion products such as Ni and Go become radioactive substances with long half-lives such as 5δCo and 80CO by irradiation with neutrons. Some of the corrosion products that adhered to the fuel rods and became radioactive again.

冷却水中(Jj’f子炉水中)に溶出したり、或いは。or elutes into the cooling water (Jj'f reactor water).

離脱して、原子炉水を循環させる原子炉冷却材再循環系
9.あるいは、原子炉水中の不純物の一部を浄化してい
る原子炉水浄化系]−1の機器・配管内面に付着蓄積し
て放射線源となる。ここで、原子炉水中の放射性物質濃
度が高くなると、構成材料表面に付着蓄積する放射性物
質量が増加し、機器配管の放射線量が高くなる。その結
果、機器・配管点検等の作業を行う場合従事者の受ける
線量も増加することになる。
Reactor coolant recirculation system that separates and circulates reactor water9. Alternatively, it adheres and accumulates on the inner surfaces of the equipment and piping of the reactor water purification system which purifies some of the impurities in the reactor water, becoming a radiation source. Here, when the concentration of radioactive substances in reactor water increases, the amount of radioactive substances that adhere and accumulate on the surfaces of constituent materials increases, and the radiation dose of equipment piping increases. As a result, the radiation dose received by workers when performing work such as inspecting equipment and piping will also increase.

従って、原子炉水中の放射性物質濃度は可能な限り低く
維持した状態でプラントを運転する技術開発が行なわれ
適用されてきている。
Therefore, technology has been developed and applied to operate the plant while maintaining the radioactive material concentration in the reactor water as low as possible.

その−例として、腐食生成物の大部分を占めるFeの発
生量を低減するために、従来の炭素鋼配管に替えて低合
金鋼、あるいは、耐候性鋼等の腐食生成物の発生量が少
ない材料を適用してきている、さらに、発生した腐食生
成物を効果的に除去するため復水浄化装置としてろ過器
7と脱塩器8とを組合せた二重式としてきている。
For example, in order to reduce the amount of Fe, which accounts for the majority of corrosion products, instead of conventional carbon steel piping, we use low-alloy steel or weather-resistant steel, which generates less corrosion products. Furthermore, in order to effectively remove the generated corrosion products, a dual type condensate purification device combining a filter 7 and a demineralizer 8 has been used.

又、新たに発生した腐食生成物を浄化できない復水浄化
装置下流の給水系14では冷却水中に酸素ガスを注入し
共存させることによって、材料表面に腐食抑制効果を持
つ保護皮膜を形成させ、腐食生成物の発生を抑制してき
ている。
In addition, in the water supply system 14 downstream of the condensate purification device, where newly generated corrosion products cannot be purified, oxygen gas is injected into the cooling water and allowed to coexist with the water to form a protective film on the surface of the material that has the effect of inhibiting corrosion. The generation of products has been suppressed.

一方では、59co含有量の少ない材料を使い、長半減
と核種である60Coの発生量を低減する対策も採用さ
れている。
On the other hand, measures are also being taken to use materials with low 59Co content and to reduce the long-half life and the amount of 60Co, which is a nuclide, generated.

この様な腐食生成物の低減対策を採用したプラントでは
、原子炉内に流入する腐食生成物の量を減少させること
ができたが、原子炉水中の放射性物質濃度は従来より高
いレベルで安定する結果となった。
Plants that have adopted such corrosion product reduction measures have been able to reduce the amount of corrosion products flowing into the reactor, but the radioactive material concentration in the reactor water remains stable at a higher level than before. This was the result.

この要因を検討した結果、ステンレス鋼製の給水ヒータ
チューブ、あるいは、ステンレス鋼、インコネル材を使
用している原子炉内構造材から発生するNiおよびGo
の量に対してFe腐食生成物量が大きく減少しているこ
とが要因と考えられた。又、前述の復水浄化装置の一部
バイパス運転を行い給水中の鉄濃度を増加させた結果、
原子炉水中の放射性物質濃度が低下しこの推定が正しが
ったことが立証された。給水中のFe濃度は、給水ヒー
タチューブ、および、原子炉内構造物から発生するNj
およびCoの発生量に応じてコントロールする方法が現
在適用されている。
As a result of examining this factor, we found that Ni and Go generated from stainless steel feed water heater tubes and reactor internal structural materials using stainless steel and Inconel materials.
This was thought to be due to the large decrease in the amount of Fe corrosion products compared to the amount of . In addition, as a result of partially bypassing the condensate purification equipment mentioned above and increasing the iron concentration in the water supply,
The concentration of radioactive materials in the reactor water decreased, proving that this assumption was correct. The Fe concentration in the feed water is determined by the Nj generated from the feed water heater tube and reactor internals.
A method of controlling the amount of Co and Co generated is currently being applied.

又、給水中のFe濃度のコントロールは前述の復水浄化
装置の一部バイパス運転でも対応可能ではあるが二重化
した浄化装置のうちバイパスできるのはろ過器7のみで
ある。これは万一復水浄化装置の上流側の復水器の冷却
管が破損した場合、冷却水として使用している海水が原
子炉水中に混ざることを防止する必要があり万一の場合
にそなえて復水脱塩器8のバイパス運転は好ましくない
ためである。従って、復水浄化装置のバイパス運転によ
る給水中Fe濃度のコントロールは上流側のろ過器のみ
のバイパス運転となり下流側に設置している脱塩器を介
した運転となる。
Furthermore, although it is possible to control the Fe concentration in the water supply by partially bypassing the condensate purification device described above, only the filter 7 can be bypassed among the duplex purification devices. This is necessary to prevent the seawater used as cooling water from mixing with the reactor water in the event that the cooling pipe of the condenser on the upstream side of the condensate purification system is damaged. This is because bypass operation of the condensate demineralizer 8 is not preferable. Therefore, control of the Fe concentration in the feed water by bypass operation of the condensate purification device results in bypass operation of only the filter on the upstream side, and operation via the desalination device installed on the downstream side.

この場合、給水中のFe濃度のコントロール性はバイパ
スできない脱塩器の除鉄性能変化に依存し、濃度のコン
トロールがむずかしいという問題がある。この点より、
給水中のFe濃度をコントロールする方法として、給水
中に、直接、Feを注入する方法が特開昭60−188
893号、特開昭61−79194号、特開昭62−8
5897号および特開昭62−226099号公報に示
されている。
In this case, the controllability of the Fe concentration in the feed water depends on changes in the iron removal performance of the demineralizer, which cannot be bypassed, and there is a problem in that it is difficult to control the concentration. From this point,
As a method to control the Fe concentration in the water supply, a method of directly injecting Fe into the water supply was disclosed in Japanese Patent Application Laid-Open No. 60-188.
No. 893, JP-A-61-79194, JP-A-62-8
No. 5897 and Japanese Unexamined Patent Publication No. 62-226099.

特開昭60−188893号、特開昭61−79193
号、特開昭62−226099号および特開昭62−8
5897号公報では注入する鉄は、鉄イオン、鉄酸化物
、鉄の水酸化物、ステンレス鋼と炭素鋼を接触させ腐食
させたもの、鉄微粉、マグネタイト粉末、あるいは、鉄
電極を水中に浸漬して水中放電によって生成させた鉄イ
オン、あるいは、鉄微粒子であることが示されている。
JP-A-60-188893, JP-A-61-79193
No., JP-A-62-226099 and JP-A-62-8
According to Publication No. 5897, the iron to be injected is iron ion, iron oxide, iron hydroxide, stainless steel and carbon steel that are brought into contact and corroded, iron fine powder, magnetite powder, or an iron electrode immersed in water. It has been shown that these are iron ions or iron particles generated by underwater discharge.

一方、西野らの報告(化学工学論文集、Vofl。On the other hand, a report by Nishino et al. (Chemical Engineering Transactions, Vofl.

15(2)、276(1989))によると、第1表に
示すように非晶質水酸化鉄およびγ−FeOOHは原子
炉水環境下でNiと反応してNiFezO4を生成し5
たが、a−FeOOH,a−FezesおよびFe5O
aはNiと反応しなかったと報告されている。
15(2), 276 (1989)), as shown in Table 1, amorphous iron hydroxide and γ-FeOOH react with Ni in the reactor water environment to produce NiFezO4.
However, a-FeOOH, a-Fezes and Fe5O
It is reported that a did not react with Ni.

第 表 この報告より、給水系へ注入する鉄は、原子炉内におけ
るNiとの反応性を考慮すると、鉄イオン、非晶質の水
酸化物であることが望ましいと考えられる。
From this report, it is considered desirable that the iron injected into the water supply system be iron ions or amorphous hydroxide, considering its reactivity with Ni in the reactor.

一方、発明者らが行った鉄電極を水中で電解して生成さ
せた鉄イオン、あるいは、非晶質水酸化鉄の注入試験結
果では、第3図に示すように、注入効率がそれぞれ30
%および80%であり注入した鉄が注入配管内に残留す
ることが確認された。
On the other hand, as shown in Figure 3, the injection efficiency of iron ions produced by electrolyzing an iron electrode in water or amorphous iron hydroxide was 30% as shown in Figure 3.
% and 80%, and it was confirmed that the injected iron remained in the injection pipe.

これは、長期間にわたる運転では注入配管が注入鉄によ
って閉塞する可能性を持つという問題がある。
This poses a problem in that the injection pipe may become clogged with the injected iron during long-term operation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、Jv子炉内でNiと反応性の高い鉄イ
オン、あるいは、非晶質水酸化物を給水中に注入して、
原子炉水中の放射性物質濃度を低減することが可能とな
るが、これらの鉄は注入配管に付着する傾向にあり、注
入効率が十分得られないという問題点があった。
The above conventional technology injects iron ions or amorphous hydroxide, which are highly reactive with Ni, into the feed water in the JV sub-reactor.
Although it is possible to reduce the concentration of radioactive substances in reactor water, there is a problem that these iron tend to adhere to the injection pipes, making it difficult to obtain sufficient injection efficiency.

又、注入配管内に付着する鉄は、長期の間に注入配管を
閉塞させる可能性を持つため、定期的に配管内の鉄を除
去する作業が必要となる。定期的な鉄除去が困難な場合
には、複数の予備注入配管を設ける等の設備費増加を招
くため、改善する必要がある6 本発明の目的は、原子炉内でNiと反応性の高い鉄を注
入するとともに、注入配管への鉄付着を無視できる鉄注
入法を提供することにある。
Further, since iron adhering to the inside of the injection pipe has the possibility of clogging the injection pipe over a long period of time, it is necessary to periodically remove the iron inside the pipe. If it is difficult to periodically remove iron, it will increase equipment costs such as installing multiple pre-injection pipes, so improvements must be made. An object of the present invention is to provide an iron injection method that can inject iron and ignore iron adhesion to injection piping.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は種々の鉄化合物の
水に対する溶解性および注入配管への付着特性を検討、
調査し最も有効な方法の選定を行なった。
In order to achieve the above object, the present invention investigated the solubility of various iron compounds in water and the adhesion characteristics to injection piping,
We investigated and selected the most effective method.

その結果1本発明者らは溶解性の鉄塩を用いて注入する
ことあるいは電解鉄中にアニオンを共存させることによ
って、注入配管への付着がほとんど無視できるとの知見
を得た。
As a result, the present inventors found that by injecting using a soluble iron salt or by allowing anions to coexist in electrolytic iron, adhesion to the injection pipe can be almost ignored.

又、水溶液として注入するには水に対する溶解度が高い
ことが必要である。同時鉄とともに注入される対のアニ
オン種が原子炉内に流入した場合に、原子炉構成材料、
あるいは、原子炉内構成材料に対する腐食等に対する影
響が少ないことが必要となる。
Moreover, in order to inject it as an aqueous solution, it is necessary that the solubility in water is high. When the paired anion species injected together with iron flow into the reactor, reactor constituent materials,
Alternatively, it is necessary that the influence of corrosion on the constituent materials inside the reactor is small.

これらの点を考慮し、本発明者らは、炭酸ガス飽和水中
で約1g/Ω (at20℃)の溶解度の炭酸第一鉄、
あるいは、水100gに対して約45g(at20℃)
の溶解度をもつ硝酸第一鉄、あるいは、硝酸第二鉄心が
採用可能と考えた5又、炭酸イオン、あるいは、硝酸イ
オンが原子炉内に流入した場合の腐食等に対する影響は
実際に注入される濃度はi Ppb以下となり非常に微
量な濃度であることより影響は無いものと考えられる。
Taking these points into consideration, the present inventors discovered that ferrous carbonate, which has a solubility of about 1 g/Ω (at 20°C) in carbon dioxide saturated water,
Or about 45g per 100g of water (at 20℃)
Ferrous nitrate or ferric nitrate, which has a solubility of Since the concentration is less than i Ppb and is a very small concentration, it is thought that there will be no influence.

さらに、炭酸イオンの場合には原子炉内の冷却水の沸騰
現象に伴い、蒸気とともに除去されるため、原子炉内に
濃縮されることは無い。一方、硝酸イオンは、蒸気中へ
のキャリオーバ率が小さいため、原子炉内に数十ρpb
の濃度として濃縮されるものと考えられる。
Furthermore, in the case of carbonate ions, they are removed together with the steam as the cooling water boils inside the reactor, so they are not concentrated inside the reactor. On the other hand, nitrate ions have a low carryover rate into steam, so several tens of ρppb are present in the reactor.
It is thought that it is concentrated as a concentration of .

しかし、V、E、Rutherらの第4図に示す試験結
果(Corrosion、 VoQ44 (11)、 
(1988))で報告されているように、100ppb
の硝酸イオン(NOs−) (1)共存はホウ酸イオン
(B O3g−) *塩素イオン(CO)、リン酸イオ
ン(PO48−)。
However, the test results shown in Figure 4 by V. E. Ruther et al. (Corrosion, VoQ44 (11),
(1988)), 100 ppb
Nitrate ion (NOs-) (1) Coexistence is borate ion (BO3g-) *chloride ion (CO), phosphate ion (PO48-).

硫酸イオン(S042−)の共存に比べ応力腐食割れ、
および、割れの進展速度の加速に対してほとんど影響を
与えず不純物を含まない純水中のデータと有意な差が無
い、従って、硝酸イオンの原子炉内への流入は実際上問
題が無いと考えられ、炭酸塩よりは優先順位は低いが、
適用が可能である。なお、 W、E、Rutherらの
試験結果は鋭敏化した材料に対する試験結果であり、実
際のプラントでは鋭敏化しない施工方法および鋭敏化し
ない材料を採用する等の対策を行っており、アニオン種
の共存があった場合にも裕度は十分保たれていると判断
される。
Stress corrosion cracking compared to coexistence of sulfate ions (S042-),
Furthermore, there is no significant difference from the data for pure water, which has no effect on the acceleration of crack growth and does not contain any impurities.Therefore, it is concluded that there is no practical problem with the inflow of nitrate ions into the reactor. possible, but with lower priority than carbonates,
Applicable. Note that the test results by W, E, Ruther et al. are test results for sensitized materials, and in actual plants, measures such as adopting construction methods and materials that do not sensitize are taken, and anionic species Even if there is coexistence, it is judged that the margin is sufficiently maintained.

又、給水等の冷却水中に注入するために調整する方法を
検討した結果法の方法が望ましいと判断された。
In addition, as a result of considering a method for adjusting the amount of water to be injected into cooling water such as water supply, it was determined that this method was preferable.

炭酸第一鉄の水溶液を注入する場合には、あらかじめ、
炭酸第一鉄を炭酸ガスを含ませた水の中で溶解させる処
理が必要となる。炭酸第一鉄の溶解は、あらかじめ、溶
解槽に炭酸ガスを含ませた水を準備し、所定量の炭酸第
一鉄塩を入れて溶解させ所定濃度の溶液を得る方法があ
るが、溶解槽中に供給する窒素(N2)ガスと炭酸(C
OZ)ガスの混合割合を調整することによって第5図に
示す相関により水中の炭酸濃度を調整し、第6図に示す
相関に基づき水中の炭酸第一鉄の濃度を調整することも
可能である。
When injecting an aqueous solution of ferrous carbonate, in advance,
A process is required to dissolve ferrous carbonate in water containing carbon dioxide gas. To dissolve ferrous carbonate, there is a method in which water containing carbon dioxide gas is prepared in advance in a dissolution tank, and a predetermined amount of ferrous carbonate is added and dissolved to obtain a solution with a predetermined concentration. Nitrogen (N2) gas and carbonic acid (C
By adjusting the mixing ratio of OZ) gas, it is also possible to adjust the carbon dioxide concentration in water based on the correlation shown in Figure 5, and it is also possible to adjust the concentration of ferrous carbonate in water based on the correlation shown in Figure 6. .

又、硝酸第一鉄および硝酸第二鉄塩の溶解の場合には、
水に対する溶解度が大きいため、溶解槽に所定量大れて
鉄濃度の調整が可能となる。
Also, in the case of dissolving ferrous and ferric nitrate salts,
Since it has a high solubility in water, it is possible to adjust the iron concentration by adding a predetermined amount to the dissolution tank.

一方、電解で生成させた鉄イオンを使用する場合には、
電解鉄生成後に炭酸ガスを添加、あるいは、炭酸含有水
、硝酸含有水を添加し、炭酸イオン、あるいは、硝酸イ
オンが共存する状態で注入することで注入効率向上が図
られる。
On the other hand, when using iron ions generated by electrolysis,
Injection efficiency can be improved by adding carbon dioxide gas, carbonate-containing water, or nitric acid-containing water after electrolytic iron is produced, and by injecting the iron in the presence of carbonate ions or nitrate ions.

一方、上記記述は無機塩に対して示したが、同様に水溶
性の鉄錯塩として注入する方法も可能である。
On the other hand, although the above description was given regarding an inorganic salt, a method of injecting it as a water-soluble iron complex salt is also possible.

鉄錯塩はキレート剤としてポリアミノカルボン酸類、あ
るいは、オキシカルボン酸類があげられる。これらの鉄
錯塩の安定化定数は無機塩に比べて極めて高いため注入
配管内への注入鉄の付着を効果的に低減することができ
る。又、これらの錯塩は原子炉内に入った場合、分解し
て炭酸ガス。
Iron complex salts include polyaminocarboxylic acids or oxycarboxylic acids as chelating agents. Since the stabilization constant of these iron complex salts is much higher than that of inorganic salts, it is possible to effectively reduce the adhesion of the injected iron into the injection pipe. Also, when these complex salts enter a nuclear reactor, they decompose into carbon dioxide gas.

アンモニアとして蒸気とともに除去されると判断される
ため、不純物として濃縮される可能性は無い。
It is determined that it will be removed along with the steam as ammonia, so there is no possibility that it will be concentrated as an impurity.

さらに、炭酸イオン、あるいは、硝酸イオンを共存させ
た水を原子炉内に注入した場合、炉水中のpHがわずか
ではあるが、fIi性側に推移する。
Furthermore, when water containing carbonate ions or nitrate ions is injected into the reactor, the pH of the reactor water shifts to the fIi side, albeit slightly.

この場合、原子炉水のpHは、仮に硝酸イオンが50p
pb存在したとした場合の最小値は約6.1となるが、
BWRプラントの炉水pHの運転管理範囲5.6〜8.
6の間にありプラントの運転に対して障害とはならない
In this case, the pH of the reactor water is assumed to be 50p with nitrate ions.
If pb were to exist, the minimum value would be approximately 6.1, but
BWR plant reactor water pH operational control range 5.6 to 8.
6 and does not pose an obstacle to plant operation.

しかし、BWRの場合、冷却水はこれまで中性水管理を
主体として管理してきている点より鉄注入を行った場合
にも中性に維持することが望ましい言える。さらに、Y
、Solmon (Int’ 1 、Conf、onW
ator Chemistry of Nuclear
 Reactor SystemBNES、1977)
によって報告されている。
However, in the case of BWR, it is desirable to maintain the cooling water neutral even when iron is injected, since the cooling water has been mainly managed using neutral water. Furthermore, Y
, Solmon (Int' 1 , Conf, onW
ator Chemistry of Nuclear
Reactor System BNES, 1977)
reported by.

第7図に示す高温水中におけるマグネタイトの溶解度の
データに見られるように高温水下での鉄酸化物は、むし
ろ、アルカリ水側に溶解度の極小値を持つ。
As seen in the solubility data of magnetite in high-temperature water shown in FIG. 7, iron oxides in high-temperature water have a minimum solubility value on the alkaline water side.

この現象は、注入した鉄がNiと反応したN i F 
exo4も同様の傾向にあり、Niが放射化して生成す
る6♂Co等の放射性物質の溶出量も抑制できる。従っ
て、鉄とともにアルカリ薬品を添加し炉水のpHコント
ロールを行うことはさらに有効な放射性物質濃度の低減
手段となる。
This phenomenon is caused by the reaction of the injected iron with Ni.
Exo4 has a similar tendency, and the amount of elution of radioactive substances such as 6♂Co produced by activation of Ni can also be suppressed. Therefore, controlling the pH of reactor water by adding alkali chemicals together with iron is a more effective means of reducing the concentration of radioactive substances.

〔作用〕[Effect]

本発明に示すように、鉄イオンあるいは非晶質水酸化物
を注入する場合に、炭酸イオン、硝酸イオンあるいはキ
し・−ト剤と共存する状態で注入することで、注入効率
の増大で、ひいては、注入配管の注入鉄による閉塞を防
止でき、安定した鉄注入運転が実現可能となる。
As shown in the present invention, when iron ions or amorphous hydroxide are implanted, by implanting them in coexistence with carbonate ions, nitrate ions, or chelating agents, the implantation efficiency is increased. As a result, it is possible to prevent the injection pipe from being blocked by the injected iron, and stable iron injection operation can be realized.

さらに、長期連続運転を行う必要性から考えると、炭酸
第一鉄、あるいは、硝酸鉄の注入の場合には大容量の溶
解槽(タンク)が必要となるが、電解鉄発生装置と組合
せ、注入前に鉄イオンを炭酸イオン、硝酸イオン、ある
いは、キレート剤と共存させ、その後注入することによ
って上記と同様の効果を持たせることが可能となる。
Furthermore, considering the need for long-term continuous operation, a large-capacity dissolving tank is required in the case of injection of ferrous carbonate or iron nitrate, but when combined with an electrolytic iron generator, injection The same effect as above can be achieved by first coexisting iron ions with carbonate ions, nitrate ions, or chelating agents, and then implanting them.

又、アルカリ薬品を注入鉄と同時に生じる方法を採用し
た場合には、炉水pHを中性、あるいは、アルカリ性側
に安定化させることが可能となり、注入鉄で安定化させ
たNi−あるいは、Coの溶出を抑制できる。その結果
、より有効な原子炉水放射性物質の抑制が達成できろ。
In addition, if a method is adopted in which alkaline chemicals are generated simultaneously with the injected iron, it becomes possible to stabilize the reactor water pH to neutral or alkaline side, and the Ni- or Co stabilized by the injected iron can be stabilized. The elution of can be suppressed. As a result, more effective suppression of radioactive materials in the reactor water can be achieved.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図により説明する、第1
図に示した実施例は炭酸第一鉄を炭酸を含む水の中で溶
解させ注入する方法の実施例である。炭酸第一鉄の溶解
は溶解槽15内で行う。溶解槽1には炭酸第一鉄を入れ
るパケット]6.攪拌機17.加温器18.水位計19
および温度計20を設ける。溶解槽1への純水の供給は
供給水配管21より行い、供給水の供給および停止は弁
22で行う。又、水位調整は水位計19で行い上限水位
の指示で弁22が自動的に閉じ、下限水位で自動的に開
く制御設備を持たせることも可能である。炭酸第一鉄の
溶解に必要な炭酸とするため、溶解槽の下部に散気管2
3とそれに接続する窒素ガスと炭酸ガスの供給配管24
を設ける。供給配管24に窒素ガスボンベ25.炭酸ガ
スボンベ26より圧力調整弁27.流量計28を介して
窒素ガスと炭酸ガスの混合ガスを供給する。
Below, one embodiment of the present invention will be explained with reference to FIG.
The embodiment shown in the figure is an embodiment of a method for dissolving and injecting ferrous carbonate in water containing carbonate. The ferrous carbonate is dissolved in the dissolving tank 15. Packet containing ferrous carbonate in dissolving tank 1]6. Stirrer 17. Warmer 18. Water level gauge 19
and a thermometer 20. Pure water is supplied to the dissolution tank 1 through a supply water pipe 21, and a valve 22 is used to supply and stop the supply water. Further, the water level can be adjusted using a water level gauge 19, and a control facility may be provided in which the valve 22 automatically closes when the upper limit water level is indicated and automatically opens when the lower limit water level is indicated. In order to obtain the carbonic acid necessary for dissolving ferrous carbonate, a diffuser pipe 2 is installed at the bottom of the dissolving tank.
3 and nitrogen gas and carbon dioxide gas supply piping 24 connected thereto.
will be established. A nitrogen gas cylinder 25 is connected to the supply pipe 24. Pressure regulating valve 27 from carbon dioxide cylinder 26. A mixed gas of nitrogen gas and carbon dioxide gas is supplied through the flow meter 28.

炭酸第一鉄の溶解量は、前述のように、第5図および第
6図に示した炭酸ガスの分圧コントロールによる水中炭
酸濃度を変化させることによって調整する。その場合、
加温器18と温度計20によって溶解槽中の液温を一定
にコントロールすることによって溶解量を安定化させる
ことが望ましい。溶解槽に供給した窒素ガスと炭酸ガス
は排気管24により糸外へ排出する。この場合、窒素ガ
スの代わりにヘリウムガスあるいはアルゴンガス等の不
活性ガスを使用しても炭酸の溶解量はコントロール可能
である。前述の方法で鉄濃度を調整した液はフィルタ2
5.注入ポンプ26.流量調節弁27.注入配管28、
および、注入配管元弁29を介して注入配管系30に注
入する。
As described above, the amount of ferrous carbonate dissolved is adjusted by changing the carbon dioxide concentration in water by controlling the partial pressure of carbon dioxide gas shown in FIGS. 5 and 6. In that case,
It is desirable to stabilize the amount of dissolution by controlling the temperature of the liquid in the dissolution tank to be constant using the warmer 18 and thermometer 20. The nitrogen gas and carbon dioxide gas supplied to the dissolving tank are discharged to the outside of the yarn through the exhaust pipe 24. In this case, the amount of carbonic acid dissolved can be controlled by using an inert gas such as helium gas or argon gas instead of nitrogen gas. The liquid whose iron concentration was adjusted using the method described above is filter 2.
5. Infusion pump 26. Flow control valve 27. Injection pipe 28,
Then, it is injected into the injection piping system 30 via the injection piping main valve 29.

次に、本発明の第二の実施例を第8図を用いて説明する
。第8図に示した実施例は硝酸第一鉄あるいは硝第二鉄
を溶解させ、注入するケースについて示したものである
。溶解槽15には、硝酸鉄を入れるパケット16.攪拌
機17.水位計19゜加温器18および温度計20を設
けた設備とする。
Next, a second embodiment of the present invention will be described using FIG. 8. The embodiment shown in FIG. 8 is a case in which ferrous nitrate or ferric nitrate is dissolved and injected. The dissolving tank 15 contains a packet 16 containing iron nitrate. Stirrer 17. The equipment is equipped with a water level gauge 19°, a warmer 18, and a thermometer 20.

これらの設備の作動は実施例1に示した内容と同様とす
る。
The operation of these facilities is similar to that shown in Example 1.

一定の鉄濃度に調整した溶解槽の液をフィルタ25、注
入ポンプ26.流量調節弁27.注入配管28および注
入配管元弁29を介して注入配管30に注入する。注入
鉄量のコントロールは溶解槽中の鉄濃度と注入流量で調
整する。
The liquid in the dissolution tank, which has been adjusted to a constant iron concentration, is passed through a filter 25 and an injection pump 26. Flow control valve 27. It is injected into the injection pipe 30 via the injection pipe 28 and the injection pipe main valve 29. The amount of iron injected is controlled by the iron concentration in the melting tank and the injection flow rate.

次に、本発明の第三の実施例を第9図および第10図を
用いて説明する。第9図に示した実施例は第1図に示し
た炭酸第一鉄を注入する設備に炉水中のPHを中性、ま
たは、弱アルカリ性に調整するためにアルカリ薬品タン
ク31と供給ポンプ32、供給配管33および弁34を
追加したものである。
Next, a third embodiment of the present invention will be described using FIGS. 9 and 10. The embodiment shown in FIG. 9 includes an alkaline chemical tank 31 and a supply pump 32 to adjust the pH in the reactor water to neutral or slightly alkaline in the equipment for injecting ferrous carbonate shown in FIG. A supply pipe 33 and a valve 34 are added.

第四の実施例を第11図を用いて説明する。第11図に
は、電解で生成した鉄イオン、あるいは、非晶質水酸化
鉄溶液に炭酸イオンを添加して注入する方法を示す。
A fourth embodiment will be explained using FIG. 11. FIG. 11 shows a method of adding and implanting iron ions generated by electrolysis or carbonate ions to an amorphous iron hydroxide solution.

電解液および注入水として使用する脱塩水の供給は、供
給配管35により電解鉄発生装置に供給され、流量調節
弁36.および、流量計37で行・う 。
The supply of demineralized water used as electrolyte and injection water is supplied to the electrolytic iron generator through a supply pipe 35, and through a flow rate control valve 36. Then, use the flowmeter 37.

Cox圧入原水槽;38に導かれた供給水は電気ヒータ
39で加温し、温度計40で水温を検出し一定温度に調
整し、下流側の電解槽41で鉄電極42を電解するのに
十分な導電率を得るため、CO2圧入原水槽38の下部
より炭酸ガスを吹き込む、炭酸ガスの供給は、複数個の
炭酸ガスボンベ43により行い、炭酸ガス供給配管44
.流量計45.流量調節弁46を介して行う。
The feed water led to the Cox press-in raw water tank; 38 is heated by an electric heater 39, the water temperature is detected by a thermometer 40 and adjusted to a constant temperature, and the iron electrode 42 is electrolyzed in an electrolytic tank 41 on the downstream side. In order to obtain sufficient electrical conductivity, carbon dioxide gas is injected from the lower part of the CO2 injection raw water tank 38. The supply of carbon dioxide gas is performed using a plurality of carbon dioxide gas cylinders 43, and the carbon dioxide gas supply piping 44
.. Flowmeter 45. This is done via the flow control valve 46.

供給水の温度、および、導電率を調整した後の水は電解
槽の下部に移送管47で導き、鉄電極42間を1昇させ
る。その後、鉄電極には直流電源48より電流が供給さ
れ、電イオンが電解液中に溶出する。
After adjusting the temperature and conductivity of the supplied water, the water is led to the lower part of the electrolytic cell through a transfer pipe 47, and is raised by 1 between the iron electrodes 42. Thereafter, a current is supplied to the iron electrode from the DC power supply 48, and electric ions are eluted into the electrolyte.

さらに、電解液中には電解槽41の下部より窒素ガスを
吹き込み7鉄電極表面へのスケールの付着を抑制しなが
ら運転を行う、1!素ガスの供給は複数の窒素ガスボン
ベ49より、供給配管50゜流量計51.および、流量
l1i1節弁52を介して行なわれる。
Furthermore, nitrogen gas is blown into the electrolytic solution from the lower part of the electrolytic cell 41 to perform operation while suppressing scale adhesion to the surface of the 7-iron electrode.1! The raw gas is supplied from a plurality of nitrogen gas cylinders 49 through a supply pipe 50° and a flowmeter 51. And, it is performed via the flow rate l1i1 regulating valve 52.

電解鉄を含む電解液は電解槽の上部より関を介して反応
槽にオーバフロー・することにより反応槽53に移動す
る。このため、仮に反応槽の水が無くなった場合にも電
解槽41.CO2圧入原水槽38の水が無くなることが
防止でき、ヒータのオーバヒ・−ト、あるいは一′f解
電圧の異常なモ昇という現象を防ぐことができる、 反応槽53に導かれた電解鉄を含む水は 攪拌機54で
攪拌されるとともに、前述の炭酸ガスボンベ43より、
再度、炭酸ガスを供給し、炭酸鉄溶液を形成させる。C
ot圧入原水槽:38.電解槽41および反応槽53L
、供給された炭酸ガスおよび窒素ガスは、電解槽および
反応槽1部に設けた排気管55より建屋内排気ダクトに
導き排出する。又、反応槽の水位調整は、水位計56で
検出し注入れ取出し水位より低下する。:とを防止する
The electrolytic solution containing electrolytic iron moves to the reaction tank 53 by overflowing into the reaction tank from the upper part of the electrolytic tank via a barrier. Therefore, even if the water in the reaction tank runs out, the electrolytic tank 41. The electrolytic iron introduced into the reaction tank 53 can be prevented from running out of water in the CO2 injection raw water tank 38, and can prevent overheating of the heater or abnormal rise in the 1'f electrolysis voltage. The contained water is stirred by the stirrer 54, and is also fed from the carbon dioxide gas cylinder 43 mentioned above.
Carbon dioxide gas is supplied again to form an iron carbonate solution. C
ot press-in raw water tank: 38. Electrolytic tank 41 and reaction tank 53L
The supplied carbon dioxide gas and nitrogen gas are led to an exhaust duct inside the building and discharged through an exhaust pipe 55 provided in one part of the electrolytic cell and the reaction tank. Further, the water level of the reaction tank is adjusted by detecting it with a water level gauge 56 and lowering the water level from the injected water level to the taken out water level. : To prevent and.

一方、上限水位は水位計で検呂および制御することも可
能であるが、第11図に示したように、オーバフローラ
イン57を設は調整することも可能である。炭酸鉄とし
た注入銃は注入ポンプ58゜注入配管59.流量調節#
60.および、注入配管元弁61を介して注入系配管6
2に導かれる3注入系は、第2図に示した復水脱塩器8
と原子炉1人口部の間の配管、あるいは、原子炉浄化系
浄化装置t1.aから原子炉1人口部の閣の配管系でも
良い。
On the other hand, the upper limit water level can be checked and controlled using a water level gauge, but it is also possible to adjust the setting of the overflow line 57 as shown in FIG. The injection gun made of iron carbonate has an injection pump of 58 degrees and an injection pipe of 59 degrees. Flow rate adjustment #
60. and the injection system piping 6 via the injection piping source valve 61.
3 injection system led to condensate demineralizer 8 shown in FIG.
and the reactor 1 population section, or the reactor purification system purification device t1. From a to the piping system of the reactor 1 population section may be used.

実施例の第五番目の例を第】2図を用いて説明する。第
12図に示した実施例は、第11図に示した電解鉄製造
設備に硝酸供給設備を設けたものである。具体的には、
電解鉄を硝酸イ゛オン(NO3>と共存させて注入する
ため反応槽53に硝酸供給タンク63より供給ポンプ6
4.流量計65.流量調節弁66および供給配管67を
介して硝酸溶液を供給する設備である6 本発明の第六の実施例を第13図および@14図を用い
て説明する。第13図および第14図に示した実施例は
第11図および第12図にした電解鉄溶液中に、炭酸イ
オン、あるいは、硝酸イオンを共存させて注入する方法
に加えて、炉水中のpHをコントロールするためアルカ
リ薬品の添加設備を加えたものである。
A fifth example of the embodiment will be explained using FIG. 2. In the embodiment shown in FIG. 12, a nitric acid supply facility is provided in the electrolytic iron production facility shown in FIG. 11. in particular,
In order to inject electrolytic iron coexisting with nitrate ions (NO3), a supply pump 6 is supplied from a nitric acid supply tank 63 to the reaction tank 53.
4. Flow meter 65. A sixth embodiment of the present invention, which is equipment for supplying a nitric acid solution through a flow rate control valve 66 and a supply pipe 67, will be described with reference to FIG. 13 and @FIG. The embodiment shown in FIGS. 13 and 14 is a method of injecting carbonate ions or nitrate ions coexisting into the electrolytic iron solution shown in FIGS. 11 and 12, and also In order to control this, equipment for adding alkaline chemicals has been added.

電解鉄溶液中へのアルカリ薬品の添加は アルカリ薬品
タンク31.送液ポンプ32゜流量計68および流量調
節弁34を設けて行う二とで可能となる。
Addition of alkaline chemicals to the electrolytic iron solution is done in the alkaline chemical tank 31. This can be achieved by providing a liquid feeding pump 32, a flow meter 68, and a flow control valve 34.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、注入銃が注入配管内に付着り。 According to the invention, the injection gun is attached within the injection pipe.

配管を閉塞させることに防ぐため、安定した鉄注入が可
能となり、注入系での鉄濃度コントロールの信頼性が向
上する。
This prevents clogging of the piping, making stable iron injection possible and improving the reliability of iron concentration control in the injection system.

その結果として、炉水中の放射性物質濃度を安定化させ
ることが容易となり、ひいては、プラント点検時に受け
る線量率低減に寄与できる7さらに、注入銃ととともに
アルカリ薬品を注入することによって原子炉内での放射
性物質の溶出量を抑えることが可能となり1合理的な水
質管理が達成できる。
As a result, it becomes easier to stabilize the concentration of radioactive materials in the reactor water, which in turn contributes to reducing the dose rate received during plant inspections.7 Furthermore, by injecting alkaline chemicals together with the injection gun, It becomes possible to suppress the amount of elution of radioactive substances, and 1 rational water quality control can be achieved.

【図面の簡単な説明】 第1図は本発明の一実施例の系統図、第2図はBWRの
一般的な系統図、第3図は注入鉄の注入配管への付着割
合の実測結果を示す特性図、第4図はアニオン不純物の
SCCへの影響試験結果を示す説明図、第5図は気相中
の炭酸ガス濃度と水中への炭酸の溶解濃度の関係を示す
説明図、第6図は水中の炭酸濃度と、炭酸第一鉄の溶解
量の関係を示す説明図、第7図は高温水中における鉄酸
化物の溶解度を示す説明図、第8図は本発明の第二の実
施例の系統図、第9図および第10図は本発明の第三の
実施例の系統図、第11図は本発明の第四の実施例を示
す系統図、第12図は本発明の第五の実施例を示す系統
図、第13図、第14図は本発明の第六の実施例を示す
系統図である。 15・・・溶解槽、16・・・パケット、17・・・攪
拌機。 18・・・加温器、19・・・水位計、23・・・散気
管、26・・・注入ポンプ、31・・・アルカリ薬品タ
ンク、38・・・COz圧入原水槽、41・・・電解槽
、43・・・炭酸ガスボンベ、49・・・窒素ガスボン
ベ、53・・・反応槽、 63・・・硝酸タンク。
[Brief explanation of the drawings] Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is a general system diagram of BWR, and Fig. 3 is an actual measurement result of the adhesion rate of injected iron to the injection pipe. Figure 4 is an explanatory diagram showing the test results of the influence of anionic impurities on SCC, Figure 5 is an explanatory diagram showing the relationship between the carbon dioxide concentration in the gas phase and the dissolved concentration of carbonic acid in water, and Figure 6 is an explanatory diagram showing the relationship between the carbon dioxide concentration in the gas phase and the dissolved concentration of carbonic acid in water. The figure is an explanatory diagram showing the relationship between the carbonic acid concentration in water and the amount of dissolved ferrous carbonate. Figure 7 is an explanatory diagram showing the solubility of iron oxide in high-temperature water. Figure 8 is an explanatory diagram showing the relationship between the carbonate concentration in water and the amount of dissolved ferrous carbonate. Figure 8 is an explanatory diagram showing the solubility of iron oxide in high-temperature water. 9 and 10 are the system diagrams of the third embodiment of the present invention, FIG. 11 is the system diagram of the fourth embodiment of the present invention, and FIG. 12 is the system diagram of the fourth embodiment of the present invention. A system diagram showing the fifth embodiment, and FIGS. 13 and 14 are system diagrams showing the sixth embodiment of the present invention. 15...Dissolution tank, 16...Packet, 17...Agitator. 18... Warmer, 19... Water level gauge, 23... Diffusion pipe, 26... Injection pump, 31... Alkaline chemical tank, 38... COz injection raw water tank, 41... Electrolytic cell, 43... Carbon dioxide gas cylinder, 49... Nitrogen gas cylinder, 53... Reaction tank, 63... Nitric acid tank.

Claims (1)

【特許請求の範囲】 1、沸騰水型原子力発電プラントの給水中の鉄とニッケ
ル濃度をコントロールすることにより、原子炉水中の放
射性物質の濃度を低減し、給水中のニッケル濃度変化に
応じて必要な鉄を注入する方法において、 溶解性の鉄塩を注入することを特徴とする原子力発電プ
ラントの放射性物質低減方法。 2、請求項1において、注入する溶解性の前記鉄塩は硝
酸第一鉄、硝酸第二鉄あるいは炭酸第一鉄の中より少な
くとも一つ以上を選定したものである原子力発電プラン
トの放射性物質低減方法。 3、沸騰水型原子力発電プラントの給水中の鉄とニッケ
ル濃度をコントロールすることにより、原子炉水中の放
射性物質濃度を低減し、給水中のニッケル濃度変化に応
じて必要な鉄を注入する方法において、 溶解性の鉄塩とアルカリ薬品を注入することを特徴とす
る原子力発電プラントの放射性物質低減方法。 4、請求項3において、溶解性の鉄塩は硝酸第一鉄、硝
酸第二鉄、炭酸第一鉄の中より一種類以上を選定し、か
つ、アルカリ薬品は水酸化ナトリウム、水酸化リチウム
、水酸化カリウムの中より一種類以上を選定される原子
力発電プラントの放射性物質低減方法。 5、沸騰水型原子力発電プラントの給水中の鉄とニッケ
ル濃度をコントロールすることにより、原子炉水中の放
射性物質濃度を低減し、給水中のニッケル濃度変化に応
じて必要な電解鉄を注入する方法において、 前記鉄電極を電解して生成させた電解鉄溶液中に炭酸イ
オン、あるいは、硝酸イオンあるいは炭酸イオンと硝酸
イオンの両者を共存させて注入することを特徴とする原
子力発電プラントの放射性物質低減方法。 6、請求項5において、電解鉄溶液中に共存させる炭酸
イオンの供給は、炭酸ガス、炭酸、炭酸ナトリウム、炭
酸カリウム、炭酸リチウムの中より一種類以上選定され
ることを特徴とする原子力発電プラントの放射性物質低
減方法。 7、請求項5において、電解鉄溶液中に共存させる硝酸
イオンの供給は、硝酸、硝酸ナトリウム、硝酸カリウム
、硝酸リチウムの中より一種類以上選定されることを特
徴とする原子力発電プラントの放射性物質低減方法。 8、沸騰水型原子力発電プラントの給水中の鉄とニッケ
ル濃度をコントロールすることにより、原子炉水中の放
射性物質濃度を低減し、給水中のニッケル濃度変化に応
じて必要な電解鉄を注入する方法において、 鉄電極を電解して生成させた電解鉄溶液中に炭酸イオン
、あるいは、硝酸イオンあるいは炭酸イオンと硝酸イオ
ンの両者とアルカリ薬品を共存させて注入することを特
徴とする原子力発電プラントの放射性物質低減方法。 9、請求項8において、電解鉄溶液中に共存させる炭酸
イオンの供給は、炭酸ガス、炭酸、炭酸ナトリウム、炭
酸カリウム、炭酸リチウムの中より一種類以上が選定さ
れる原子力発電プラントの放射性物質の低減方法。 10、請求項8において、電解鉄溶液中に共存させる硝
酸イオンの供給は硝酸、硝酸ナトリウム、硝酸カリウム
、硝酸リチウムの中より一種類以上を選定される原子力
発電プラントの放射性物質低減方法。 11、請求項8において、電解鉄溶液中に共存させるア
ルカリ薬品は、水酸化ナトリウム、水酸化リチウム、水
酸化カリウムの中より一種類以上選定される原子力発電
プラントの放射性物質低減方法。 12、沸騰水型原子力発電プラントの給水中の鉄とニッ
ケル濃度をコントロールすることにより、原子炉水中の
放射性物質濃度を低減するため、給水中のニッケル濃度
変化に応じて必要な鉄を注入する方法において、 水溶性の鉄錯塩を注入することを特徴とする原子力発電
プラントの放射性物質低減方法。13、請求項12にお
いて、注入する水溶性の鉄錯塩のキレート剤はポリアミ
ノカルボン酸類、あるいはオキシカルボン酸類である原
子力発電プラントの放射性物質低減方法。 14、沸騰水型原子力発電プラントの給水中の鉄とニッ
ケル濃度をコントロールすることにより、原子炉水中の
放射性物質濃度を低減するため、給水中のニッケル濃度
変化に応じて電解鉄を注入する方法において、 鉄電極を電解させて生成させた電解鉄溶液中にキレート
剤を共存させて注入することを特徴とする原子力発電プ
ラントの放射性物質低減方法。 15、請求項14において、電解鉄溶液中に共存させる
キレート剤はポリアミノカルボン酸類あるいはオキシカ
ルボン酸類である原子力発電プラントの放射性物質低減
方法。
[Claims] 1. By controlling the iron and nickel concentrations in the feed water of a boiling water nuclear power plant, the concentration of radioactive substances in the reactor water can be reduced, and the concentration of radioactive substances in the reactor water can be reduced according to changes in the nickel concentration in the feed water. A method for reducing radioactive substances in a nuclear power plant, which method comprises injecting soluble iron salt. 2. In claim 1, the soluble iron salt to be injected is at least one selected from ferrous nitrate, ferric nitrate, or ferrous carbonate. Method. 3. In a method of reducing the concentration of radioactive substances in reactor water by controlling the iron and nickel concentrations in the feed water of boiling water nuclear power plants, and injecting the necessary iron according to changes in the nickel concentration in the feed water. , A method for reducing radioactive substances in a nuclear power plant, characterized by injecting soluble iron salts and alkaline chemicals. 4. In claim 3, the soluble iron salt is one or more selected from ferrous nitrate, ferric nitrate, and ferrous carbonate, and the alkali chemicals are sodium hydroxide, lithium hydroxide, A radioactive material reduction method for nuclear power plants that selects one or more types of potassium hydroxide. 5. A method of reducing the concentration of radioactive materials in reactor water by controlling the iron and nickel concentrations in the feed water of boiling water nuclear power plants, and injecting the necessary electrolytic iron according to changes in the nickel concentration in the feed water. Reduction of radioactive substances in a nuclear power plant, characterized by injecting carbonate ions, nitrate ions, or both carbonate ions and nitrate ions in coexistence into an electrolytic iron solution produced by electrolyzing the iron electrode. Method. 6. The nuclear power plant according to claim 5, wherein the supply of carbonate ions coexisting in the electrolytic iron solution is selected from one or more of carbon dioxide gas, carbonic acid, sodium carbonate, potassium carbonate, and lithium carbonate. Radioactive substance reduction method. 7. In claim 5, the supply of nitrate ions coexisting in the electrolytic iron solution is selected from one or more of nitric acid, sodium nitrate, potassium nitrate, and lithium nitrate. Method. 8. A method of reducing the concentration of radioactive materials in reactor water by controlling the iron and nickel concentrations in the feed water of boiling water nuclear power plants, and injecting the necessary electrolytic iron according to changes in the nickel concentration in the feed water. , radioactivity in a nuclear power plant is characterized by injecting carbonate ions, nitrate ions, or both carbonate ions and nitrate ions together with an alkaline chemical into an electrolytic iron solution produced by electrolyzing an iron electrode. Substance reduction method. 9. In claim 8, the supply of carbonate ions to coexist in the electrolytic iron solution is provided by radioactive materials in a nuclear power plant where one or more types are selected from carbon dioxide gas, carbonic acid, sodium carbonate, potassium carbonate, and lithium carbonate. Reduction method. 10. The method for reducing radioactive substances in a nuclear power plant according to claim 8, wherein the supply of nitrate ions coexisting in the electrolytic iron solution is selected from among nitric acid, sodium nitrate, potassium nitrate, and lithium nitrate. 11. The method for reducing radioactive substances in a nuclear power plant according to claim 8, wherein the alkaline chemical coexisting in the electrolytic iron solution is selected from one or more of sodium hydroxide, lithium hydroxide, and potassium hydroxide. 12. A method of injecting the necessary iron according to changes in the nickel concentration in the feed water in order to reduce the concentration of radioactive substances in the reactor water by controlling the iron and nickel concentrations in the feed water of boiling water nuclear power plants. A method for reducing radioactive substances in a nuclear power plant, characterized by injecting a water-soluble iron complex salt. 13. The method for reducing radioactive substances in a nuclear power plant according to claim 12, wherein the water-soluble iron complex salt chelating agent to be injected is a polyaminocarboxylic acid or an oxycarboxylic acid. 14. In order to reduce the radioactive material concentration in reactor water by controlling the iron and nickel concentration in the feed water of boiling water nuclear power plants, a method of injecting electrolytic iron according to changes in the nickel concentration in the feed water. , A method for reducing radioactive substances in a nuclear power plant, characterized by injecting a chelating agent into an electrolytic iron solution produced by electrolyzing an iron electrode. 15. The method for reducing radioactive substances in a nuclear power plant according to claim 14, wherein the chelating agent coexisting in the electrolytic iron solution is polyaminocarboxylic acids or oxycarboxylic acids.
JP2100348A 1990-04-18 1990-04-18 Reducing method for radioactive material of atomic energy power plant Pending JPH041599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2100348A JPH041599A (en) 1990-04-18 1990-04-18 Reducing method for radioactive material of atomic energy power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2100348A JPH041599A (en) 1990-04-18 1990-04-18 Reducing method for radioactive material of atomic energy power plant

Publications (1)

Publication Number Publication Date
JPH041599A true JPH041599A (en) 1992-01-07

Family

ID=14271601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2100348A Pending JPH041599A (en) 1990-04-18 1990-04-18 Reducing method for radioactive material of atomic energy power plant

Country Status (1)

Country Link
JP (1) JPH041599A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377245A (en) * 1992-10-20 1994-12-27 Hitachi, Ltd. Method of operating BWR plant, BWR plant and metal element injecting apparatus
JP2014106074A (en) * 2012-11-27 2014-06-09 Hitachi-Ge Nuclear Energy Ltd Zinc injection method and zinc injection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377245A (en) * 1992-10-20 1994-12-27 Hitachi, Ltd. Method of operating BWR plant, BWR plant and metal element injecting apparatus
JP2014106074A (en) * 2012-11-27 2014-06-09 Hitachi-Ge Nuclear Energy Ltd Zinc injection method and zinc injection device

Similar Documents

Publication Publication Date Title
US7713402B2 (en) Method for treating a chemical decontamination solution
JP2012247322A (en) Method for forming platinum film on plant component
US5896433A (en) Method of preventing the deposition of radioactive corrosion products in nuclear plants
JPS63103999A (en) Method and device for inhibiting adhesion of radioactive substance
CN110136858B (en) Boron-free single-lithium alkalescent water quality adjusting system and method suitable for small-sized reactor
US5892805A (en) Boiling water reactor and its operating method
JPH041599A (en) Reducing method for radioactive material of atomic energy power plant
JP4340574B2 (en) Reducing nitrogen compound injection operation method for nuclear power plant
JP7344132B2 (en) Method of adhering precious metals to carbon steel members of a nuclear power plant and method of suppressing adhesion of radionuclides to carbon steel members of a nuclear power plant
JP3941392B2 (en) Reactor operation method
JPH055077B2 (en)
JP2016003940A (en) Method for suppressing adhesion of radionuclides to carbon steel members of nuclear power plant
JPH05288893A (en) Control method of concentration of chromium of boiling water nuclear power plant
JP4349956B2 (en) Operation method of residual heat removal system
US20240312652A1 (en) Method for treating a metal part of a primary circuit of a water-cooled nuclear reactor
JPH05209991A (en) Contamination prevention method for reactor piping
JP2009229389A (en) Method for suppressing stress corrosion cracking of nuclear power plant
JP2009109318A (en) Method for decreasing radiation dose in turbine system and nuclear power plant
JP2000162383A (en) Operation method for reactor power plant
JP5591454B2 (en) Reactor water radioactivity reduction method and nuclear power plant
JP4366227B2 (en) Stress corrosion cracking suppression method
JPS642919B2 (en)
JP2001021682A (en) Method and device for water quality control
JP2014137249A (en) Zinc injection method and zinc injection device
JP6001926B2 (en) Zinc injection method and zinc injection device