JP2014137249A - Zinc injection method and zinc injection device - Google Patents

Zinc injection method and zinc injection device Download PDF

Info

Publication number
JP2014137249A
JP2014137249A JP2013005031A JP2013005031A JP2014137249A JP 2014137249 A JP2014137249 A JP 2014137249A JP 2013005031 A JP2013005031 A JP 2013005031A JP 2013005031 A JP2013005031 A JP 2013005031A JP 2014137249 A JP2014137249 A JP 2014137249A
Authority
JP
Japan
Prior art keywords
zinc
dissolution tank
injection
carbon dioxide
carbonate solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013005031A
Other languages
Japanese (ja)
Inventor
Hirofumi Matsubara
宏文 松原
Hideyuki Hosokawa
秀幸 細川
Makoto Nagase
誠 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2013005031A priority Critical patent/JP2014137249A/en
Publication of JP2014137249A publication Critical patent/JP2014137249A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PROBLEM TO BE SOLVED: To provide a zinc injection method which is capable of further increasing a zinc ion concentration of an aqueous carbonic acid solution including zinc ions, which is to be injected into a nuclear reactor pressure vessel, and is capable of suppressing precipitation of zinc.SOLUTION: A zinc injection device 1 provided with a closed loop including a carbon dioxide gas dissolution tank 2 and a zinc dissolution tank 3 filled with a zinc oxide is used for zinc injection to water supply piping. An aqueous carbonic acid solution generated by release of carbonic acid gas from a carbonic acid gas supply pipe 17 to the carbonic acid gas dissolution tank 2 is supplied to the zinc dissolution tank 3 to dissolve zinc in the zinc oxide in the zinc dissolution tank 3. The aqueous carbonic acid solution containing zinc is circulated in the closed loop to increase the zinc concentration. In an injected liquid tank 39 of a pH controller 14, an aqueous carbonic acid solution is generated by supply of carbonic acid gas from the carbonic acid gas supply pipe 17. The aqueous carbonic acid solution not containing zinc in the injected liquid tank 39 is injected to a zinc injection pipe 28 to which the aqueous carbonic acid solution containing zinc is discharged, so that the zinc concentration of the aqueous carbonic acid solution in the zinc injection pipe 28 is reduced.

Description

本発明は、亜鉛注入方法および亜鉛注入装置に係り、特に、沸騰水型原子力発電プラント(以下BWRプラントと略記する)の原子炉圧力容器内の炉水への亜鉛注入に好適な亜鉛注入方法および亜鉛注入装置に関する。   The present invention relates to a zinc injection method and a zinc injection device, and more particularly to a zinc injection method suitable for zinc injection into reactor water in a reactor pressure vessel of a boiling water nuclear power plant (hereinafter abbreviated as BWR plant) and The present invention relates to a zinc injection device.

例えば、沸騰水型原子力発電プラント(以下、BWRプラントと略記する。)は、複数の燃料集合体を装荷している炉心を内部に配置した原子炉圧力容器(RPVと称する)を有する原子炉を備えている。再循環ポンプ(またはインターナルポンプ)によって炉心に供給された炉水は、炉心に装荷された燃料集合体内の核燃料物質の核分裂で発生する熱によって加熱され、一部が蒸気になる。この蒸気は、RPVからタービンに導かれ、タービンを回転させる。タービンから排出された蒸気は、復水器で凝縮され、水になる。この水は、給水としてRPVに供給される。RPV内での放射性腐食生成物の発生を抑制するため、給水に含まれる主として金属不純物が給水配管に設けられたろ過脱塩装置で除去される。   For example, a boiling water nuclear power plant (hereinafter abbreviated as a BWR plant) includes a nuclear reactor having a reactor pressure vessel (referred to as RPV) in which a core loaded with a plurality of fuel assemblies is disposed. I have. The reactor water supplied to the core by the recirculation pump (or internal pump) is heated by the heat generated by the fission of nuclear fuel material in the fuel assembly loaded in the core, and a part thereof becomes steam. This steam is led from the RPV to the turbine and rotates the turbine. The steam exhausted from the turbine is condensed in a condenser to become water. This water is supplied to the RPV as feed water. In order to suppress the generation of radioactive corrosion products in the RPV, mainly metal impurities contained in the feed water are removed by a filtration and desalting apparatus provided in the feed water pipe.

また、放射性腐食生成物の元となる腐食生成物は、RPVおよび再循環系配管等のBWRプラントの構成部材の接水部から発生するので、BWRプラントの主要な一次系の構成部材には腐食の少ないステンレス鋼およびニッケル基合金などの不銹鋼が使用されている。また、低合金鋼製のRPVは内面にステンレス鋼の肉盛りが施され、RPVの低合金鋼が、直接、炉水と接触することを防止している。炉水とは、RPV内に存在する冷却水である。さらには、炉水の一部をRPVに接続された原子炉浄化系のろ過脱塩装置によって浄化し、炉水中に僅かに存在する金属不純物を積極的に除去している。   In addition, since the corrosion product that is the source of the radioactive corrosion product is generated from the water contact portion of the BWR plant components such as RPV and recirculation piping, the main components of the BWR plant are corroded. Stainless steel and nickel-based alloys such as nickel base alloys are used. Further, the RPV made of low alloy steel has a built-in stainless steel inner surface to prevent the RPV low alloy steel from coming into direct contact with the reactor water. Reactor water is cooling water present in the RPV. Furthermore, a part of the reactor water is purified by a filtration and desalination apparatus of a reactor purification system connected to the RPV to positively remove metal impurities that are slightly present in the reactor water.

しかし、上述のような腐食対策を講じたとしても、極僅かな金属不純物が炉水に含まれることを避けることができないため、一部の金属不純物が、金属酸化物として、燃料集合体に含まれる燃料棒の表面に付着する。燃料棒表面に付着した不純物(例えば、金属元素)は、燃料棒内の核燃料物質の核分裂により放出される中性子の照射によって原子核反応を起こし、コバルト60,コバルト58,クロム51およびマンガン54等の放射性核種になる。   However, even if the above-mentioned corrosion countermeasures are taken, it is unavoidable that very few metal impurities are contained in the reactor water, so some metal impurities are contained in the fuel assembly as metal oxides. Adhere to the surface of the fuel rod. Impurities (for example, metal elements) adhering to the surface of the fuel rod cause a nuclear reaction by irradiation of neutrons emitted by fission of nuclear fuel material in the fuel rod, and radioactive materials such as cobalt 60, cobalt 58, chromium 51 and manganese 54 are emitted. Become a nuclide.

これらの放射性核種は、大部分が酸化物の形態で燃料棒表面に付着したままである。しかしながら、一部の放射性核種は、取り込まれている酸化物の溶解度に応じて炉水中にイオンとして溶出したり、クラッドと呼ばれる不溶性固体として炉水中に再放出されたりする。炉水に含まれる放射性物質は、RPVに接続された原子炉浄化系によって取り除かれる。原子炉浄化系で除去されなかった放射性物質は炉水とともにRPVに接続された再循環系などを循環している間に、BWRプラントの構成部材(例えば、配管)の炉水と接触する表面に蓄積される。この結果、構成部材の表面から放出される放射線が、BWRプラントの定期検査においてこの定期検査の作業に従事する従事者の放射線被ばくの原因となる。   These radionuclides remain mostly attached to the fuel rod surface in the form of oxides. However, some radionuclides are eluted as ions in the reactor water depending on the solubility of the incorporated oxide, or re-released into the reactor water as an insoluble solid called a clad. The radioactive material contained in the reactor water is removed by the reactor purification system connected to the RPV. The radioactive material that has not been removed by the reactor purification system is circulated through the recirculation system connected to the RPV together with the reactor water, and on the surface of the BWR plant component (for example, piping) in contact with the reactor water. Accumulated. As a result, the radiation emitted from the surface of the component member causes radiation exposure of workers engaged in the periodic inspection work in the periodic inspection of the BWR plant.

その従業者の被ばく線量は、各人毎に規定値を超えないように管理されている。近年この規定値が引き下げられ、各人の被ばく線量を可能な限り低くする必要が生じている。   The exposure dose of the employee is managed so that it does not exceed the prescribed value for each person. In recent years, this specified value has been reduced, and it has become necessary to reduce the exposure dose of each person as much as possible.

そこで、配管の炉水と接触する表面への放射性核種の付着を低減する方法、および炉水中の放射性核種の濃度を低減する方法が様々検討されている。   Therefore, various methods for reducing the adhesion of radionuclides to the surface of the piping in contact with the reactor water and methods for reducing the concentration of radionuclides in the reactor water have been studied.

このような方法の一つとして、亜鉛などの金属イオンを炉水中に共存させ、炉水と接触する配管の内面および構造物の表面に、亜鉛を含む緻密な酸化皮膜を形成することによって、この酸化皮膜中へのコバルト60およびコバルト58等の放射性核種の取り込みを抑制する方法が特開昭58−79691号公報に記載されている。   As one of such methods, a metal oxide such as zinc is allowed to coexist in the reactor water, and a dense oxide film containing zinc is formed on the inner surface of the piping and the surface of the structure in contact with the reactor water. A method for suppressing the incorporation of radionuclides such as cobalt 60 and cobalt 58 into the oxide film is described in JP-A-58-79691.

また、特許第3344608号公報には、亜鉛溶解槽内の水中に酸化亜鉛粉末を供給し、その後、その水中に炭酸ガスを注入して水のpHを調節し、これにより、酸化亜鉛粉末が亜鉛溶解槽内で水に溶解し、亜鉛イオンを含む水が生成される。この亜鉛イオンを含む水がRPV内に供給される。   Also, in Japanese Patent No. 3344608, zinc oxide powder is supplied into the water in the zinc dissolution tank, and then the pH of the water is adjusted by injecting carbon dioxide gas into the water. It dissolves in water in the dissolution tank to produce water containing zinc ions. Water containing this zinc ion is supplied into the RPV.

特開2003−28985号公報にも亜鉛注入システムが記載されている。この亜鉛注入システムは、スラリータンク、溶解タンクおよび注入水タンクを有する。スラリータンク内の純水(またはホウ酸水溶液)に亜鉛を投入して生じた亜鉛スラリーを溶解タンクに移送する。溶解タンクには高濃度ホウ酸水(通常のホウ酸濃度2000ppm以上)が注入され、溶解タンク内で亜鉛スラリーに含まれる亜鉛を高濃度ホウ酸水により溶解する。溶解した亜鉛を含む高濃度ホウ酸水は、注入タンク内に導かれ、注入タンク内に供給される純水により亜鉛濃度が希釈される。希釈された、亜鉛を含む高濃度ホウ酸水が、補給水ポンプにより加圧水型原子炉のループ水に注入される。   Japanese Unexamined Patent Application Publication No. 2003-28985 also describes a zinc injection system. The zinc injection system has a slurry tank, a dissolution tank and an injection water tank. The zinc slurry generated by adding zinc to pure water (or boric acid aqueous solution) in the slurry tank is transferred to the dissolution tank. High-concentration boric acid water (normal boric acid concentration of 2000 ppm or more) is injected into the dissolution tank, and zinc contained in the zinc slurry is dissolved in the dissolution tank with high-concentration boric acid water. High-concentration boric acid water containing dissolved zinc is introduced into the injection tank, and the zinc concentration is diluted with pure water supplied into the injection tank. The diluted high-concentration boric acid water containing zinc is injected into the loop water of the pressurized water reactor by a makeup water pump.

さらに、特開2003−28985号公報には、特開平8−86899号公報(特許第3344608号)に記載された炭酸水溶液における亜鉛の溶解度が低いことが記載されている。   Furthermore, Japanese Patent Application Laid-Open No. 2003-28985 describes that the solubility of zinc in an aqueous carbonate solution described in Japanese Patent Application Laid-Open No. 8-86899 (Patent No. 3344608) is low.

特開昭58−79196号公報JP 58-79196 A 特許第3344608号Japanese Patent No. 3344608 特開2003−28985号公報JP 2003-28985 A

亜鉛イオンを作製しようとする場合、亜鉛の塩および亜鉛化合物或いは亜鉛金属を酸およびアルカリで溶解する方法がある。いずれの場合も亜鉛イオンと反対の電荷を持つ対アニオン或いは対カチオンも炉水に持ち込まれることになるため、炉水および構成部材への影響が少ない化学形態が望まれる。そのような化学形態の一つとして特許第3344608号公報では炭酸水を用いて亜鉛化合物(例えば、酸化亜鉛粉末)を溶解して亜鉛イオンを作製している。   When preparing zinc ions, there is a method of dissolving a salt of zinc and a zinc compound or zinc metal with an acid and an alkali. In either case, since a counter anion or counter cation having a charge opposite to that of zinc ions is also brought into the reactor water, a chemical form with little influence on the reactor water and components is desired. As one such chemical form, in Japanese Patent No. 3344608, zinc ions are prepared by dissolving a zinc compound (for example, zinc oxide powder) using carbonated water.

特許第3344608号公報に記載された亜鉛注入方法では、亜鉛溶解槽内で生成された、炭酸ガスで飽和した水溶液に亜鉛を溶解し、亜鉛イオンを含む水溶液を生成しているため、前述したように、その水溶液の亜鉛の濃度が低くなる。亜鉛濃度の低い水溶液をRPVの炉水に注入した場合には、例えば、炉内構造物の表面およびRPVに接続された配管内面への放射性核種の付着を抑制する効果が小さくなる。   In the zinc injection method described in Japanese Patent No. 3344608, zinc is dissolved in an aqueous solution saturated with carbon dioxide gas generated in a zinc dissolution tank, and an aqueous solution containing zinc ions is generated. Furthermore, the concentration of zinc in the aqueous solution is lowered. When an aqueous solution having a low zinc concentration is injected into RPV reactor water, for example, the effect of suppressing the attachment of radionuclides to the surface of the reactor internal structure and the pipe inner surface connected to the RPV is reduced.

特開2003−28985号公報に記載されているように高濃度ホウ酸水を用いると、亜鉛が溶解し易くなり、高濃度ホウ酸水の亜鉛濃度を高くすることができる。この高濃度ホウ酸水に純水を注入して高濃度ホウ酸水の亜鉛濃度を希釈したとしても、ホウ素が原子炉容器内に注入され、原子炉出力が変化する。特に、制御棒操作および炉心流量制御により原子炉出力を制御している沸騰水型原子炉では、亜鉛を含む高濃度ホウ酸水を原子炉圧力容器に注入することは、注入された高濃度ホウ酸水に含まれるホウ素の濃度を考慮して制御棒操作または炉心流量制御を行う必要があり、原子炉出力の制御が複雑化する。   When high concentration boric acid water is used as described in JP-A-2003-28985, zinc is easily dissolved, and the zinc concentration of high concentration boric acid water can be increased. Even if pure water is injected into the high-concentration boric acid water to dilute the zinc concentration of the high-concentration boric acid water, boron is injected into the reactor vessel and the reactor power changes. In particular, in a boiling water reactor in which the reactor power is controlled by control rod operation and core flow rate control, injecting high-concentration boric acid water containing zinc into the reactor pressure vessel It is necessary to perform control rod operation or core flow rate control in consideration of the concentration of boron contained in the acid water, and the control of the reactor power becomes complicated.

また、亜鉛濃度を希釈するために水を用いた場合には、高濃度ホウ酸水の亜鉛の飽和溶解度が低下する。このため、高濃度ホウ酸水の亜鉛濃度によっては、高濃度ホウ酸水に含まれている亜鉛が高濃度ホウ酸水の注入配管の内面に析出する。高濃度ホウ酸水の亜鉛濃度、および亜鉛飽和溶解度の低下の度合いによっては、高濃度ホウ酸水の注入配管が析出した亜鉛によって閉塞する危険性もある。   In addition, when water is used to dilute the zinc concentration, the saturated solubility of zinc in high-concentration boric acid water decreases. For this reason, depending on the zinc concentration of the high-concentration borate water, zinc contained in the high-concentration borate water is deposited on the inner surface of the injection pipe of the high-concentration borate water. Depending on the zinc concentration of the high-concentration boric acid and the degree of decrease in the zinc saturation solubility, there is a risk that the injection pipe of the high-concentration boric acid will be clogged with the deposited zinc.

本発明の目的は、原子炉圧力容器内に注入する、亜鉛イオンを含む炭酸水溶液の亜鉛イオン濃度をさらに増加することができ、亜鉛の析出を抑制できる亜鉛注入方法および亜鉛注入装置を提供することにある。   An object of the present invention is to provide a zinc injection method and a zinc injection device capable of further increasing the zinc ion concentration of a carbonated aqueous solution containing zinc ions injected into a reactor pressure vessel and suppressing the precipitation of zinc. It is in.

上記した目的を達成する本発明の特徴は、第1溶解槽内に存在する炭酸水溶液に炭酸ガスを注入して炭酸ガスを炭酸水溶液に溶解し、
第1溶解槽内の炭酸水溶液を、第1溶解槽、及び亜鉛を含む固体物質が存在する第2溶解槽を含む閉ループ内を循環させ、
固体物質に含まれる亜鉛を、第2溶解槽内において、循環によって第1溶解槽から第2溶解槽に供給される炭酸水溶液に溶解し、
溶解した亜鉛を含む炭酸水溶液を前記循環によって第1溶解槽に供給し、
第1溶解槽内の亜鉛を含む炭酸水溶液を、第1溶解槽に連絡された亜鉛注入配管を通して原子炉圧力容器に接続された配管に供給し、
亜鉛を含まない炭酸水溶液を、亜鉛注入配管内を流れる亜鉛を含む炭酸水溶液に注入することにある。
A feature of the present invention that achieves the above-described object is that carbon dioxide gas is injected into a carbonic acid aqueous solution present in the first dissolution tank to dissolve the carbon dioxide gas in the carbonic acid aqueous solution.
Circulating the aqueous carbonate solution in the first dissolution tank in a closed loop including the first dissolution tank and the second dissolution tank in which a solid substance containing zinc exists.
Zinc contained in the solid substance is dissolved in an aqueous carbonate solution supplied from the first dissolution tank to the second dissolution tank by circulation in the second dissolution tank,
Supplying an aqueous carbonate solution containing dissolved zinc to the first dissolution tank by the circulation,
Supplying an aqueous carbonate solution containing zinc in the first dissolution tank to a pipe connected to the reactor pressure vessel through a zinc injection pipe connected to the first dissolution tank;
The purpose is to inject a carbonic acid aqueous solution not containing zinc into a carbonic acid aqueous solution containing zinc flowing in the zinc injection pipe.

亜鉛を含む炭酸水溶液を、第1溶解槽及び第2溶解槽を含む閉ループ内を循環させるため、第2溶解槽を通過するたびに、固体物質に含まれる亜鉛が炭酸水溶液に溶解し、炭酸水溶液の亜鉛イオン濃度をさらに増加させることができる。このため、原子炉圧力容器内の炉水の亜鉛イオン濃度も、より短時間で増加させることができる。   In order to circulate the aqueous carbonate solution containing zinc in the closed loop including the first dissolution tank and the second dissolution tank, every time the second dissolution tank is passed, the zinc contained in the solid substance is dissolved in the aqueous carbonate solution. The zinc ion concentration of can be further increased. For this reason, the zinc ion concentration of the reactor water in the reactor pressure vessel can also be increased in a shorter time.

また、亜鉛注入配管内を流れる炭酸水溶液に亜鉛を含まない炭酸水溶液を注入するので、亜鉛注入配管内を流れる炭酸水溶液の亜鉛濃度を低下させることができ、炭酸水溶液に含まれる亜鉛が亜鉛注入配管の内面に析出することを抑制することができる。   In addition, since the aqueous carbonate solution containing no zinc is injected into the aqueous carbonate solution flowing in the zinc injection pipe, the zinc concentration of the aqueous carbonate solution flowing in the zinc injection pipe can be reduced. Precipitation on the inner surface can be suppressed.

第1溶解槽内に存在する炭酸水溶液に炭酸ガスを注入して炭酸ガスを炭酸水溶液に溶解し、
第1溶解槽内の炭酸水溶液を、第1溶解槽、及び亜鉛を含む固体物質が存在する第2溶解槽を含む閉ループ内を循環させ、
固体物質に含まれる亜鉛を、第2溶解槽内において、循環によって第1溶解槽から第2溶解槽に供給される炭酸水溶液に溶解し、
溶解した亜鉛を含む炭酸水溶液を前記循環によって第1溶解槽に供給し、
第1溶解槽内の亜鉛を含む炭酸水溶液を、第1溶解槽に連絡された亜鉛注入配管を通して原子炉圧力容器に接続された配管に供給し、
炭酸ガス、および第1溶解槽内の炭酸水溶液の炭酸濃度よりも炭酸濃度が高くて亜鉛を含まない炭酸水溶液のいずれかを、亜鉛注入配管内を流れる亜鉛を含む炭酸水溶液に注入して亜鉛注入配管内の亜鉛を含む炭酸水溶液のpHを低下させることによっても、上記した本発明の目的を達成することができる。
Injecting carbon dioxide into the aqueous carbonate solution in the first dissolution tank to dissolve the carbon dioxide in the aqueous carbonate solution,
Circulating the aqueous carbonate solution in the first dissolution tank in a closed loop including the first dissolution tank and the second dissolution tank in which a solid substance containing zinc exists.
Zinc contained in the solid substance is dissolved in an aqueous carbonate solution supplied from the first dissolution tank to the second dissolution tank by circulation in the second dissolution tank,
Supplying an aqueous carbonate solution containing dissolved zinc to the first dissolution tank by the circulation,
Supplying an aqueous carbonate solution containing zinc in the first dissolution tank to a pipe connected to the reactor pressure vessel through a zinc injection pipe connected to the first dissolution tank;
Zinc injection by injecting either carbon dioxide or a carbonic acid aqueous solution having a carbonic acid concentration higher than that of the aqueous carbonic acid solution in the first dissolution tank and not containing zinc into a carbonic acid aqueous solution containing zinc flowing in the zinc injection pipe The object of the present invention described above can also be achieved by lowering the pH of the aqueous carbonate solution containing zinc in the pipe.

亜鉛を含む炭酸水溶液を、第1溶解槽及び第2溶解槽を含む閉ループ内を循環させるため、上記したように、炭酸水溶液の亜鉛イオン濃度をさらに増加させることができる。さらに、炭酸ガス、および第1溶解槽内の炭酸水溶液の炭酸濃度よりも炭酸濃度が高くて亜鉛を含まない炭酸水溶液のいずれかを、亜鉛注入配管内を流れる亜鉛を含む炭酸水溶液に注入して亜鉛注入配管内の亜鉛を含む炭酸水溶液のpHを低下させるので、亜鉛注入配管内を流れる亜鉛を含む炭酸水溶液の亜鉛の溶解を促進させることができる。このため、炭酸水溶液に含まれる亜鉛が亜鉛注入配管の内面に析出することを抑制することができる。   Since the carbonic acid aqueous solution containing zinc is circulated in the closed loop including the first dissolution tank and the second dissolution tank, the zinc ion concentration of the carbonic acid aqueous solution can be further increased as described above. Further, either carbon dioxide or a carbonic acid aqueous solution having a carbonic acid concentration higher than the carbonic acid concentration of the aqueous carbonic acid solution in the first dissolution tank and not containing zinc is injected into the carbonic acid aqueous solution containing zinc flowing in the zinc injection pipe. Since the pH of the aqueous carbonate solution containing zinc in the zinc injection pipe is lowered, dissolution of zinc in the aqueous carbonate solution containing zinc flowing in the zinc injection pipe can be promoted. For this reason, it can suppress that the zinc contained in carbonic acid aqueous solution precipitates on the inner surface of zinc injection piping.

本発明によれば、原子炉圧力容器内に注入する、亜鉛イオンを含む炭酸水溶液の亜鉛イオン濃度をさらに増加することができ、亜鉛注入配管の内面への亜鉛の析出を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the zinc ion density | concentration of the carbonic acid aqueous solution containing zinc ion inject | poured in a reactor pressure vessel can further be increased, and precipitation of zinc to the inner surface of zinc injection piping can be suppressed.

本発明の好適な一実施例である実施例1の亜鉛注入方法に用いられる亜鉛注入装置の構成図である。It is a block diagram of the zinc injection | pouring apparatus used for the zinc injection | pouring method of Example 1 which is one preferable Example of this invention. 図1に示す亜鉛注入装置を用いた、沸騰水型原子力プラントにおける原子炉圧力容器内への亜鉛イオン注入方法の説明図である。It is explanatory drawing of the zinc ion implantation method into the reactor pressure vessel in a boiling water nuclear power plant using the zinc injection apparatus shown in FIG. 酸化亜鉛の溶解度の温度依存性を示す説明図である。It is explanatory drawing which shows the temperature dependence of the solubility of zinc oxide. 本発明の他の好適な実施例である実施例3の亜鉛注入方法に用いられる亜鉛注入装置の構成図である。It is a block diagram of the zinc injection | pouring apparatus used for the zinc injection | pouring method of Example 3 which is another suitable Example of this invention.

特許第3344608号公報では、炭酸ガスを溶解槽底部から溶解槽内の水中にバブリングして炭酸水を生成し、この溶解槽内の炭酸水に亜鉛化合物を添加して撹拌することで亜鉛化合物を溶解し、亜鉛イオンを生成している。ただし、この方法では、連続注入を行うためには、溶解槽内の水量に合わせて定期的に適切な量の亜鉛を溶解槽内に供給して亜鉛濃度を管理する必要がある。このため、運転中の定期的な管理および調節等のメンテナンスが必要となる。   In Japanese Patent No. 3344608, carbonic acid gas is bubbled into the water in the dissolution tank from the bottom of the dissolution tank to generate carbonated water, and the zinc compound is added to the carbonated water in the dissolution tank and stirred to obtain the zinc compound. Dissolves and produces zinc ions. However, in this method, in order to perform continuous injection, it is necessary to regularly supply an appropriate amount of zinc into the dissolution tank according to the amount of water in the dissolution tank to control the zinc concentration. For this reason, maintenance such as regular management and adjustment during operation is required.

発明者らは、特願2012−258400号「亜鉛注入方法および亜鉛注入装置」において、炭酸水溶液が存在する炭酸ガス溶解領域を内部に形成する第1溶解槽、および亜鉛を含む固体物質が存在する亜鉛溶解領域を内部に形成する第2溶解槽を含む閉ループを形成し、この閉ループ内で亜鉛イオンを含む炭酸水溶液を循環させることによって炭酸水溶液の亜鉛濃度を高め、亜鉛濃度が高められた炭酸水溶液を原子炉圧力容器内の炉水中に注入することを提案している。炭酸水溶液の亜鉛濃度は、第2溶解槽内を流れる炭酸水溶液の流速(炭酸水溶液の流量)を調節することによって所定濃度に制御されている。   The inventors have disclosed in Japanese Patent Application No. 2012-258400 “Zinc Injecting Method and Zinc Injecting Device” a first dissolving tank in which a carbon dioxide-dissolving region in which an aqueous carbonic acid solution exists is formed, and a solid substance containing zinc. A closed loop including a second dissolution tank in which a zinc dissolution region is formed is formed, and a carbonate aqueous solution containing zinc ions is circulated in the closed loop to increase the zinc concentration of the carbonate aqueous solution, thereby increasing the zinc concentration. Has been proposed to be injected into the reactor water in the reactor pressure vessel. The zinc concentration of the aqueous carbonate solution is controlled to a predetermined concentration by adjusting the flow rate of the aqueous carbonate solution (flow rate of the aqueous carbonate solution) flowing in the second dissolution tank.

第1溶解槽および第2溶解槽が設置される建屋内の温度は、夏季で高くなり、冬季で低くなる。このような温度変化の影響を受けて炭酸水溶液の亜鉛の飽和溶解度がどのように変化するかを調べた。炭酸水溶液の亜鉛の飽和溶解度は、図3に示すように、炭酸水溶液の温度が高くなると低下する。このため、温度上昇により、炭酸水溶液に溶解している亜鉛が、亜鉛注入配管の内面に析出し易くなる。例えば、亜鉛濃度が飽和溶解度になっている20℃の炭酸水溶液が30℃に上昇すると、炭酸水溶液に溶解している亜鉛が、30℃の飽和溶解度に低下するまで、亜鉛注入配管の内面に析出する。また、亜鉛注入配管が接続される、原子炉圧力容器に接続された配管内を流れる水の温度が、亜鉛注入配管から注入される亜鉛を含む炭酸水溶液に比べて高い場合、その接続箇所付近での水の温度が高くなるため、炭酸水溶液に溶解している亜鉛が析出し易くなる。その他、万が一、第1溶解槽内に供給される炭酸ガスが炭酸ガス供給配管から漏れた場合には、炭酸水溶液のpHが上昇し、溶解している亜鉛が化合物として配管内に析出し易くなる。   The temperature in the building in which the first dissolution tank and the second dissolution tank are installed is higher in summer and lower in winter. It was investigated how the saturation solubility of zinc in aqueous carbonate solution changes under the influence of such temperature change. As shown in FIG. 3, the saturated solubility of zinc in the aqueous carbonate solution decreases as the temperature of the aqueous carbonate solution increases. For this reason, the zinc which melt | dissolves in carbonic acid aqueous solution becomes easy to precipitate on the inner surface of zinc injection piping with a temperature rise. For example, when a 20 ° C. aqueous carbonate solution with a saturated zinc concentration rises to 30 ° C., the zinc dissolved in the aqueous carbonate solution precipitates on the inner surface of the zinc injection pipe until the saturated solubility of the carbon dioxide drops to 30 ° C. To do. In addition, when the temperature of water flowing through the pipe connected to the reactor pressure vessel, to which the zinc injection pipe is connected, is higher than that of the carbonated aqueous solution containing zinc injected from the zinc injection pipe, Since the temperature of the water becomes high, zinc dissolved in the aqueous carbonate solution is likely to precipitate. In addition, in the unlikely event that carbon dioxide gas supplied into the first dissolution tank leaks from the carbon dioxide supply pipe, the pH of the aqueous carbonic acid solution rises, and dissolved zinc tends to precipitate in the pipe as a compound. .

発明者らは、このような問題点、すなわち、亜鉛の亜鉛注入配管の内面への析出を防止するために、炭酸水溶液の亜鉛濃度を低下させるために亜鉛イオンを含む炭酸水溶液に水を注入したのでは、前述したように、炭酸水溶液の亜鉛の飽和溶解度が低下し、炭酸水溶液に溶解している亜鉛が亜鉛注入配管の内面に析出する恐れがある。発明者らは、炭酸水溶液に水を注入してこの炭酸水溶液の亜鉛濃度を減少させるのではなく、亜鉛注入配管内を流れる炭酸水溶液に炭酸水溶液または炭酸ガスを注入することにより、亜鉛注入配管内を流れる炭酸水溶液の亜鉛飽和溶解を保持しつつ、この炭酸水溶液のpHを減少させることにした。炭酸水溶液のpHが減少すると、炭酸水溶液に亜鉛が溶けやすくなり、亜鉛の析出を防ぐことができる。   In order to prevent such a problem, that is, precipitation of zinc on the inner surface of the zinc injection pipe, the inventors injected water into an aqueous carbonate solution containing zinc ions in order to reduce the zinc concentration of the aqueous carbonate solution. In this case, as described above, the saturation solubility of zinc in the aqueous carbonate solution decreases, and zinc dissolved in the aqueous carbonate solution may be deposited on the inner surface of the zinc injection pipe. The inventors do not inject water into the carbonic acid aqueous solution to reduce the zinc concentration of the carbonic acid aqueous solution, but inject the carbonic acid aqueous solution or carbonic acid gas into the carbonic acid aqueous solution flowing in the zinc injection pipe to It was decided to reduce the pH of the aqueous carbonate solution while maintaining the saturated dissolution of zinc in the aqueous carbonate solution. When the pH of the carbonic acid aqueous solution is decreased, zinc is easily dissolved in the carbonic acid aqueous solution, and precipitation of zinc can be prevented.

発明者らは、このような検討結果に基づいて、本発明を創生した。   The inventors have created the present invention based on such examination results.

上記の検討結果を反映した、本発明の実施例を以下に説明する。   Examples of the present invention reflecting the above examination results will be described below.

本発明の好適な一実施例である実施例1の亜鉛注入方法を、図1および図2を用いて説明する。本実施例の亜鉛注入方法は、沸騰水型原子力プラント(以下、BWRプラントという)に適用される。   A zinc injection method according to embodiment 1, which is a preferred embodiment of the present invention, will be described with reference to FIGS. The zinc injection method of the present embodiment is applied to a boiling water nuclear plant (hereinafter referred to as a BWR plant).

まず、本実施例の亜鉛注入方法が適用されるこのBWRプラントの概略構成を、図2を用いて説明する。BWRプラントは、原子炉40、タービン48、復水器49、再循環系、および給水系等を備えている。原子炉格納容器46内に設置された原子炉40は、炉心42を内蔵する原子炉圧力容器(以下、RPVという)41を有し、RPV41内にジェットポンプ43を設置している。炉心42には複数の燃料集合体(図示せず)が装荷されている。各燃料集合体は、核燃料物質で製造された複数の燃料ペレットを充填した複数の燃料棒を含んでいる。再循環系は再循環ポンプ44およびステンレス鋼製の再循環系配管45を有し、再循環ポンプ44が再循環系配管45に設置されている。給水系は、復水器49とRPV41を連絡する給水配管50に、復水器49からRPV417に向かって、復水ポンプ51、復水浄化装置52、低圧給水加熱器54、給水ポンプ53および高圧給水加熱器55をこの順に設置して構成される。   First, a schematic configuration of this BWR plant to which the zinc injection method of the present embodiment is applied will be described with reference to FIG. The BWR plant includes a nuclear reactor 40, a turbine 48, a condenser 49, a recirculation system, a water supply system, and the like. The reactor 40 installed in the reactor containment vessel 46 has a reactor pressure vessel (hereinafter referred to as RPV) 41 containing a core 42, and a jet pump 43 is installed in the RPV 41. The core 42 is loaded with a plurality of fuel assemblies (not shown). Each fuel assembly includes a plurality of fuel rods filled with a plurality of fuel pellets made of nuclear fuel material. The recirculation system has a recirculation pump 44 and a stainless steel recirculation system pipe 45, and the recirculation pump 44 is installed in the recirculation system pipe 45. The water supply system includes a condensate pump 51, a condensate purification device 52, a low pressure feed water heater 54, a feed water pump 53, and a high pressure from a condenser 49 to an RPV 417 through a feed water pipe 50 connecting the condenser 49 and the RPV 41. The feed water heater 55 is installed in this order.

RPV41内の冷却水(以下、炉水という)は、再循環ポンプ44で昇圧され、再循環系配管45を通ってジェットポンプ43のノズル(図示せず)からジェットポンプ43のベルマウス(図示せず)内に噴出される。ノズルの周囲に存在する炉水も、ノズルから噴出される噴出流の作用により、ベルマウス内に吸引される。ジェットポンプ43から吐出された炉水は、炉心42に供給され、燃料棒内の核燃料物質の核分裂で発生する熱によって加熱される。加熱された炉水の一部が蒸気になる。この蒸気は、RPV41から主蒸気配管47を通ってタービン48に導かれ、タービン48を回転させる。タービン48に連結された発電機(図示せず)が回転され、電力が発生する。タービン48から排出された蒸気は、復水器49で凝縮され、水になる。   Cooling water (hereinafter referred to as “reactor water”) in the RPV 41 is pressurized by a recirculation pump 44, passes through a recirculation system pipe 45, and from a nozzle (not shown) of the jet pump 43 to a bell mouth (not shown) of the jet pump 43. ) The reactor water present around the nozzle is also sucked into the bell mouth by the action of the jet flow jetted from the nozzle. Reactor water discharged from the jet pump 43 is supplied to the core 42 and heated by heat generated by fission of nuclear fuel material in the fuel rods. Part of the heated reactor water becomes steam. This steam is guided from the RPV 41 through the main steam pipe 47 to the turbine 48 to rotate the turbine 48. A generator (not shown) connected to the turbine 48 is rotated to generate electric power. The steam discharged from the turbine 48 is condensed by the condenser 49 to become water.

この水は、給水として、給水配管50を通りRPV41内に供給される。給水配管50内を流れる給水は、復水ポンプ57で昇圧され、復水浄化装置52で不純物が除去され、給水ポンプ53でさらに昇圧され、低圧給水加熱器54および高圧給水加熱器55で加熱される。抽気配管56で主蒸気配管47,タービン48から抽気された抽気蒸気が、低圧給水加熱器54および高圧給水加熱器55にそれぞれ供給され、給水の加熱源となる。   This water is supplied into the RPV 41 through the water supply pipe 50 as water supply. The feed water flowing in the feed water pipe 50 is boosted by the condensate pump 57, impurities are removed by the condensate purification device 52, further boosted by the feed water pump 53, and heated by the low pressure feed water heater 54 and the high pressure feed water heater 55. The The extracted steam extracted from the main steam pipe 47 and the turbine 48 by the extraction pipe 56 is supplied to the low-pressure feed water heater 54 and the high-pressure feed water heater 55, respectively, and serves as a heating source for the feed water.

本実施例の亜鉛注入方法に用いられる亜鉛注入装置1は、復水浄化装置52と低圧給水加熱器54の間の給水配管50に亜鉛注入配管28を介して接続される。亜鉛注入装置1の詳細を、図1を用いて説明する。亜鉛注入装置1は、内部に炭酸ガス溶解領域を形成する炭酸ガス溶解槽(第1溶解槽)2、内部に亜鉛溶解領域を形成する亜鉛溶解槽(第2溶解槽)3、希釈液注入装置14および炭酸ガス供給装置16を有する。炭酸ガス溶解槽2の底部に一端部が接続される配管4の他端部が、亜鉛溶解槽3の底部に接続される。配管5の一端部が亜鉛溶解槽3の頂部に接続され、配管5の他端部が炭酸ガス溶解槽2の頂部に接続される。炭酸ガス溶解槽2、配管4、亜鉛溶解槽3および配管5によって、閉ループが形成される。循環ポンプ6、開閉弁7、温度計8および流量計9が配管4に設けられる。導電率計(またはpH計)10が配管5に設けられる。液位計13が炭酸ガス溶解槽2に設けられる。   The zinc injection device 1 used in the zinc injection method of the present embodiment is connected to the feed water pipe 50 between the condensate purification device 52 and the low-pressure feed water heater 54 via the zinc injection pipe 28. Details of the zinc injection device 1 will be described with reference to FIG. A zinc injection apparatus 1 includes a carbon dioxide gas dissolution tank (first dissolution tank) 2 that forms a carbon dioxide dissolution area therein, a zinc dissolution tank (second dissolution tank) 3 that forms a zinc dissolution area therein, and a diluent injection apparatus. 14 and a carbon dioxide supply device 16. The other end of the pipe 4 whose one end is connected to the bottom of the carbon dioxide dissolution tank 2 is connected to the bottom of the zinc dissolution tank 3. One end of the pipe 5 is connected to the top of the zinc dissolution tank 3, and the other end of the pipe 5 is connected to the top of the carbon dioxide dissolution tank 2. A closed loop is formed by the carbon dioxide gas dissolution tank 2, the pipe 4, the zinc dissolution tank 3 and the pipe 5. A circulation pump 6, an on-off valve 7, a thermometer 8 and a flow meter 9 are provided in the pipe 4. A conductivity meter (or pH meter) 10 is provided in the pipe 5. A liquid level meter 13 is provided in the carbon dioxide dissolution tank 2.

BWRプラントの一つの運転サイクルでの消費量以上、例えば、30kg以上の酸化亜鉛ペレット(亜鉛を含む固体物質)が、亜鉛溶解槽3内に予め充填されている。酸化亜鉛ペレットの亜鉛溶解槽3内への充填は、或る運転サイクルでのBWRプラントの運転が停止された後に行われる燃料交換の期間で実施される。酸化亜鉛の替わりとして炭酸亜鉛、塩基性炭酸亜鉛、および金属亜鉛のいずれかを用いることも可能である。酸化亜鉛ペレットは、亜鉛溶解槽3内で上昇する炭酸水溶液の流速では浮遊しない程度の大きさ、例えば、粒径5mm以上とする。   More than the amount consumed in one operation cycle of the BWR plant, for example, 30 kg or more of zinc oxide pellets (solid substance containing zinc) is filled in the zinc dissolution tank 3 in advance. Zinc oxide pellets are charged into the zinc dissolution tank 3 during a fuel change period after the operation of the BWR plant in a certain operation cycle is stopped. Instead of zinc oxide, any of zinc carbonate, basic zinc carbonate, and metallic zinc can be used. The zinc oxide pellets have a size that does not float at the flow rate of the aqueous carbonic acid solution rising in the zinc dissolution tank 3, for example, a particle size of 5 mm or more.

炭酸ガス供給装置16は、炭酸ガス供給管17、流量調節弁18および流量計19を有する。炭酸ガス供給管17は、炭酸ガス供給源(例えば、炭酸ガスボンベ)(図示せず)と炭酸ガス溶解槽2の底部を接続する。補給水供給装置23は、開閉弁25を設けた補給水供給管24を有する。炭酸ガス溶解槽4の頂部に接続された補給水供給管24は、水源(図示せず)に接続される。   The carbon dioxide supply device 16 includes a carbon dioxide supply pipe 17, a flow rate adjustment valve 18, and a flow meter 19. The carbon dioxide supply pipe 17 connects a carbon dioxide supply source (for example, a carbon dioxide cylinder) (not shown) and the bottom of the carbon dioxide dissolution tank 2. The makeup water supply device 23 has a makeup water supply pipe 24 provided with an opening / closing valve 25. The makeup water supply pipe 24 connected to the top of the carbon dioxide gas dissolution tank 4 is connected to a water source (not shown).

亜鉛注入配管28が、炭酸ガス溶解槽4の底部に接続され、前述したように給水配管50に接続される。注入ポンプ29、開閉弁30および圧力計31が亜鉛注入配管28に設けられる。   The zinc injection pipe 28 is connected to the bottom of the carbon dioxide gas dissolution tank 4 and is connected to the water supply pipe 50 as described above. An injection pump 29, an on-off valve 30 and a pressure gauge 31 are provided in the zinc injection pipe 28.

希釈液注入装置14は、注入液槽39、流量調節弁21を設けた炭酸ガス注入管20、開閉弁27を設けた注水配管26、および炭酸水注入配管32を有する。液位計15が注入液槽39に設けられる。炭酸ガス注入配管20は炭酸ガス供給管17と注入液槽39の底部を接続している。流量計22が炭酸ガス注入配管20に設けられる。注入液槽39の頂部に接続された注水配管26が補給水供給管24に接続される。注入液槽39の底部に接続された炭酸水注入配管32が亜鉛注入配管28に接続される。ポンプ33、開閉弁34および流量計35が炭酸水注入配管32に設けられる。   The diluent injection device 14 includes an injection liquid tank 39, a carbon dioxide injection pipe 20 provided with a flow rate control valve 21, a water injection pipe 26 provided with an on-off valve 27, and a carbonated water injection pipe 32. A liquid level meter 15 is provided in the injection liquid tank 39. The carbon dioxide injection pipe 20 connects the carbon dioxide supply pipe 17 and the bottom of the injection liquid tank 39. A flow meter 22 is provided in the carbon dioxide gas injection pipe 20. A water injection pipe 26 connected to the top of the injection liquid tank 39 is connected to the makeup water supply pipe 24. A carbonated water injection pipe 32 connected to the bottom of the injection liquid tank 39 is connected to the zinc injection pipe 28. A pump 33, an on-off valve 34 and a flow meter 35 are provided in the carbonated water injection pipe 32.

制御装置(図示せず)が、信号線(図示せず)により、開閉弁7,30,34、温度計8、流量調節弁18,21、流量計9,19,22,25,27,35、導電率計10、液位計13,15および圧力計31接続される。   A control device (not shown) is connected to the on-off valves 7, 30, 34, the thermometer 8, the flow rate control valves 18, 21, and the flow meters 9, 19, 22, 25, 27, 35 by a signal line (not shown). The conductivity meter 10, the liquid level meters 13, 15 and the pressure gauge 31 are connected.

亜鉛注入装置1を用いた本実施例の亜鉛注入方法を、以下に具体的に説明する。   The zinc injection method of the present embodiment using the zinc injection device 1 will be specifically described below.

制御装置から出力される制御指令に基づいて、開閉弁25,26が開き、補給水供給管24に設けられたポンプ(図示せず)が駆動され、補給水が補給水源(図示せず)から補給水配管24を通して炭酸ガス溶解槽2に供給される。この補給水は注水配管26を通して注入液槽39に供給される。液位計13で計測された液位信号および液位計15で計測された液位信号が制御装置に入力される。制御装置は、液位計13からの液位信号に基づいて炭酸ガス溶解槽2が満水になったと判定したとき、開閉弁25を閉じる。これにより、炭酸ガス溶解槽2への補給水の供給が停止される。制御装置は、液位計15からの液位信号に基づいて注入液槽39が満水になったと判定したとき、ポンプの駆動を停止して開閉弁27を閉じる。これにより、注入液槽39への補給水の供給が停止される。   Based on a control command output from the control device, the on-off valves 25 and 26 are opened, a pump (not shown) provided in the makeup water supply pipe 24 is driven, and makeup water is supplied from a makeup water source (not shown). The carbon dioxide gas dissolution tank 2 is supplied through the makeup water pipe 24. This makeup water is supplied to the injection liquid tank 39 through the water injection pipe 26. The liquid level signal measured by the liquid level meter 13 and the liquid level signal measured by the liquid level meter 15 are input to the control device. When the control device determines that the carbon dioxide gas dissolution tank 2 is full based on the liquid level signal from the liquid level meter 13, the control valve 25 is closed. Thereby, the supply of the makeup water to the carbon dioxide dissolution tank 2 is stopped. When it is determined that the injection liquid tank 39 is full based on the liquid level signal from the liquid level meter 15, the control device stops driving the pump and closes the on-off valve 27. Thereby, the supply of the makeup water to the injection liquid tank 39 is stopped.

炭酸ガス溶解槽2が満水になった後、制御装置は流量調節弁18を開いて炭酸ガス溶解槽2内の炭酸水溶液のpHが設定pH(pHが、例えば、3.91)になるように流量調節弁18の開度を所定の開度に調節する。炭酸ガス供給源の炭酸ガスが、炭酸ガス供給配管17を通って炭酸ガス溶解槽2の水中に放出される。放出された炭酸ガスは炭酸ガス溶解槽2内の水に溶解する。この水に溶解しなかった炭酸ガスは、炭酸ガス溶解槽2内を上昇して炭酸ガス溶解槽2に接続されたベント配管57に放出される。注入液槽39が満水になった後、制御装置は流量調節弁21を開いて注入液槽39内の炭酸水溶液のpHが設定pH(pHが、例えば、3.91)になるように流量調節弁21の開度を上記の所定の開度に調節する。流量調節弁21の開度は、給水配管50に亜鉛イオンを含む炭酸水を注入している間、その所定開度に保持される。炭酸ガス供給配管17内を流れる炭酸ガスの一部が、炭酸ガス注入配管20を通って注入液槽39の水中に放出される。放出された炭酸ガスは注入液槽39内の水に溶解する。この水に溶解しなかった炭酸ガスは、注入液槽39内を上昇して注入液槽39に接続されたベント配管58に放出される。   After the carbon dioxide gas dissolution tank 2 is full, the control device opens the flow control valve 18 so that the pH of the carbonic acid aqueous solution in the carbon dioxide gas dissolution tank 2 becomes a set pH (pH is, for example, 3.91). The opening degree of the flow control valve 18 is adjusted to a predetermined opening degree. Carbon dioxide from the carbon dioxide supply source is discharged into the water in the carbon dioxide dissolution tank 2 through the carbon dioxide supply pipe 17. The released carbon dioxide is dissolved in the water in the carbon dioxide dissolution tank 2. The carbon dioxide gas not dissolved in the water rises in the carbon dioxide gas dissolution tank 2 and is discharged to the vent pipe 57 connected to the carbon dioxide gas dissolution tank 2. After the infusate tank 39 is full, the control device opens the flow rate control valve 21 and adjusts the flow rate so that the pH of the aqueous carbonate solution in the infusate tank 39 becomes a set pH (pH is 3.91, for example). The opening degree of the valve 21 is adjusted to the predetermined opening degree. The opening degree of the flow control valve 21 is maintained at the predetermined opening degree while carbonated water containing zinc ions is injected into the water supply pipe 50. A part of the carbon dioxide flowing in the carbon dioxide supply pipe 17 is discharged through the carbon dioxide injection pipe 20 into the water of the injection liquid tank 39. The released carbon dioxide gas is dissolved in the water in the injection liquid tank 39. The carbon dioxide gas not dissolved in the water rises in the injection liquid tank 39 and is discharged to the vent pipe 58 connected to the injection liquid tank 39.

炭酸ガスが注入された炭酸ガス溶解槽2および注入液槽39において、それぞれの内部に炭酸水溶液が生成される。炭酸ガスの水への溶解が平衡に達したときには炭酸水溶液のpHが飽和炭酸水溶液のpHである4前後になる。炭酸ガス溶解槽2および注入液槽39への炭酸ガスの供給は、給水配管50に亜鉛イオンを含む炭酸水を注入している間、継続して行われる。   In the carbon dioxide dissolution tank 2 and the injection liquid tank 39 into which the carbon dioxide gas has been injected, a carbonic acid aqueous solution is generated inside. When the dissolution of carbon dioxide in water reaches equilibrium, the pH of the aqueous carbonate solution is about 4, which is the pH of the saturated aqueous carbonate solution. The supply of carbon dioxide to the carbon dioxide dissolution tank 2 and the injection liquid tank 39 is continuously performed while carbonated water containing zinc ions is being injected into the water supply pipe 50.

制御装置は、炭酸ガス溶解槽2に設けられた導電率計(図示せず)の計測値に基づいて炭酸ガス溶解槽2内の炭酸水溶液のpHが上記設定pH(例えば、3.91)になったと判定したとき、循環ポンプ6に駆動開始信号を出力する。換言すれば、炭酸ガス溶解槽2内の炭酸水溶液の炭酸濃度は注入液槽39内の炭酸水溶液の炭酸濃度と同じである。循環ポンプ6が駆動され、炭酸ガス溶解槽2内の炭酸水溶液が、配管4を通って亜鉛溶解槽3に供給される。   Based on the measured value of a conductivity meter (not shown) provided in the carbon dioxide gas dissolution tank 2, the control device sets the pH of the carbonic acid aqueous solution in the carbon dioxide gas dissolution tank 2 to the set pH (eg, 3.91). When it is determined that it has become, a drive start signal is output to the circulation pump 6. In other words, the carbonic acid concentration of the carbonic acid aqueous solution in the carbon dioxide gas dissolution tank 2 is the same as the carbonic acid concentration of the carbonic acid aqueous solution in the injection liquid tank 39. The circulation pump 6 is driven, and the aqueous carbonate solution in the carbon dioxide dissolution tank 2 is supplied to the zinc dissolution tank 3 through the pipe 4.

亜鉛溶解槽3に供給された炭酸水溶液は、亜鉛溶解槽3内で、充填された多数の酸化亜鉛ペレットの相互間を酸化亜鉛ペレットに接触しながら上昇する。上昇する低いpHの炭酸水溶液が酸化亜鉛ペレットを溶解し、酸化亜鉛ペレットに含まれる亜鉛がイオンとなって炭酸水溶液内に溶出する。この結果、亜鉛イオンを含む炭酸水溶液(亜鉛イオンを含む注入水)が亜鉛溶解槽3内で生成される。   The aqueous carbonate solution supplied to the zinc dissolution tank 3 rises in the zinc dissolution tank 3 while being in contact with the zinc oxide pellets among a large number of filled zinc oxide pellets. The rising low pH carbonic acid aqueous solution dissolves the zinc oxide pellets, and zinc contained in the zinc oxide pellets is ionized and eluted into the carbonic acid aqueous solution. As a result, an aqueous carbonate solution containing zinc ions (injected water containing zinc ions) is generated in the zinc dissolution tank 3.

亜鉛溶解槽3内における亜鉛の溶出によって亜鉛溶解槽3内の炭酸水溶液のpHが、中性側に変化し、炭酸水溶液への亜鉛の溶出度合いが抑制される。亜鉛イオンを含む炭酸水溶液は、亜鉛溶解槽の頂部から配管5に排出され、配管5を通って炭酸ガス溶解槽2に供給される。炭酸ガス溶解槽2に供給された亜鉛イオンを含む炭酸水溶液は、炭酸ガス溶解槽2内の炭酸水溶液と混合され、循環ポンプ6で昇圧されて配管4を通して亜鉛溶解槽3に導入される。この亜鉛イオンを含む炭酸水溶液は、亜鉛溶解槽3内で酸化亜鉛ペレットに接触し、前述したように、酸化亜鉛ペレットに含まれる亜鉛がイオンとなってその炭酸水溶液に溶出する。このため、亜鉛イオンを含む炭酸水溶液の亜鉛イオンの濃度が増加する。   The elution of zinc in the zinc dissolution tank 3 changes the pH of the aqueous carbonate solution in the zinc dissolution tank 3 to the neutral side, and the elution degree of zinc into the aqueous carbonate solution is suppressed. The aqueous carbonate solution containing zinc ions is discharged from the top of the zinc dissolution tank to the pipe 5 and supplied to the carbon dioxide dissolution tank 2 through the pipe 5. The aqueous carbonate solution containing zinc ions supplied to the carbon dioxide gas dissolution tank 2 is mixed with the aqueous carbonate solution in the carbon dioxide gas dissolution tank 2, pressurized by the circulation pump 6, and introduced into the zinc dissolution tank 3 through the pipe 4. The aqueous carbonate solution containing zinc ions comes into contact with the zinc oxide pellets in the zinc dissolution tank 3, and as described above, the zinc contained in the zinc oxide pellets is ionized and eluted into the aqueous carbonate solution. For this reason, the density | concentration of the zinc ion of the carbonic acid aqueous solution containing zinc ion increases.

亜鉛溶解槽3内の亜鉛イオンを含む炭酸水溶液は、炭酸ガス溶解槽2、配管4、亜鉛溶解槽3および配管5によって形成される閉ループ内を循環する。このような亜鉛イオンを含む炭酸水溶液の循環により、この炭酸水溶液の亜鉛イオン濃度は、酸化亜鉛ペレットが充填された亜鉛溶解槽3内を炭酸水溶液が通過するたびに、増加する。閉ループ内を循環する炭酸水溶液の亜鉛イオンの濃度は、やがて、飽和濃度に到達する。炭酸水溶液を、酸化亜鉛ペレットを充填した亜鉛溶解槽3を含む上記の閉ループ内で循環させることによって、亜鉛イオンの濃度が飽和濃度付近まで上昇した炭酸水溶液を容易に得ることができる。   The aqueous carbonate solution containing zinc ions in the zinc dissolution tank 3 circulates in a closed loop formed by the carbon dioxide dissolution tank 2, the pipe 4, the zinc dissolution tank 3 and the pipe 5. Due to the circulation of the aqueous carbonate solution containing zinc ions, the zinc ion concentration of the aqueous carbonate solution increases every time the aqueous carbonate solution passes through the zinc dissolution tank 3 filled with zinc oxide pellets. The zinc ion concentration of the aqueous carbonate solution circulating in the closed loop will eventually reach a saturation concentration. By circulating the aqueous carbonate solution in the closed loop including the zinc dissolution tank 3 filled with zinc oxide pellets, an aqueous carbonate solution in which the concentration of zinc ions has increased to near the saturation concentration can be easily obtained.

制御装置は、導電率計10で計測した炭酸水溶液の導電率を用いてその炭酸水溶液の亜鉛イオン濃度を求め、この亜鉛イオン濃度が例えば350ppm(設定亜鉛濃度)に到達するまでは循環ポンプ6の回転速度を増加して亜鉛溶解槽3を流れる炭酸水溶液24の流速を速くする。その亜鉛イオン濃度が350ppmに到達したときに、循環ポンプ6の回転速度を低下させて亜鉛溶解槽3を流れる炭酸水溶液の流速を低下させる。亜鉛溶解槽3内での亜鉛の溶解初期では亜鉛を早く炭酸水溶液に溶解した方が、RPV41内への亜鉛注入が早期にできるので好ましい。しかし、一旦、炭酸水溶液の亜鉛イオン濃度が飽和溶解度になるとその後は線流速を下げて亜鉛の溶解速度を落として、循環ポンプ6の駆動電力を節約することが望ましい。   The control device obtains the zinc ion concentration of the aqueous carbonate solution using the electrical conductivity of the aqueous carbonate solution measured by the conductivity meter 10, and until the zinc ion concentration reaches, for example, 350 ppm (set zinc concentration), The rotational speed is increased to increase the flow rate of the aqueous carbonate solution 24 flowing through the zinc dissolution tank 3. When the zinc ion concentration reaches 350 ppm, the rotational speed of the circulation pump 6 is decreased to decrease the flow rate of the aqueous carbonate solution flowing through the zinc dissolution tank 3. In the initial stage of zinc dissolution in the zinc dissolution tank 3, it is preferable to dissolve zinc in the aqueous carbonate solution earlier because zinc can be injected into the RPV 41 earlier. However, once the zinc ion concentration of the aqueous carbonate solution reaches saturation solubility, it is desirable to reduce the linear flow rate to lower the zinc dissolution rate and save the driving power of the circulation pump 6.

制御装置は、導電率計10の計測値に基づいて炭酸水溶液の亜鉛イオン濃度が350ppmに到達したと判定したとき、注入ポンプ29の起動信号を出力する。注入ポンプ29は、この起動信号により起動される。注入ポンプ29が起動すると、炭酸ガス溶解槽2から排出された、亜鉛イオン濃度が350ppmである炭酸水溶液が、亜鉛注入配管28を通して給水配管50に注入される。亜鉛イオン濃度350ppmの炭酸水溶液は、給水配管50内を流れる給水に混入される。制御装置は、圧力計31の計測値を入力して開閉弁30の開度を制御し、給水配管50に注入する亜鉛イオンを含む炭酸水溶液の圧力を調節する。更に、制御装置は、注入ポンプ29の回転速度を調節し、注入する炭酸水溶液の亜鉛イオン濃度および給水配管50内を流れる給水の流量(給水流量)に基づいてRPV41に供給される給水の亜鉛イオン濃度が所定の値、例えば0.2ppb(設定亜鉛濃度)になるように、給水配管50への炭酸水溶液の注入量を制御する。   When it is determined that the zinc ion concentration of the aqueous carbonate solution has reached 350 ppm based on the measured value of the conductivity meter 10, the control device outputs an activation signal for the injection pump 29. The infusion pump 29 is activated by this activation signal. When the injection pump 29 is activated, an aqueous carbonate solution having a zinc ion concentration of 350 ppm discharged from the carbon dioxide dissolution tank 2 is injected into the water supply pipe 50 through the zinc injection pipe 28. Carbonic acid aqueous solution having a zinc ion concentration of 350 ppm is mixed in the feed water flowing in the feed water pipe 50. The control device inputs the measurement value of the pressure gauge 31 to control the opening degree of the on-off valve 30 and adjusts the pressure of the aqueous carbonate solution containing zinc ions injected into the water supply pipe 50. Further, the control device adjusts the rotation speed of the injection pump 29, and the zinc ions of the feed water supplied to the RPV 41 based on the zinc ion concentration of the carbonated aqueous solution to be injected and the flow rate of the feed water flowing in the feed water pipe 50 (feed water flow rate). The injection amount of the aqueous carbonate solution into the water supply pipe 50 is controlled so that the concentration becomes a predetermined value, for example, 0.2 ppb (set zinc concentration).

冬から夏に向かう時期では、炭酸ガス溶解槽2および亜鉛溶解槽3が設置されている建屋内の雰囲気、および給水配管50の、亜鉛注入配管28との接続箇所付近の給水の各温度は徐々に上昇する。この温度上昇に伴って給水配管50に注入される炭酸水溶液の温度も上昇し、給水配管50に注入される炭酸水溶液に含まれた亜鉛が亜鉛注入配管28の内面、および亜鉛注入配管28との接続箇所付近での給水配管50の内面に析出する恐れがある。   During the period from winter to summer, the temperature in the building where the carbon dioxide dissolution tank 2 and the zinc dissolution tank 3 are installed and the temperature of the water supply near the connection point of the water supply pipe 50 to the zinc injection pipe 28 are gradually increased. To rise. As the temperature rises, the temperature of the aqueous carbonate solution injected into the water supply pipe 50 also rises, and the zinc contained in the aqueous carbonate solution injected into the water supply pipe 50 interacts with the inner surface of the zinc injection pipe 28 and the zinc injection pipe 28. There is a risk of depositing on the inner surface of the water supply pipe 50 near the connection location.

温度計8で計測された、配管4内を流れる炭酸水溶液の温度が制御装置に入力される。温度計8で計測された温度が、上記したように炭酸ガス溶解槽2および亜鉛溶解槽3の水位の温度の影響により、設定温度よりも上昇したとき、制御装置は、開閉弁34を開いてポンプ33の回転速度を調節し、注入液槽39から亜鉛注入配管28に注入する炭酸水溶液(亜鉛を含まない炭酸水溶液)の流量を調節する。配管4内を流れる炭酸水溶液の温度上昇によるその炭酸水溶液の亜鉛の飽和溶解度の低下分を補償するように、炭酸ガス溶解槽2内の炭酸濃度と同じ炭酸濃度である注入液槽39内の炭酸水溶液の、炭酸水注入配管32により亜鉛注入配管28に注入される流量が調節される。注入液槽39から亜鉛注入配管28への炭酸水溶液の注入により、亜鉛注入配管28内を流れる亜鉛イオンを含む炭酸水溶液の亜鉛イオン濃度が希釈されて200ppmまで低下する。このため、亜鉛注入配管28内面への亜鉛の析出が防止される。制御装置は流量計35の計測値を入力し、注入液槽39から亜鉛注入配管28に注入される炭酸水溶液の注入量が必要量になったかを監視する。   The temperature of the carbonic acid aqueous solution flowing in the pipe 4 measured by the thermometer 8 is input to the control device. When the temperature measured by the thermometer 8 rises above the set temperature due to the influence of the water level temperature of the carbon dioxide dissolution tank 2 and the zinc dissolution tank 3 as described above, the control device opens the on-off valve 34. The rotational speed of the pump 33 is adjusted, and the flow rate of the aqueous carbonate solution (the aqueous carbonate solution not containing zinc) injected from the injection solution tank 39 into the zinc injection pipe 28 is adjusted. The carbonic acid in the injection liquid tank 39 having the same carbonic acid concentration as the carbonic acid concentration in the carbon dioxide dissolving tank 2 is compensated for so as to compensate for the decrease in the saturated solubility of zinc in the carbonic acid aqueous solution due to the temperature rise of the carbonic acid aqueous solution flowing in the pipe 4 The flow rate of the aqueous solution injected into the zinc injection pipe 28 by the carbonated water injection pipe 32 is adjusted. By injecting the carbonic acid aqueous solution from the injection liquid tank 39 into the zinc injection pipe 28, the zinc ion concentration of the carbonic acid aqueous solution containing zinc ions flowing in the zinc injection pipe 28 is diluted to 200 ppm. For this reason, precipitation of zinc on the inner surface of the zinc injection pipe 28 is prevented. The control device inputs the measurement value of the flow meter 35 and monitors whether the injection amount of the carbonic acid aqueous solution injected from the injection liquid tank 39 into the zinc injection pipe 28 has become a necessary amount.

なお、夏から冬に向かうときのように閉ループ内の炭酸水溶液の温度が低下する場合でも、温度計8で計測された炭酸水溶液の温度が制御装置に入力されるが、温度計8で計測された温度が設定温度以下である場合には、制御装置は開閉弁34を開けずポンプ33を駆動しない。このため、注入液槽39から亜鉛注入配管28への炭酸水溶液の注入は基本的に行われない。ただし、万が一、炭酸ガス溶解槽2に供給される炭酸ガスが炭酸ガス供給配管17から漏れた場合には、炭酸ガス溶解槽2内の炭酸水溶液のpHが上昇し、溶解している亜鉛が化合物として亜鉛注入配管28の内面に析出する。このため、万全を期すために、注入液槽39から亜鉛注入配管28への炭酸水溶液の注入を、常時、行うことが望ましい。   Even when the temperature of the aqueous carbonate solution in the closed loop decreases, such as when going from summer to winter, the temperature of the aqueous carbonate solution measured by the thermometer 8 is input to the control device. When the detected temperature is lower than the set temperature, the control device does not open the on-off valve 34 and does not drive the pump 33. For this reason, the injection of the carbonic acid aqueous solution from the injection liquid tank 39 to the zinc injection pipe 28 is basically not performed. However, in the unlikely event that the carbon dioxide gas supplied to the carbon dioxide gas dissolution tank 2 leaks from the carbon dioxide gas supply pipe 17, the pH of the aqueous carbonic acid solution in the carbon dioxide gas dissolution tank 2 rises, and the dissolved zinc is a compound. To the inner surface of the zinc injection pipe 28. For this reason, it is desirable to always inject the aqueous carbonate solution from the injection solution tank 39 to the zinc injection pipe 28 for the sake of completeness.

炭酸ガス溶解槽2から給水配管50への亜鉛イオンを含む炭酸水溶液の注入により、炭酸ガス溶解槽2内の炭酸水溶液の液位が低下する。このため、補給水源から炭酸ガス溶解槽2内に水が補給される。例えば、液位計13で計測された、炭酸ガス溶解槽2の液位を入力した制御装置は、この水位に基づいて、炭酸ガス溶解槽2の液位が炭酸ガス溶解槽2の保有水量(例えば、200kg)のうち一割が亜鉛注入配管28を通して給水配管50に注入された状態における炭酸ガス溶解槽2の第1下限設定液位まで低下したと判定したとき、開閉弁25を開いて補給水供給管24に設けられたポンプを駆動する。補給水源の水が補給水供給管24を通して炭酸ガス溶解槽2に供給される。制御装置は、補給水の供給により、液位計13で計測された液位が満水状態を示す第1上限設定液位に達したと判定したとき、そのポンプの駆動を停止する。   By injecting the aqueous carbonate solution containing zinc ions from the carbon dioxide dissolution tank 2 into the water supply pipe 50, the liquid level of the aqueous carbonate solution in the carbon dioxide dissolution tank 2 is lowered. For this reason, water is replenished into the carbon dioxide gas dissolution tank 2 from the makeup water source. For example, the control device that has input the liquid level of the carbon dioxide gas dissolution tank 2 measured by the liquid level gauge 13 determines that the liquid level of the carbon dioxide gas dissolution tank 2 is based on this water level. For example, when it is determined that 10% of the 200 kg) has dropped to the first lower limit set liquid level of the carbon dioxide gas dissolution tank 2 in a state where it is injected into the water supply pipe 50 through the zinc injection pipe 28, the on-off valve 25 is opened to replenish. The pump provided in the water supply pipe 24 is driven. The water of the make-up water source is supplied to the carbon dioxide gas dissolution tank 2 through the make-up water supply pipe 24. When it is determined that the liquid level measured by the liquid level gauge 13 has reached the first upper limit set liquid level indicating a full water state by supplying makeup water, the control device stops driving the pump.

補給水の炭酸ガス溶解槽2への供給により、炭酸ガス溶解槽2内の炭酸水溶液の炭酸濃度が低下し、炭酸水溶液の導電率も低下しようとするが、前述したように、炭酸ガス供給管17から炭酸ガス溶解槽2への炭酸ガスの供給が継続して行われているため、その炭酸濃度の低下が抑制され、亜鉛溶解槽3内での亜鉛の溶解速度の低下も抑制される。もし、補給水の炭酸ガス溶解槽2への供給により循環する炭酸水溶液の亜鉛イオン濃度が低下した場合には、循環ポンプ6の回転速度が増加される。すなわち、制御装置は、導電率計10で計測した導電率に基づいて求めた、炭酸ガス溶解槽2内の炭酸水溶液の亜鉛イオン濃度が、亜鉛の飽和濃度の、例えば、20%減の280ppmを下回ったと判定したとき、循環ポンプ6の回転速度を増加させる。亜鉛溶解槽3内を上昇する炭酸水溶液の線流速が速められ、炭酸水溶液の亜鉛イオン濃度が亜鉛の飽和濃度に到達するまでに要する時間が短縮される。このように、炭酸ガス溶解槽2に補給水が供給されて亜鉛イオン濃度が低下した場合でも、炭酸ガス溶解槽2内の炭酸水溶液の亜鉛イオン濃度を高めることができる。   By supplying makeup water to the carbon dioxide gas dissolution tank 2, the carbonic acid concentration of the carbonic acid aqueous solution in the carbon dioxide gas dissolution tank 2 is lowered and the conductivity of the carbonic acid aqueous solution is also lowered. Since the supply of carbon dioxide gas from 17 to the carbon dioxide dissolution tank 2 is continuously performed, the decrease in the carbonic acid concentration is suppressed, and the decrease in the dissolution rate of zinc in the zinc dissolution tank 3 is also suppressed. If the zinc ion concentration of the aqueous carbonate solution circulated due to the supply of makeup water to the carbon dioxide gas dissolution tank 2, the rotational speed of the circulation pump 6 is increased. That is, the control device calculates the zinc ion concentration of the carbonic acid aqueous solution in the carbon dioxide dissolution tank 2 obtained based on the conductivity measured by the conductivity meter 10 to 280 ppm, for example, a 20% decrease in the zinc saturation concentration. When it is determined that the rotational speed is lower, the rotational speed of the circulation pump 6 is increased. The linear flow rate of the aqueous carbonate solution rising in the zinc dissolution tank 3 is increased, and the time required for the zinc ion concentration of the aqueous carbonate solution to reach the saturated zinc concentration is shortened. Thus, even when makeup water is supplied to the carbon dioxide dissolution tank 2 and the zinc ion concentration is lowered, the zinc ion concentration of the aqueous carbonate solution in the carbon dioxide dissolution tank 2 can be increased.

また、炭酸ガス溶解槽2への補給水の供給による炭酸水溶液の亜鉛イオン濃度の低下は、炭酸ガス溶解槽2への補給水の供給開始と供給停止の間隔を狭くすることによって炭酸ガス溶解槽2内における水位の変動を小さくすることにより、抑制することができる。炭酸ガス溶解槽2への補給水の供給および停止は、開閉弁25の開閉または補給水供給管24に設けられたポンプの起動および停止により制御することができる。実用的には、ポンプの起動、停止の負担が少ない開閉弁25の開閉が望ましい。注入液槽39のへの補給水の供給による炭酸水溶液の炭酸濃度の低下は、注入液槽39への補給水の供給開始と供給停止の間隔を狭くすることによって注入液槽39内における水位の変動を小さくすることにより、抑制することができる。この注入液槽39への補給水の供給および停止は、開閉弁27の開閉または補給水供給管24に設けられたポンプの起動および停止により制御することができる。   In addition, the decrease in the zinc ion concentration of the aqueous carbonate solution due to the supply of makeup water to the carbonate gas dissolution tank 2 is reduced by narrowing the interval between the start and stop of supply of makeup water to the carbonate gas dissolution tank 2. It can suppress by making the fluctuation | variation of the water level in 2 small. Supply and stop of makeup water to the carbon dioxide gas dissolution tank 2 can be controlled by opening and closing the on-off valve 25 or starting and stopping of a pump provided in the makeup water supply pipe 24. Practically, it is desirable to open and close the on-off valve 25 with less burden on starting and stopping the pump. The decrease in the carbonic acid concentration of the aqueous carbonate solution due to the supply of makeup water to the injection liquid tank 39 is achieved by reducing the level of the water level in the injection liquid tank 39 by narrowing the interval between the start and stop of supply of makeup water to the injection liquid tank 39. It can suppress by making a fluctuation | variation small. The supply and stop of the makeup water to the injection liquid tank 39 can be controlled by opening and closing the on-off valve 27 or starting and stopping of a pump provided in the makeup water supply pipe 24.

なお、流量計9で計測された、亜鉛溶解槽3に供給される炭酸水溶液の流量は、制御装置に入力される。制御装置は、炭酸水溶液の亜鉛の飽和濃度に対応した、亜鉛溶解槽3に供給される炭酸水溶液の流量(設定流量)を記憶しており、流量計9から入力した流量に基づいて亜鉛溶解槽3に供給される炭酸水溶液の流量が設定流量になったかを確認する。   In addition, the flow volume of the carbonic acid aqueous solution supplied to the zinc dissolution tank 3 measured with the flowmeter 9 is input into a control apparatus. The control device stores the flow rate (set flow rate) of the aqueous carbonate solution supplied to the zinc dissolution vessel 3 corresponding to the saturated concentration of zinc in the aqueous carbonate solution, and is based on the flow rate input from the flow meter 9. 3 confirms whether the flow rate of the aqueous carbonate solution supplied to 3 has reached the set flow rate.

また、注入液槽39から亜鉛注入配管28への炭酸水溶液の注入により、注入液槽39内の炭酸水溶液の液位が低下する。制御装置は、液位計15で計測された、注入液槽39の液位が注入液槽39の第2下限設定液位まで低下したと判定したとき、開閉弁27を開き、補給水供給管24に設けられたポンプの駆動により、補給水が補給水供給管24を通して注入液槽39に供給される。制御装置は、補給水の供給により、液位計15で計測された液位が満水状態を示す第2上限設定液位に達したと判定したとき、そのポンプの駆動を停止する。注入液槽39の補給水の供給によって注入液槽39の炭酸水溶液のpHが増加する。制御装置は、注入液槽39に設けられた導電率計の計測値に基づいて流量調節弁21の開度を調節し、炭酸ガス供給管17から炭酸ガス注入管20を通して注入液槽39に炭酸ガスを注入する。これにより、注入液槽39の炭酸水溶液のpHが例えば3.91まで低下する。   Further, the injection of the aqueous carbonate solution from the injection liquid tank 39 to the zinc injection pipe 28 lowers the liquid level of the aqueous carbonate solution in the injection liquid tank 39. When the control device determines that the liquid level in the infusate tank 39 measured by the liquid level meter 15 has dropped to the second lower limit set liquid level in the infusate tank 39, the control device opens the open / close valve 27 and supplies the makeup water supply pipe. By the driving of the pump provided at 24, makeup water is supplied to the injection liquid tank 39 through the makeup water supply pipe 24. When it is determined that the liquid level measured by the liquid level meter 15 has reached the second upper limit set liquid level indicating a full water state due to the supply of makeup water, the control device stops driving the pump. The pH of the carbonated aqueous solution in the injection liquid tank 39 is increased by supplying makeup water in the injection liquid tank 39. The control device adjusts the opening degree of the flow rate control valve 21 based on the measured value of the conductivity meter provided in the injection liquid tank 39, and carbonates the carbon dioxide into the injection liquid tank 39 from the carbon dioxide supply pipe 17 through the carbon dioxide injection pipe 20. Inject gas. Thereby, pH of the carbonic acid aqueous solution of the injection liquid tank 39 falls to 3.91, for example.

本実施例によれば、炭酸ガス溶解槽2内の炭酸水溶液を、酸化亜鉛ペレットを充填した亜鉛溶解槽3および炭酸ガス溶解槽2を含む閉ループ内で循環させるので、亜鉛イオンを含みRPV41に注入される炭酸水溶液(注入水)の亜鉛イオン濃度を高くすることができる。このため、RPV41内の炉水の亜鉛イオン濃度をより短時間で増加させることができる。   According to the present embodiment, the carbonic acid aqueous solution in the carbon dioxide dissolution tank 2 is circulated in a closed loop including the zinc dissolution tank 3 filled with zinc oxide pellets and the carbon dioxide dissolution tank 2, so that zinc ions are injected into the RPV 41. The zinc ion concentration of the carbonated aqueous solution (injected water) can be increased. For this reason, the zinc ion concentration of the reactor water in the RPV 41 can be increased in a shorter time.

上記の閉ループ内で炭酸水溶液を循環させて炭酸水溶液の亜鉛イオン濃度を増加させるので、特開2003−28985号公報に記載されたように高濃度ホウ酸水を用いて亜鉛イオン濃度を高める必要がない。このため、高濃度ホウ酸水がRPV41内に注入されないので、BWRプラントにおける原子炉出力の制御が単純化される。   Since the aqueous carbonate solution is circulated in the closed loop to increase the zinc ion concentration of the aqueous carbonate solution, it is necessary to increase the zinc ion concentration using high-concentration boric acid water as described in JP-A-2003-28985. Absent. For this reason, since high concentration boric acid water is not inject | poured in RPV41, control of the reactor power in a BWR plant is simplified.

本実施例では、炭酸ガス溶解槽2から配管4を通して亜鉛溶解槽3に供給する炭酸水溶液の流速を調節することができるので、炭酸水溶液の亜鉛イオン濃度を設定亜鉛イオン濃度まで高めるのに要する時間を短くすることができる。また、炭酸水溶液の亜鉛イオン濃度が設定亜鉛イオン濃度に増加した後では、亜鉛溶解槽3内の炭酸水溶液の流速が遅くなるように調節することができる。これによって、炭酸ガス溶解槽2から亜鉛溶解槽3に炭酸水溶液を供給する循環ポンプ6の負荷を低減することができ、循環ポンプ6で消費する電力を少なくすることができる。   In this embodiment, since the flow rate of the aqueous carbonate solution supplied from the carbon dioxide dissolution tank 2 to the zinc dissolution tank 3 through the pipe 4 can be adjusted, the time required to increase the zinc ion concentration of the aqueous carbonate solution to the set zinc ion concentration. Can be shortened. Further, after the zinc ion concentration of the aqueous carbonate solution has increased to the set zinc ion concentration, the flow rate of the aqueous carbonate solution in the zinc dissolution tank 3 can be adjusted to be slow. As a result, it is possible to reduce the load on the circulation pump 6 that supplies the carbonic acid aqueous solution from the carbon dioxide dissolution tank 2 to the zinc dissolution tank 3, and to reduce the power consumed by the circulation pump 6.

本実施例では、炭酸ガスの溶解と亜鉛の溶解を別々の溶解槽で行っているので、すなわち、炭酸ガス溶解槽2において炭酸ガスの溶解により炭酸水溶液を生成し、亜鉛溶解槽3においてこの炭酸水溶液を用いて亜鉛を溶解するので、炭酸ガスの溶解により生成される炭酸水溶液の炭酸濃度の調節を容易に行うことができ、所定濃度の亜鉛イオンを含む炭酸水溶液の生成を容易に行うことができる。   In the present embodiment, the dissolution of carbon dioxide gas and the dissolution of zinc are performed in separate dissolution tanks, that is, an aqueous carbonic acid solution is generated by dissolution of carbon dioxide gas in the carbon dioxide gas dissolution tank 2, and this carbon dioxide is dissolved in the zinc dissolution tank 3. Since zinc is dissolved using an aqueous solution, it is possible to easily adjust the carbonic acid concentration of the aqueous carbonic acid solution generated by dissolving carbon dioxide gas, and to easily generate an aqueous carbonic acid solution containing a predetermined concentration of zinc ions. it can.

本実施例によれば、炭酸ガス溶解槽2内の炭酸水溶液の温度が周囲の雰囲気温度の上昇の影響を受けて上昇し、炭酸水溶液の亜鉛の飽和溶解度が減少した場合には、注入液槽39内の亜鉛を含まない炭酸水溶液を炭酸水注入配管32から亜鉛注入配管28に注入するので、亜鉛注入配管28内を流れる亜鉛イオンを含む炭酸水溶液の亜鉛イオン濃度を減少させることができ、亜鉛注入配管28内面への亜鉛の析出を防止できる。また、常時注入槽39から亜鉛注入配管28に亜鉛を含まない炭酸水溶液を常時供給することにより、亜鉛注入配管28と給水配管50の接続箇所付近で給水配管50の内面への亜鉛、および万が一、炭酸ガス供給管17から炭酸ガスが漏れた場合における炭酸水溶液のpH増加に伴う亜鉛の析出を防止することができる。本実施例では、炭酸水溶液(亜鉛を含まない炭酸水溶液)を、亜鉛注入配管28内を流れる亜鉛イオンを含む炭酸水溶液に注入するため、純水を注入する際に生じる問題点を解消することができる。すなわち、亜鉛イオンを含む炭酸水溶液に純水を注入した場合には、前述したように、炭酸水溶液の亜鉛の飽和溶解度が低下するため、飽和溶解度の低下の度合いによっては亜鉛が亜鉛注入配管28の内面に析出する恐れがある。本実施例では、炭酸水溶液を亜鉛注入配管28に注入するので、この炭酸水溶液の注入によって亜鉛注入配管28内を流れる亜鉛イオンを含む炭酸水溶液の亜鉛の飽和溶解度の低下がみられない。このため、本実施例では、注入液槽39内の亜鉛を含まない炭酸水溶液を亜鉛注入配管28に注入することに起因して、亜鉛注入配管28の内面に亜鉛が析出することがない。亜鉛注入配管28における、析出した亜鉛による閉塞のリスクを著しく低下させることができ、亜鉛注入装置1を安定な状態で運転することができる。   According to the present embodiment, when the temperature of the carbonic acid aqueous solution in the carbon dioxide gas dissolution tank 2 rises due to the influence of the surrounding ambient temperature rise and the saturated solubility of zinc in the carbonic acid aqueous solution decreases, the injection liquid tank 39, the aqueous carbonate solution not containing zinc is injected from the carbonated water injection pipe 32 into the zinc injection pipe 28, so that the zinc ion concentration of the aqueous carbonate solution containing zinc ions flowing in the zinc injection pipe 28 can be reduced. Precipitation of zinc on the inner surface of the injection pipe 28 can be prevented. Further, by constantly supplying a carbonic acid aqueous solution not containing zinc from the constant injection tank 39 to the zinc injection pipe 28, zinc on the inner surface of the water supply pipe 50 near the connection point between the zinc injection pipe 28 and the water supply pipe 50, and in the unlikely event, When carbon dioxide leaks from the carbon dioxide supply pipe 17, it is possible to prevent the precipitation of zinc accompanying the increase in pH of the aqueous carbonic acid solution. In this embodiment, since the carbonic acid aqueous solution (carbonic acid aqueous solution not containing zinc) is injected into the carbonic acid aqueous solution containing zinc ions flowing in the zinc injection pipe 28, the problem caused when injecting pure water can be solved. it can. That is, when pure water is injected into an aqueous carbonate solution containing zinc ions, as described above, the saturation solubility of zinc in the aqueous carbonate solution decreases, so depending on the degree of decrease in the saturation solubility, zinc may be contained in the zinc injection pipe 28. There is a risk of precipitation on the inner surface. In this embodiment, since the carbonic acid aqueous solution is injected into the zinc injection pipe 28, the saturated solubility of zinc in the carbonic acid aqueous solution containing zinc ions flowing through the zinc injection pipe 28 is not observed due to the injection of the carbonic acid aqueous solution. For this reason, in this embodiment, zinc is not deposited on the inner surface of the zinc injection pipe 28 due to the injection of the carbonic acid aqueous solution containing no zinc in the injection liquid tank 39 into the zinc injection pipe 28. The risk of clogging with precipitated zinc in the zinc injection pipe 28 can be significantly reduced, and the zinc injection device 1 can be operated in a stable state.

本実施例では、350ppmの亜鉛イオンを含む炭酸水溶液を3.5kg/hで給水に注入しているが、これは1.2g/hの亜鉛イオンの供給速度に相当する。1つの運転サイクルを10000hとすると、亜鉛を含む固体物質の消費量は、亜鉛で12kg、酸化亜鉛では15kgとなる。本実施例では30kgの酸化亜鉛ペレットがBWRプラント起動前の定期検査中に亜鉛溶解槽3内に充填されるので、プラント運転中は亜鉛イオンの原料を補給する必要はなく、プラント運転中は亜鉛注入装置1を連続して運転することが可能である。   In this embodiment, an aqueous carbonate solution containing 350 ppm of zinc ions is injected into the feed water at 3.5 kg / h, which corresponds to a supply rate of 1.2 g / h of zinc ions. Assuming that one operation cycle is 10,000 h, the consumption amount of the solid substance containing zinc is 12 kg for zinc and 15 kg for zinc oxide. In this embodiment, 30 kg of zinc oxide pellets are filled into the zinc dissolution tank 3 during the periodic inspection before the start of the BWR plant. Therefore, it is not necessary to replenish the zinc ion raw material during the plant operation, and zinc during the plant operation. The injection device 1 can be operated continuously.

本実施例は、亜鉛注入装置1で上記したように生成された亜鉛イオンを含む炭酸水溶液を給水配管50に注入し、亜鉛イオンを含む給水をRPV41内の炉水に供給するので、再循環系配管45、および原子炉浄化系の浄化系配管(図示せず)等のRPV41に連絡されて炉水が流れる配管の内面への放射性コバルトの付着量を低減することができる。このため、原子力プラントの保守点検の作業時における従事者の放射線被ばくを低減することができる。   In this embodiment, the aqueous carbonate solution containing zinc ions generated as described above in the zinc injection device 1 is injected into the water supply pipe 50, and the supply water containing zinc ions is supplied to the reactor water in the RPV 41. It is possible to reduce the amount of radioactive cobalt attached to the inner surface of the piping 45 and the piping through which the reactor water flows, such as the piping 45 and the purification system piping (not shown) of the reactor purification system. For this reason, the radiation exposure of the worker at the time of the maintenance inspection work of a nuclear power plant can be reduced.

所定濃度の亜鉛イオンを含む炭酸水溶液を給水に注水しながら、炭酸ガス溶解槽2に補給水を供給して炭酸水溶液を亜鉛溶解槽3に供給するので、亜鉛イオンを含む炭酸水溶液の給水への注水を、継続して行いことができる。また、注入液槽39内への補給水の供給も可能であるため、
本実施例では、炭酸ガスの炭酸ガス溶解槽2および注入液槽39への注入および停止の判定、炭酸水溶液の亜鉛イオン濃度の判定、亜鉛溶解槽3に供給される炭酸水溶液の流速の調節、および給水配管50への亜鉛イオンを含む炭酸水溶液の注入量の制御、炭酸ガスの炭酸ガス溶解槽2および注入液槽39への補給水の供給および停止の制御、およびバ注入液槽39から亜鉛注入配管28への炭酸水溶液の注入及び停止の制御を制御装置で行っていたが、これらの制御操作の一部または全てを運転員が行うことも可能である。しかし、運転員の負担軽減の観点からはできるだけ制御装置を用いて行うことが望ましい。
While supplying an aqueous carbonate solution containing zinc ions of a predetermined concentration to the water supply, makeup water is supplied to the carbon dioxide dissolution tank 2 and the aqueous carbonate solution is supplied to the zinc dissolution tank 3, so that the aqueous carbonate solution containing zinc ions is supplied to the water supply. Water injection can be performed continuously. In addition, since it is possible to supply makeup water into the infusion tank 39,
In this embodiment, determination of injection and stop of carbon dioxide into the carbon dioxide dissolution tank 2 and the injection liquid tank 39, determination of the zinc ion concentration of the aqueous carbonate solution, adjustment of the flow rate of the aqueous carbonate solution supplied to the zinc dissolution tank 3, And control of the injection amount of the aqueous carbonate solution containing zinc ions into the water supply pipe 50, control of supply and stop of the makeup water to the carbon dioxide dissolution tank 2 and the injection liquid tank 39, and zinc from the injection liquid tank 39 The control of the injection and stop of the carbonated water solution into the injection pipe 28 is performed by the control device, but it is also possible for the operator to perform a part or all of these control operations. However, it is desirable to use a control device as much as possible from the viewpoint of reducing the burden on the operator.

本発明の他の好適な実施例である実施例2の亜鉛注入方法を以下に説明する。本実施例の亜鉛注入方法は、沸騰水型原子力プラント(以下、BWRプラントという)に適用される。   The zinc injection method of Example 2, which is another preferred embodiment of the present invention, will be described below. The zinc injection method of the present embodiment is applied to a boiling water nuclear plant (hereinafter referred to as a BWR plant).

本実施例の亜鉛注入方法には、実施例1で用いた亜鉛注入装置1が用いられる。ただし、本実施例では、亜鉛注入装置1の希釈液注入装置14をpH調節装置として用いている。実施例1の亜鉛注入方法では炭酸ガス溶解槽2内の炭酸水溶液の炭酸濃度および注入液槽39内の炭酸の濃度を炭酸の飽和濃度(炭酸水溶液のpHが例えば3.91)にしているのに対し、本実施例の亜鉛注入方法では、注入液槽39内の炭酸の濃度を炭酸の飽和濃度にし、炭酸ガス溶解槽2内の炭酸水溶液の炭酸濃度を炭酸の飽和濃度よりも低くしている。この点以外では、本実施例の亜鉛注入方法は、実施例1の亜鉛注入方法と同じことが実施される。亜鉛注入装置1の希釈液注入装置14がpH調節装置として機能するためには、実施例1の制御装置が、炭酸ガス溶解槽2内の炭酸水溶液の炭酸濃度を注入液槽39内の炭酸の濃度よりも低くなるように制御する、換言すれば、注入液槽39内の炭酸の濃度が炭酸ガス溶解槽2内の炭酸水溶液の炭酸濃度よりも高くなるように制御する機能が必要になる。   The zinc injection apparatus 1 used in Example 1 is used for the zinc injection method of this example. However, in this embodiment, the diluent injection device 14 of the zinc injection device 1 is used as a pH adjusting device. In the zinc injection method of the first embodiment, the carbonic acid concentration of the carbonic acid aqueous solution in the carbon dioxide gas dissolution tank 2 and the carbonic acid concentration in the injection liquid tank 39 are set to the saturated carbonic acid concentration (pH of the carbonic acid aqueous solution is 3.91, for example). On the other hand, in the zinc injection method of this embodiment, the concentration of carbonic acid in the injection liquid tank 39 is set to the saturated concentration of carbonic acid, and the carbonic acid concentration of the carbonic acid aqueous solution in the carbon dioxide gas dissolving tank 2 is set lower than the saturated concentration of carbonic acid. Yes. Except this point, the zinc injection method of the present embodiment is the same as the zinc injection method of the first embodiment. In order for the diluent injection device 14 of the zinc injection device 1 to function as a pH control device, the control device of the first embodiment uses the carbonic acid concentration of the carbonic acid aqueous solution in the carbon dioxide gas dissolving tank 2 to adjust the carbonic acid concentration in the injection liquid tank 39. A function is required to control the concentration to be lower than the concentration, in other words, to control the concentration of carbonic acid in the injection liquid tank 39 to be higher than the carbonic acid concentration of the carbonic acid aqueous solution in the carbon dioxide dissolution tank 2.

実施例1と同様に、炭酸ガス溶解槽2、およびpH調節装置(希釈液注入装置14に相当)の注入液槽39のそれぞれが満水になったとき、制御装置は、流量調節弁18,20を開いて流量調節弁18,20の各開度を調節し、炭酸ガス供給配管17から、炭酸ガス溶解槽2およびpH調節装置(希釈液注入装置14に相当)の注入液槽39に供給する炭酸ガスのそれぞれの流量を調節する。このとき、制御装置は炭酸ガス溶解槽2内の炭酸水溶液の炭酸濃度が第1初期設定炭酸濃度(例えばpH4.5に相当する炭酸濃度)になるように流量調節弁18の開度を所定の第1開度に調節する。また、制御装置は流量調節弁21を開いて注入液槽39内の炭酸水溶液の炭酸濃度が第2初期設定炭酸濃度(例えばpH3.91に相当する炭酸濃度)になるように流量調節弁21の開度を所定の第2開度に調節する。所定の第2開度は所定の第1開度よりも大きい。亜鉛イオンを含む炭酸水溶液が給水配管50に注入される間、量調節弁18の開度が所定の第1開度に、流量調節弁21の開度を所定の第2開度にそれぞれ保持される。前述の制御装置による流量調節弁18及び20の各開度の制御により、注入液槽39内の炭酸水溶液の炭酸濃度が炭酸ガス溶解槽2内の炭酸水溶液の炭酸濃度よりも高くなる。   As in the first embodiment, when the carbon dioxide gas dissolution tank 2 and the injection liquid tank 39 of the pH control device (corresponding to the diluent injection device 14) are full, the control device controls the flow rate adjustment valves 18, 20 respectively. Is opened to adjust the opening degree of each of the flow rate control valves 18 and 20, and supplied from the carbon dioxide supply pipe 17 to the carbon dioxide gas dissolution tank 2 and the injection liquid tank 39 of the pH adjustment device (corresponding to the diluent injection device 14). Adjust each flow rate of carbon dioxide. At this time, the control device sets the opening degree of the flow control valve 18 to a predetermined value so that the carbonic acid concentration of the carbonic acid aqueous solution in the carbon dioxide gas dissolution tank 2 becomes the first initial carbonic acid concentration (for example, the carbonic acid concentration corresponding to pH 4.5). Adjust to the first opening. Further, the control device opens the flow rate control valve 21 so that the carbonic acid concentration of the aqueous carbonic acid solution in the injection liquid tank 39 becomes the second initial set carbonic acid concentration (for example, the carbonic acid concentration corresponding to pH 3.91). The opening is adjusted to a predetermined second opening. The predetermined second opening is larger than the predetermined first opening. While the carbonated water solution containing zinc ions is injected into the water supply pipe 50, the opening of the quantity control valve 18 is held at a predetermined first opening, and the opening of the flow control valve 21 is held at a predetermined second opening. The By controlling the respective opening degrees of the flow rate control valves 18 and 20 by the control device described above, the carbonic acid concentration of the carbonic acid aqueous solution in the injection liquid tank 39 becomes higher than the carbonic acid concentration of the carbonic acid aqueous solution in the carbon dioxide gas dissolving tank 2.

制御装置は、炭酸ガス溶解槽2に設けた導電率計の計測値に基づいて炭酸ガス溶解槽2内の炭酸水溶液の炭酸濃度が第1設定炭酸濃度になったと判定したとき、循環ポンプ6を駆動する。循環ポンプ6の駆動により、炭酸ガス溶解槽2内の炭酸水溶液が、配管4を通って亜鉛溶解槽3に供給される。炭酸水溶液が、炭酸ガス溶解槽2および亜鉛溶解槽3を含む閉ループ内を循環しながら亜鉛溶解槽3内の酸化亜鉛ペレットに接触しながら酸化亜鉛ペレットに含まれる亜鉛を溶解し、循環する炭酸水溶液の亜鉛イオン濃度が増加される。閉ループ内の炭酸水溶液に含まれる亜鉛イオンの濃度が設定亜鉛濃度である350ppmになったとき、制御装置は注入ポンプ29を駆動し、これにより、炭酸ガス溶解槽2から亜鉛注入配管28を通しての給水配管50への亜鉛イオンを含む炭酸水の注入が開始される。   When the control device determines that the carbonic acid concentration of the carbonic acid aqueous solution in the carbon dioxide gas dissolving tank 2 has reached the first set carbonic acid concentration based on the measured value of the conductivity meter provided in the carbon dioxide gas dissolving tank 2, the circulation pump 6 is turned on. To drive. By driving the circulation pump 6, the aqueous carbonate solution in the carbon dioxide dissolution tank 2 is supplied to the zinc dissolution tank 3 through the pipe 4. An aqueous carbonate solution in which the aqueous solution of carbonate dissolves and circulates zinc contained in the zinc oxide pellets while contacting the zinc oxide pellets in the zinc dissolution vessel 3 while circulating in a closed loop including the carbon dioxide dissolution vessel 2 and the zinc dissolution vessel 3 The zinc ion concentration is increased. When the concentration of zinc ions contained in the carbonic acid aqueous solution in the closed loop reaches 350 ppm which is the preset zinc concentration, the control device drives the injection pump 29, thereby supplying water from the carbon dioxide dissolution tank 2 through the zinc injection pipe 28. Injection of carbonated water containing zinc ions into the pipe 50 is started.

温度計8で計測された温度が、上記したように炭酸ガス溶解槽2および亜鉛溶解槽3の周囲の温度の影響により、設定温度よりも上昇したとき、制御装置は、実施例1と同様に、開閉弁34を開いてポンプ33を駆動する。注入液槽39内の炭酸水溶液(亜鉛を含まない炭酸水溶液)が、炭酸水注入配管32を通して、炭酸ガス溶解槽2から亜鉛注入配管28に排出された炭酸水溶液に注入される。注入液槽39内の炭酸水溶液の炭酸濃度が炭酸ガス溶解槽2内の炭酸水溶液の炭酸濃度よりも高いので、注入液槽39から亜鉛注入配管28への炭酸水溶液の注入により、亜鉛注入配管28内を流れる亜鉛イオンを含む炭酸水溶液の炭酸濃度が増加し、この炭酸水溶液のpHが低下する。このため、亜鉛注入配管28内を流れる炭酸水溶液の亜鉛イオン濃度が注入液槽39から注入される炭酸水溶液によって希釈されるだけでなく、そのpHの低下により亜鉛注入配管28内を流れる炭酸水溶液に含まれる亜鉛の溶解が進むことによっても、亜鉛注入配管28内面への亜鉛の析出が防止される。   When the temperature measured by the thermometer 8 is higher than the set temperature due to the influence of the temperature around the carbon dioxide dissolution tank 2 and the zinc dissolution tank 3 as described above, the control device is the same as in the first embodiment. Then, the on-off valve 34 is opened to drive the pump 33. An aqueous carbonate solution (an aqueous carbonate solution not containing zinc) in the injection liquid tank 39 is injected into the aqueous carbonate solution discharged from the carbon dioxide dissolution tank 2 to the zinc injection pipe 28 through the carbonated water injection pipe 32. Since the carbonic acid concentration of the carbonic acid aqueous solution in the injection liquid tank 39 is higher than the carbonic acid concentration of the carbonic acid aqueous solution in the carbon dioxide dissolving tank 2, the zinc injection pipe 28 is injected by injection of the carbonic acid aqueous solution from the injection liquid tank 39 into the zinc injection pipe 28. The carbonic acid concentration of the carbonic acid aqueous solution containing zinc ions flowing inside increases, and the pH of the carbonic acid aqueous solution decreases. For this reason, not only is the zinc ion concentration of the aqueous carbonate solution flowing in the zinc injection pipe 28 diluted by the aqueous carbonate solution injected from the injection liquid tank 39, but also the carbonate aqueous solution flowing in the zinc injection pipe 28 is reduced due to the decrease in pH. Also by the dissolution of the contained zinc, the precipitation of zinc on the inner surface of the zinc injection pipe 28 is prevented.

前述の制御装置は、循環ポンプ6の回転速度を制御する第1制御装置、流量調節弁18及び20の各開度の制御により注入液槽39内の炭酸水溶液の炭酸濃度が炭酸ガス溶解槽2内の炭酸水溶液の炭酸濃度よりも高くする第2制御装置、および温度計8で計測された温度が設定温度よりも上昇したとき、開閉弁34を開いてポンプ33を駆動して注入液槽39内の炭酸水溶液(亜鉛を含まない炭酸水溶液)を亜鉛注入配管28に注入させる第3制御装置を含んでいる。   The above-described control device is a first control device that controls the rotational speed of the circulation pump 6, and the carbon dioxide concentration of the aqueous carbonate solution in the infusion tank 39 is controlled by the control of the opening degree of the flow rate control valves 18 and 20. When the temperature measured by the second control device and the thermometer 8 that makes the carbonate concentration of the aqueous carbonate solution higher than the set temperature rises above the set temperature, the on-off valve 34 is opened and the pump 33 is driven to drive the injection liquid tank 39. A third control device for injecting an aqueous carbonate solution (a carbonate solution not containing zinc) into the zinc injection pipe 28 is included.

炭酸ガス溶解槽2内の炭酸水溶液を給水配管50に注入することによって炭酸ガス溶解槽2内の炭酸水溶液の液位が第1下限設定液位まで低下したとき、実施例1と同様に、補給水が炭酸ガス溶解槽2内に供給される。注入液槽39内の炭酸水溶液を亜鉛注入配管28に注入することによって注入液槽39内の炭酸水溶液の液位が第2下限設定液位まで低下したとき、実施例1と同様に、補給水が注入液槽39内に供給される。その後、注入液槽39内に炭酸ガスが供給され、注入液槽39内に第2設定炭酸濃度の炭酸水が生成される。   When the liquid level of the carbonic acid aqueous solution in the carbon dioxide gas dissolution tank 2 is lowered to the first lower limit set liquid level by injecting the carbonic acid aqueous solution in the carbon dioxide gas dissolution tank 2 into the water supply pipe 50, replenishment as in the first embodiment. Water is supplied into the carbon dioxide dissolution tank 2. When the carbonic acid aqueous solution in the injection liquid tank 39 is lowered to the second lower limit liquid level by injecting the carbonic acid aqueous solution in the injection liquid tank 39 into the zinc injection pipe 28, the makeup water is supplied in the same manner as in the first embodiment. Is supplied into the injection liquid tank 39. Thereafter, carbon dioxide gas is supplied into the injection liquid tank 39, and carbonated water having a second set carbonic acid concentration is generated in the injection liquid tank 39.

本実施例は実施例1で生じる各効果を得ることができる。   In the present embodiment, each effect produced in the first embodiment can be obtained.

本発明の他の好適な実施例である実施例3の亜鉛注入方法を、図4を用いて説明する。本実施例の亜鉛注入方法は、沸騰水型原子力プラント(以下、BWRプラントという)に適用される。   A zinc injection method according to embodiment 3, which is another preferred embodiment of the present invention, will be described with reference to FIG. The zinc injection method of the present embodiment is applied to a boiling water nuclear plant (hereinafter referred to as a BWR plant).

本実施例の亜鉛注入方法に用いられる亜鉛注入装置1Aは、復水浄化装置52と低圧給水加熱器54の間の給水配管50に亜鉛注入配管28を介して接続される。亜鉛注入装置1Aは亜鉛注入装置1の希釈液注入装置14をpH調節装置59に替えた構成を有する。亜鉛注入装置1Aの他の構成は亜鉛注入装置1と同じである。   A zinc injection device 1 </ b> A used in the zinc injection method of the present embodiment is connected to a water supply pipe 50 between the condensate purification device 52 and the low-pressure feed water heater 54 via a zinc injection pipe 28. The zinc injection device 1A has a configuration in which the diluent injection device 14 of the zinc injection device 1 is replaced with a pH adjustment device 59. Other configurations of the zinc injection device 1A are the same as those of the zinc injection device 1.

亜鉛注入装置1AのpH調節装置59は、炭酸ガス注入配管36及び流量調節弁37を有する。流量計38が炭酸ガス注入配管36に設けられる。炭酸ガス注入配管36は炭酸ガス供給管17および亜鉛注入配管28に接続される。   The pH adjustment device 59 of the zinc injection device 1 </ b> A includes a carbon dioxide gas injection pipe 36 and a flow rate adjustment valve 37. A flow meter 38 is provided in the carbon dioxide gas injection pipe 36. The carbon dioxide injection pipe 36 is connected to the carbon dioxide supply pipe 17 and the zinc injection pipe 28.

本実施例では、実施例1と同様に亜鉛イオンを含む炭酸水溶液が生成され、この炭酸水溶液の亜鉛イオン濃度は炭酸ガス溶解槽2および亜鉛溶解槽3を含む閉ループ内で炭酸水溶液を循環させることによって所定の亜鉛イオン濃度まで増大される。本実施例においても、実施例2と同様に、炭酸ガス溶解槽2内への炭酸ガスの注入により生成される炭酸水溶液の炭酸濃度が炭酸の飽和濃度よりも低くなっている。炭酸ガス溶解槽2内では、補給水の供給、炭酸ガスの供給及び亜鉛溶解槽3内での亜鉛の溶解により、炭酸水溶液の亜鉛イオン濃度および炭酸濃度は、飽和には達していない平衡状態になっている。   In this embodiment, an aqueous carbonate solution containing zinc ions is produced in the same manner as in Embodiment 1. The concentration of zinc ions in this aqueous carbonate solution is determined by circulating the aqueous carbonate solution in a closed loop including the carbon dioxide dissolution tank 2 and the zinc dissolution tank 3. To a predetermined zinc ion concentration. Also in the present embodiment, as in the second embodiment, the carbonic acid concentration of the carbonic acid aqueous solution generated by injecting the carbon dioxide gas into the carbon dioxide dissolving tank 2 is lower than the saturated concentration of carbonic acid. In the carbon dioxide dissolution tank 2, the supply of makeup water, the supply of carbon dioxide gas, and the dissolution of zinc in the zinc dissolution tank 3 cause the zinc ion concentration and the carbonate concentration of the aqueous carbonate solution to reach an equilibrium state that has not reached saturation. It has become.

BWRプラントの運転時において炭酸ガス溶解槽2内の亜鉛イオンを含む炭酸水溶液を亜鉛注入配管28を通して給水配管50に注入しているとき、炭酸ガス溶解槽2および亜鉛溶解槽3の周囲の温度が上昇して亜鉛の飽和溶解度が低下したとする。温度計8で計測された温度が制御装置に入力され、制御装置は流量調節弁37を開いて炭酸ガス供給管17から亜鉛注入配管28に炭酸ガスを注入する。注入された炭酸ガスは亜鉛注入配管28内を流れる亜鉛イオンを含む炭酸水溶液に溶解し、この炭酸水溶液の炭酸濃度を高め、炭酸水溶液のpHを低下させる。このため、亜鉛注入配管28内で亜鉛が炭酸水溶液に溶解されるため、亜鉛注入配管28の内面に亜鉛が析出することを防止できる。また、万が一、炭酸ガス供給管17から炭酸ガスが漏れた場合における炭酸水溶液のpH増加に伴う亜鉛の析出を防止することができる。   During operation of the BWR plant, when an aqueous carbonate solution containing zinc ions in the carbon dioxide dissolution tank 2 is injected into the water supply pipe 50 through the zinc injection pipe 28, the ambient temperature of the carbon dioxide dissolution tank 2 and the zinc dissolution tank 3 is Assume that the saturation solubility of zinc decreases and decreases. The temperature measured by the thermometer 8 is input to the control device, and the control device opens the flow rate adjustment valve 37 and injects carbon dioxide from the carbon dioxide supply pipe 17 into the zinc injection pipe 28. The injected carbon dioxide gas is dissolved in a carbonic acid aqueous solution containing zinc ions flowing in the zinc injection pipe 28, and the carbonic acid concentration of the carbonic acid aqueous solution is increased and the pH of the carbonic acid aqueous solution is lowered. For this reason, since zinc is melt | dissolved in carbonic acid aqueous solution in the zinc injection piping 28, it can prevent that zinc precipitates on the inner surface of the zinc injection piping 28. FIG. In addition, in the unlikely event that carbon dioxide leaks from the carbon dioxide supply pipe 17, it is possible to prevent the precipitation of zinc accompanying an increase in the pH of the aqueous carbonic acid solution.

本実施例は実施例2で生じる各効果を得ることができる。さらに、本実施例ではpH調節装置59は希釈液注入装置14よりも構成を単純化することができ、亜鉛注入装置1Aをコンパクト化することができる。pH調節装置59では、希釈液注入装置14に設けられる注入液槽39、炭酸水注入配管32およびポンプ33が不要になる。   In the present embodiment, each effect produced in the second embodiment can be obtained. Furthermore, in this embodiment, the pH adjusting device 59 can be simplified in configuration as compared with the diluent injection device 14, and the zinc injection device 1A can be made compact. In the pH adjusting device 59, the injection liquid tank 39, the carbonated water injection pipe 32, and the pump 33 provided in the diluent injection apparatus 14 become unnecessary.

本発明の他の好適な実施例である実施例4の亜鉛注入方法を以下に説明する。本実施例の亜鉛注入方法は、沸騰水型原子力プラント(以下、BWRプラントという)に適用される。   The zinc injection method of Example 4, which is another preferred embodiment of the present invention, will be described below. The zinc injection method of the present embodiment is applied to a boiling water nuclear plant (hereinafter referred to as a BWR plant).

本実施例の亜鉛注入方法には、実施例1で用いた亜鉛注入装置1が用いられる。本実施例では、温度計が、亜鉛注入配管28と給水配管50の接続部付近で給水配管50に設置し、この温度計で計測された給水温度が、温度計8で計測された温度が入力される制御装置に入力される。   The zinc injection apparatus 1 used in Example 1 is used for the zinc injection method of this example. In this embodiment, a thermometer is installed in the feed water pipe 50 in the vicinity of the connection portion between the zinc injection pipe 28 and the feed water pipe 50, and the feed water temperature measured by this thermometer is input as the temperature measured by the thermometer 8. Input to the control device.

本実施例では、実施例1と同様に、亜鉛注入配管28から給水配管50に亜鉛イオンを含む炭酸水溶液が注入される。本実施例で、実施例1と異なる点は、注入液槽39から亜鉛注入配管28への亜鉛を含まない炭酸水溶液の注入である。   In the present embodiment, as in the first embodiment, an aqueous carbonate solution containing zinc ions is injected from the zinc injection pipe 28 into the water supply pipe 50. In this embodiment, the difference from the first embodiment is the injection of an aqueous carbonate solution containing no zinc from the injection liquid tank 39 to the zinc injection pipe 28.

温度計8で計測された、配管4内を流れる炭酸水溶液の温度、および給水配管に設けられた前述の温度計で計測された給水温度が、上記の制御装置にそれぞれ入力される。制御装置は、温度計8で計測された温度及び給水温度のいずれかが設定温度を超えたとき、開閉弁34を開いてポンプ33を駆動する。注入液槽39内の亜鉛を含まない炭酸水溶液が、炭酸水注入配管32を通して亜鉛注入配管28に注入される。これにより、実施例1と同様に、亜鉛イオン注入配管内を流れる亜鉛イオンを含む炭酸水溶液の亜鉛イオン濃度が希釈され、亜鉛イオン注入配管28、および亜鉛注入配管28と給水配管50の接続部付近での給水配管50のそれぞれの内面への亜鉛の析出が防止される。   The temperature of the carbonic acid aqueous solution flowing in the pipe 4 and the feed water temperature measured by the above-described thermometer provided in the feed water pipe, which are measured by the thermometer 8, are respectively input to the control device. When either the temperature measured by the thermometer 8 or the feed water temperature exceeds the set temperature, the control device opens the on-off valve 34 and drives the pump 33. A carbonate aqueous solution not containing zinc in the injection liquid tank 39 is injected into the zinc injection pipe 28 through the carbonated water injection pipe 32. Thereby, like Example 1, the zinc ion concentration of the carbonic acid aqueous solution containing the zinc ions flowing in the zinc ion injection pipe is diluted, and the vicinity of the zinc ion injection pipe 28 and the connection portion between the zinc injection pipe 28 and the water supply pipe 50. Is prevented from depositing on the inner surface of each of the water supply pipes 50.

本実施例における給水温度を考慮した制御装置による開閉弁34およびポンプ33の制御は、実施例2及び3に適用することができる。   The control of the on-off valve 34 and the pump 33 by the control device considering the feed water temperature in this embodiment can be applied to the second and third embodiments.

本実施例は実施例1で生じる各効果を得ることができる。さらに、給水温度を考慮して亜鉛注入配管28内への亜鉛を含まない炭酸水溶液の注入を行うので、給水温度が注y縫うされる亜鉛イオンを含む炭酸水溶液の温度よりも高い場合において、亜鉛注入配管28と給水配管50の接続部付近での給水配管50の内面における亜鉛の析出を防止することができる。   In the present embodiment, each effect produced in the first embodiment can be obtained. Further, since the aqueous carbonate solution containing no zinc is injected into the zinc injection pipe 28 in consideration of the feed water temperature, zinc is injected when the feed water temperature is higher than the temperature of the aqueous carbonate solution containing zinc ions to be sewn. Precipitation of zinc on the inner surface of the water supply pipe 50 in the vicinity of the connection portion between the injection pipe 28 and the water supply pipe 50 can be prevented.

実施例1〜4のそれぞれの亜鉛注入方法は、加圧水型源力プラントにおいて原子炉内に亜鉛を注入するときに適用することができる。   Each zinc injection method of Examples 1 to 4 can be applied when zinc is injected into a nuclear reactor in a pressurized water source power plant.

1,1A…亜鉛注入装置、2…炭酸ガス溶解槽、3…亜鉛溶解槽、4,5…配管、6…循環ポンプ、8…温度計、13,15…液位計、14…希釈液注入装置、16…炭酸ガス供給装置、17…炭酸ガス供給管、18,21,37…流量調節弁、20…炭酸ガス注入配管、23…補給水供給装置、24…補給水供給管、26…注水配管、28…亜鉛注入配管、29…注入ポンプ、32…炭酸水注入配管、36…炭酸ガス注入配管、39…注入液槽、40…原子炉、41…原子炉圧力容器、42…炉心、45…再循環系配管、47…主蒸気配管、48…タービン、49…復水器、50…給水配管、59…pH調節装置。   DESCRIPTION OF SYMBOLS 1,1A ... Zinc injection apparatus, 2 ... Carbon dioxide gas dissolution tank, 3 ... Zinc dissolution tank, 4,5 ... Piping, 6 ... Circulation pump, 8 ... Thermometer, 13, 15 ... Liquid level meter, 14 ... Dilution liquid injection Device: 16 ... Carbon dioxide supply device, 17 ... Carbon dioxide supply pipe, 18, 21, 37 ... Flow control valve, 20 ... Carbon dioxide injection pipe, 23 ... Makeup water supply device, 24 ... Makeup water supply pipe, 26 ... Water injection Piping, 28 ... Zinc injection piping, 29 ... Injection pump, 32 ... Carbonated water injection piping, 36 ... Carbon dioxide injection piping, 39 ... Injection liquid tank, 40 ... Reactor, 41 ... Reactor pressure vessel, 42 ... Core, 45 ... recirculation piping, 47 ... main steam piping, 48 ... turbine, 49 ... condenser, 50 ... water supply piping, 59 ... pH adjuster.

Claims (13)

第1溶解槽内に存在する炭酸水溶液に炭酸ガスを注入して前記炭酸ガスを前記炭酸水溶液に溶解し、
前記第1溶解槽内の前記炭酸水溶液を、前記第1溶解槽、及び亜鉛を含む固体物質が存在する第2溶解槽を含む閉ループ内を循環させ、
前記固体物質に含まれる前記亜鉛を、前記第2溶解槽内において、前記循環によって前記第1溶解槽から前記第2溶解槽に供給される前記炭酸水溶液に溶解し、
前記溶解した亜鉛を含む前記炭酸水溶液を前記循環によって前記第1溶解槽に供給し、
前記第1溶解槽内の前記亜鉛を含む炭酸水溶液を、前記第1溶解槽に連絡された亜鉛注入配管を通して原子炉圧力容器に接続された配管に供給し、
亜鉛を含まない炭酸水溶液を、前記亜鉛注入配管内を流れる前記亜鉛を含む炭酸水溶液に注入すること特徴とする亜鉛注入方法。
Injecting carbon dioxide into the aqueous carbonate solution present in the first dissolution tank to dissolve the carbon dioxide gas in the aqueous carbonate solution,
Circulating the aqueous carbonate solution in the first dissolution tank through a closed loop including the first dissolution tank and a second dissolution tank in which a solid substance containing zinc exists.
In the second dissolution tank, the zinc contained in the solid substance is dissolved in the aqueous carbonate solution supplied from the first dissolution tank to the second dissolution tank by the circulation,
Supplying the carbonated aqueous solution containing the dissolved zinc to the first dissolution tank by the circulation;
Supplying the aqueous carbonate solution containing zinc in the first dissolution tank to a pipe connected to a reactor pressure vessel through a zinc injection pipe connected to the first dissolution tank;
A zinc injection method comprising injecting an aqueous carbonate solution containing no zinc into the aqueous carbonate solution containing zinc flowing in the zinc injection pipe.
前記亜鉛を含む固体物質から前記炭酸水溶液への前記亜鉛の溶解速度を、前記第2溶解槽に供給する前記炭酸水溶液の流速を変えることによって制御する請求項1に記載の亜鉛注入方法。   The zinc injection method according to claim 1, wherein a dissolution rate of the zinc from the solid substance containing zinc into the aqueous carbonate solution is controlled by changing a flow rate of the aqueous carbonate solution supplied to the second dissolution tank. 前記閉ループ内を循環した前記亜鉛を含む炭酸水溶液の前記原子炉圧力容器への供給により前記第1溶解槽内の液位が第1下限設定液位に低下したとき、前記第1溶解槽内に水を補給し、前記第1溶解槽内に炭酸ガスを供給する請求項1または2に記載の亜鉛注入方法。   When the liquid level in the first dissolution tank is lowered to the first lower limit set liquid level due to the supply of the aqueous carbonate solution containing zinc circulated in the closed loop to the reactor pressure vessel, the first dissolution tank contains The zinc injection method according to claim 1 or 2, wherein water is supplied and carbon dioxide gas is supplied into the first dissolution tank. 前記第2溶解槽から前記亜鉛注入配管への前記亜鉛を含まない炭酸水溶液の注入によって前記第2溶解槽内の液位が第2下限設定液位に低下したとき、前記第2溶解槽内に水を補給し、前記第2溶解槽内に炭酸ガスを供給する請求項1または2に記載の亜鉛注入方法。   When the liquid level in the second dissolution tank is lowered to the second lower limit set liquid level by injecting the zinc-containing aqueous carbonate solution from the second dissolution tank into the zinc injection pipe, the second dissolution tank contains The zinc injection method according to claim 1 or 2, wherein water is replenished and carbon dioxide gas is supplied into the second dissolution tank. 第1溶解槽内に存在する炭酸水溶液に炭酸ガスを注入して前記炭酸ガスを前記炭酸水溶液に溶解し、
前記第1溶解槽内の前記炭酸水溶液を、前記第1溶解槽、及び亜鉛を含む固体物質が存在する第2溶解槽を含む閉ループ内を循環させ、
前記固体物質に含まれる前記亜鉛を、前記第2溶解槽内において、前記循環によって前記第1溶解槽から前記第2溶解槽に供給される前記炭酸水溶液に溶解し、
前記溶解した亜鉛を含む前記炭酸水溶液を前記循環によって前記第1溶解槽に供給し、
前記第1溶解槽内の前記亜鉛を含む炭酸水溶液を、前記第1溶解槽に連絡された亜鉛注入配管を通して原子炉圧力容器に接続された配管に供給し、
炭酸ガス、および前記第1溶解槽内の前記炭酸水溶液の炭酸濃度よりも炭酸濃度が高くて亜鉛を含まない炭酸水溶液のいずれかを、前記亜鉛注入配管内を流れる前記亜鉛を含む炭酸水溶液に注入して前記亜鉛注入配管内の前記亜鉛を含む炭酸水溶液のpHを低下させること特徴とする亜鉛注入方法。
Injecting carbon dioxide into the aqueous carbonate solution present in the first dissolution tank to dissolve the carbon dioxide gas in the aqueous carbonate solution,
Circulating the aqueous carbonate solution in the first dissolution tank through a closed loop including the first dissolution tank and a second dissolution tank in which a solid substance containing zinc exists.
In the second dissolution tank, the zinc contained in the solid substance is dissolved in the aqueous carbonate solution supplied from the first dissolution tank to the second dissolution tank by the circulation,
Supplying the carbonated aqueous solution containing the dissolved zinc to the first dissolution tank by the circulation;
Supplying the aqueous carbonate solution containing zinc in the first dissolution tank to a pipe connected to a reactor pressure vessel through a zinc injection pipe connected to the first dissolution tank;
Either carbon dioxide gas or a carbonic acid aqueous solution having a carbonic acid concentration higher than the carbonic acid concentration of the carbonic acid aqueous solution in the first dissolution tank and not containing zinc is injected into the carbonic acid aqueous solution containing zinc flowing in the zinc injection pipe. And lowering the pH of the aqueous carbonate solution containing zinc in the zinc injection pipe.
前記亜鉛を含む固体物質から前記炭酸水溶液への前記亜鉛の溶解速度を、前記第2溶解槽に供給する前記炭酸水溶液の流速を変えることによって制御する請求項5に記載の亜鉛注入方法。   The zinc injection method according to claim 5, wherein a dissolution rate of the zinc from the solid substance containing zinc into the aqueous carbonate solution is controlled by changing a flow rate of the aqueous carbonate solution supplied to the second dissolution tank. 前記閉ループ内を循環した前記亜鉛を含む炭酸水溶液の前記原子炉圧力容器への供給により前記第1溶解槽内の液位が第1下限設定液位に低下したとき、前記第1溶解槽内に水を補給し、前記第1溶解槽内に炭酸ガスを供給する請求項5または6に記載の亜鉛注入方法。   When the liquid level in the first dissolution tank is lowered to the first lower limit set liquid level due to the supply of the aqueous carbonate solution containing zinc circulated in the closed loop to the reactor pressure vessel, the first dissolution tank contains The zinc injection method according to claim 5 or 6, wherein water is supplied and carbon dioxide gas is supplied into the first dissolution tank. 前記第2溶解槽から前記亜鉛注入配管への前記亜鉛を含まない炭酸水溶液の注入によって前記第2溶解槽内の液位が第2下限設定液位に低下したとき、前記第2溶解槽内に水を補給し、前記第2溶解槽内に炭酸ガスを供給する請求項5または6に記載の亜鉛注入方法。   When the liquid level in the second dissolution tank is lowered to the second lower limit set liquid level by injecting the zinc-containing aqueous carbonate solution from the second dissolution tank into the zinc injection pipe, the second dissolution tank contains The zinc injection method according to claim 5 or 6, wherein water is supplied and carbon dioxide is supplied into the second dissolution tank. 炭酸水溶液を生成する第1溶解槽と、亜鉛を含む固体物質が内部に充填される第2溶解槽と、前記第1溶解槽及び前記第2溶解槽を含む閉ループと、前記閉ループに設けられ、前記第1溶解槽内の前記炭酸水溶液を前記第2溶解槽に供給するポンプ装置と、前記第1溶解槽内の前記亜鉛を含む前記炭酸水溶液を原子炉圧力容器に接続された配管に注入する亜鉛注入配管と、亜鉛を含まない炭酸水溶液を前記亜鉛注入配管に注入する希釈液注入装置と、前記第1溶解槽に炭酸ガスを供給する炭酸ガス供給装置とを備えたことを特徴とする亜鉛注入装置。   A first dissolution tank for generating an aqueous carbonate solution, a second dissolution tank filled with a solid substance containing zinc, a closed loop including the first dissolution tank and the second dissolution tank, and the closed loop. A pump device that supplies the aqueous carbonate solution in the first dissolution tank to the second dissolution tank, and injects the aqueous carbonate solution containing zinc in the first dissolution tank into a pipe connected to a reactor pressure vessel. Zinc comprising: a zinc injection pipe; a diluent injection apparatus for injecting a carbonic acid aqueous solution not containing zinc into the zinc injection pipe; and a carbon dioxide supply apparatus for supplying carbon dioxide to the first dissolution tank. Injection device. 前記希釈液注入装置が、前記亜鉛を含まない炭酸水溶液を生成する注入液槽、および前記注入液槽と前記亜鉛注入配管を接続する炭酸水溶液注入配管を有し、前記炭酸ガス供給装置が前記注入液槽に連絡されている請求項9に記載の亜鉛注入装置。   The dilution liquid injection device has an injection liquid tank that generates the carbonic acid aqueous solution that does not contain zinc, and a carbonic acid aqueous solution injection pipe that connects the injection liquid tank and the zinc injection pipe, and the carbon dioxide supply device includes the injection The zinc injection device according to claim 9, which is in communication with a liquid tank. 炭酸水溶液を生成する第1溶解槽と、亜鉛を含む固体物質が内部に充填される第2溶解槽と、前記第1溶解槽及び前記第2溶解槽を含む閉ループと、前記閉ループに設けられ、前記第1溶解槽内の前記炭酸水溶液を前記第2溶解槽に供給するポンプ装置と、前記第1溶解槽内の前記亜鉛を含む前記炭酸水溶液を原子炉圧力容器に接続された配管に注入する亜鉛注入配管と、亜鉛を含まない炭酸水溶液を前記亜鉛注入配管に注入する希釈液注入装置と、前記第1溶解槽に炭酸ガスを供給する炭酸ガス供給装置と、前記炭酸ガス供給装置と前記亜鉛注入配管を接続し、流量調節装置を設けた炭酸ガス注入配管とを備えたことを特徴とする亜鉛注入装置。   A first dissolution tank for generating an aqueous carbonate solution, a second dissolution tank filled with a solid substance containing zinc, a closed loop including the first dissolution tank and the second dissolution tank, and the closed loop. A pump device that supplies the aqueous carbonate solution in the first dissolution tank to the second dissolution tank, and injects the aqueous carbonate solution containing zinc in the first dissolution tank into a pipe connected to a reactor pressure vessel. A zinc injection pipe, a diluent injection apparatus for injecting a carbonic acid aqueous solution not containing zinc into the zinc injection pipe, a carbon dioxide supply apparatus for supplying carbon dioxide to the first dissolution tank, the carbon dioxide supply apparatus, and the zinc A zinc injection device comprising an injection piping and a carbon dioxide injection piping provided with a flow rate adjusting device. 前記閉ループ内を流れる前記炭酸水溶液の温度が設定温度を超えたとき、前記流量調節装置を制御して前記炭酸ガスを前記炭酸ガス供給装置から前記亜鉛注入配管に注入させる制御装置を備えた請求項9または11に記載の亜鉛注入装置。   A control device that controls the flow rate adjusting device to inject the carbon dioxide gas from the carbon dioxide supply device into the zinc injection pipe when the temperature of the aqueous carbonate solution flowing in the closed loop exceeds a preset temperature. The zinc injection device according to 9 or 11. 炭酸水溶液を生成する第1溶解槽と、亜鉛を含む固体物質が内部に充填される第2溶解槽と、前記第1溶解槽及び前記第2溶解槽を含む閉ループと、前記閉ループに設けられ、前記第1溶解槽内の前記炭酸水溶液を前記第2溶解槽に供給するポンプ装置と、前記第1溶解槽内の前記亜鉛を含む前記炭酸水溶液を原子炉圧力容器に接続された配管に注入する亜鉛注入配管と、亜鉛を含まない炭酸水溶液を前記亜鉛注入配管に注入するpH調節装置と、前記第1溶解槽に炭酸ガスを供給する炭酸ガス供給装置とを備え、
前記pH調節装置が、前記炭酸ガス供給装置に接続されて前記亜鉛を含まない炭酸水溶液を生成する注入液槽、および前記注入液槽と前記亜鉛注入配管を接続し流量調節弁を設けた炭酸水溶液注入配管を有し、
前記炭酸ガス供給装置により前記第1溶解槽に供給される前記炭酸ガスの第1流量および前記炭酸ガス供給装置により前記注入液槽に供給される前記炭酸ガスの第2流量をそれぞれ制御し、前記第1溶解槽内で生成される前記炭酸水溶液の炭酸濃度よりも前記注入液槽内で生成される炭酸水溶液の炭酸濃度を高くする制御装置とを備えたことを特徴とする亜鉛注入装置。
A first dissolution tank for generating an aqueous carbonate solution, a second dissolution tank filled with a solid substance containing zinc, a closed loop including the first dissolution tank and the second dissolution tank, and provided in the closed loop, A pump device that supplies the aqueous carbonate solution in the first dissolution tank to the second dissolution tank, and injects the aqueous carbonate solution containing zinc in the first dissolution tank into a pipe connected to a reactor pressure vessel. A zinc injection pipe, a pH adjusting device for injecting a carbonic acid aqueous solution not containing zinc into the zinc injection pipe, and a carbon dioxide supply device for supplying carbon dioxide to the first dissolution tank,
The pH adjusting device is connected to the carbon dioxide supply device to generate an aqueous carbonate solution containing no zinc, and the aqueous carbonate solution is provided with a flow rate adjusting valve by connecting the injection solution tank and the zinc injection pipe. Has injection piping,
Controlling the first flow rate of the carbon dioxide gas supplied to the first dissolution tank by the carbon dioxide supply device and the second flow rate of the carbon dioxide gas supplied to the injection bath by the carbon dioxide supply device, A zinc injection device comprising: a control device for increasing the carbonic acid concentration of the aqueous carbonic acid solution generated in the injection liquid tank to be higher than the carbonic acid concentration of the aqueous carbonic acid solution generated in the first dissolution tank.
JP2013005031A 2013-01-16 2013-01-16 Zinc injection method and zinc injection device Pending JP2014137249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013005031A JP2014137249A (en) 2013-01-16 2013-01-16 Zinc injection method and zinc injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013005031A JP2014137249A (en) 2013-01-16 2013-01-16 Zinc injection method and zinc injection device

Publications (1)

Publication Number Publication Date
JP2014137249A true JP2014137249A (en) 2014-07-28

Family

ID=51414845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013005031A Pending JP2014137249A (en) 2013-01-16 2013-01-16 Zinc injection method and zinc injection device

Country Status (1)

Country Link
JP (1) JP2014137249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111681791A (en) * 2020-06-16 2020-09-18 三门核电有限公司 Nuclear power plant primary circuit zinc concentration control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111681791A (en) * 2020-06-16 2020-09-18 三门核电有限公司 Nuclear power plant primary circuit zinc concentration control method

Similar Documents

Publication Publication Date Title
US20180080115A1 (en) Adhesion Method of Noble Metal to Carbon Steel Material of Atomic Energy Plant and Adhesion Restraint Method of Radionuclide to Carbon Steel Material of Atomic Energy Plant
TW200915346A (en) Suppression method of radionuclide deposition on reactor component of nuclear power plant and ferrit film formation apparatus
US7676017B2 (en) Vacuum actuated anhydrous ammonia feed system for pH adjustment of boiler condensate/feed water
JP6619717B2 (en) Method for adhering noble metals to carbon steel members of nuclear power plant and method for suppressing radionuclide adhesion to carbon steel members of nuclear power plant
JP5557475B2 (en) Method and apparatus for forming ferrite film on members constituting nuclear power plant
JP2014137249A (en) Zinc injection method and zinc injection device
JP6931622B2 (en) Method of attaching precious metals to carbon steel members of nuclear power plants and methods of suppressing adhesion of radionuclides to carbon steel members of nuclear power plants
JP2009210307A (en) Adhesion suppression method of radioactive nuclide on nuclear power plant constituting member, and ferrite film forming device
US20220213601A1 (en) Method for adhering noble metal to carbon steel member of nuclear power plant and method for preventing adhesion of radionuclides to carbon steel member of nuclear power plant
JP6001926B2 (en) Zinc injection method and zinc injection device
JP6144480B2 (en) Zinc injection method and zinc injection device
JP6059106B2 (en) Chemical decontamination method for carbon steel components in nuclear power plant
JP2011149764A (en) Method for reducing dose of nuclear power plant component member
JP2017138139A (en) Chemical decontamination method, chemical decontamination device, and nuclear power plant using them
JP6640758B2 (en) Drug injection device and drug injection method in nuclear power plant
WO2019102768A1 (en) Method for adhering noble metal to carbon steel member of nuclear power plant and method for suppressing radionuclide adhesion to carbon steel member of nuclear power plant
JP5591454B2 (en) Reactor water radioactivity reduction method and nuclear power plant
JP2018100836A (en) Method of forming radioactive substance adhesion inhibit coating
JP4349956B2 (en) Operation method of residual heat removal system
JP2014130160A (en) Method of reducing doses in nuclear power plant constituting members
WO2000058974A1 (en) Method of operating reactor
WO2019176264A1 (en) Method for suppressing radioactive nuclide adhesion to carbon steel member of nuclear power plant
JP6077260B2 (en) Method and system for injecting zinc into BWR plant cooling water
JPH041599A (en) Reducing method for radioactive material of atomic energy power plant
JP2000162383A (en) Operation method for reactor power plant