JP6144480B2 - Zinc injection method and zinc injection device - Google Patents

Zinc injection method and zinc injection device Download PDF

Info

Publication number
JP6144480B2
JP6144480B2 JP2012258400A JP2012258400A JP6144480B2 JP 6144480 B2 JP6144480 B2 JP 6144480B2 JP 2012258400 A JP2012258400 A JP 2012258400A JP 2012258400 A JP2012258400 A JP 2012258400A JP 6144480 B2 JP6144480 B2 JP 6144480B2
Authority
JP
Japan
Prior art keywords
zinc
carbon dioxide
dissolution
region
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012258400A
Other languages
Japanese (ja)
Other versions
JP2014106074A (en
Inventor
秀幸 細川
秀幸 細川
誠 長瀬
誠 長瀬
宏文 松原
宏文 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2012258400A priority Critical patent/JP6144480B2/en
Publication of JP2014106074A publication Critical patent/JP2014106074A/en
Application granted granted Critical
Publication of JP6144480B2 publication Critical patent/JP6144480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Description

本発明は、亜鉛注入方法及び亜鉛注入装置に係り、特に、沸騰水型原子力発電プラントの原子炉圧力容器内の炉水への亜鉛注入に好適な亜鉛注入方法及び亜鉛注入装置に関する。   The present invention relates to a zinc injection method and a zinc injection device, and more particularly to a zinc injection method and a zinc injection device suitable for zinc injection into reactor water in a reactor pressure vessel of a boiling water nuclear power plant.

例えば、沸騰水型原子力発電プラント(以下、BWRプラントと略記する。)は、複数の燃料集合体を装荷している炉心を内部に配置した原子炉圧力容器(RPVと称する)を有する原子炉を備えている。再循環ポンプ(またはインターナルポンプ)によって炉心に供給された炉水は、炉心に装荷された燃料集合体内の核燃料物質の核分裂で発生する熱によって加熱され、一部が蒸気になる。この蒸気は、RPVからタービンに導かれ、タービンを回転させる。タービンから排出された蒸気は、復水器で凝縮され、水になる。この水は、給水としてRPVに供給される。RPV内での放射性腐食生成物の発生を抑制するため、給水に含まれる主として金属不純物が給水配管に設けられたろ過脱塩装置で除去される。   For example, a boiling water nuclear power plant (hereinafter abbreviated as a BWR plant) includes a nuclear reactor having a reactor pressure vessel (referred to as RPV) in which a core loaded with a plurality of fuel assemblies is disposed. I have. The reactor water supplied to the core by the recirculation pump (or internal pump) is heated by the heat generated by the fission of nuclear fuel material in the fuel assembly loaded in the core, and a part thereof becomes steam. This steam is led from the RPV to the turbine and rotates the turbine. The steam exhausted from the turbine is condensed in a condenser to become water. This water is supplied to the RPV as feed water. In order to suppress the generation of radioactive corrosion products in the RPV, mainly metal impurities contained in the feed water are removed by a filtration and desalting apparatus provided in the feed water pipe.

また、放射性腐食生成物の元となる腐食生成物は、RPV及び再循環系配管等のBWRプラントの構成部材の接水部から発生するので、BWRプラントの主要な一次系の構成部材には腐食の少ないステンレス鋼及びニッケル基合金などの不銹鋼が使用されている。低合金鋼製のRPVは内面にステンレス鋼の肉盛りが施され、RPVの低合金鋼が、直接、炉水と接触することを防止している。炉水とは、RPV内に存在する冷却水である。さらには、炉水の一部をRPVに接続された原子炉浄化系のろ過脱塩装置によって浄化し、炉水中に僅かに存在する金属不純物を積極的に除去している。   In addition, since the corrosion product that is the source of the radioactive corrosion product is generated from the water contact portion of the BWR plant component such as RPV and recirculation piping, the main component of the BWR plant is corroded. Stainless steel and nickel-based alloys such as nickel-based alloys are used. The RPV made of low alloy steel has a built-in stainless steel on the inner surface to prevent the RPV low alloy steel from coming into direct contact with the reactor water. Reactor water is cooling water present in the RPV. Furthermore, a part of the reactor water is purified by a filtration and desalination apparatus of a reactor purification system connected to the RPV to positively remove metal impurities that are slightly present in the reactor water.

しかし、上述のような腐食対策を講じたとしても、極僅かな金属不純物が炉水に含まれることを避けることができないため、一部の金属不純物が、金属酸化物として、燃料集合体に含まれる燃料棒の表面に付着する。燃料棒表面に付着した不純物(例えば、金属元素)は、燃料棒内の核燃料物質の核分裂により放出される中性子の照射によって原子核反応を起こし、コバルト60,コバルト58,クロム51及びマンガン54等の放射性核種になる。   However, even if the above-mentioned corrosion countermeasures are taken, it is unavoidable that very few metal impurities are contained in the reactor water, so some metal impurities are contained in the fuel assembly as metal oxides. Adhere to the surface of the fuel rod. Impurities (for example, metal elements) adhering to the surface of the fuel rod cause a nuclear reaction by irradiation of neutrons released by fission of nuclear fuel material in the fuel rod, and radioactive materials such as cobalt 60, cobalt 58, chromium 51 and manganese 54 are emitted. Become a nuclide.

これらの放射性核種は、大部分が酸化物の形態で燃料棒表面に付着したままである。しかしながら、一部の放射性核種は、取り込まれている酸化物の溶解度に応じて炉水中にイオンとして溶出したり、クラッドと呼ばれる不溶性固体として炉水中に再放出されたりする。炉水に含まれる放射性物質は、RPVに接続された原子炉浄化系によって取り除かれる。しかしながら原子炉水浄化系で処理される炉水の処理量は、給水流量の数%でしかないため、炉水中の放射性物質を完全に除去することはできない。炉水中に残存する放射性物質は炉水とともにRPVに接続された再循環系などを循環している間に、BWRプラントの構成部材(例えば、配管)の炉水と接触する表面に蓄積される。この結果、構成部材の表面から放出される放射線が、BWRプラントの定期検査においてこの定期検査の作業に従事する従事者の放射線被ばくの原因となる。   These radionuclides remain mostly attached to the fuel rod surface in the form of oxides. However, some radionuclides are eluted as ions in the reactor water depending on the solubility of the incorporated oxide, or re-released into the reactor water as an insoluble solid called a clad. The radioactive material contained in the reactor water is removed by the reactor purification system connected to the RPV. However, since the amount of reactor water treated by the reactor water purification system is only a few percent of the feed water flow rate, the radioactive substances in the reactor water cannot be completely removed. The radioactive material remaining in the reactor water is accumulated on the surface of the BWR plant in contact with the reactor water while circulating in the recirculation system connected to the RPV together with the reactor water. As a result, the radiation emitted from the surface of the component member causes radiation exposure of workers engaged in the periodic inspection work in the periodic inspection of the BWR plant.

その従業者の被ばく線量は、各人毎に規定値を超えないように管理されている。近年この規定値が引き下げられ、各人の被ばく線量を可能な限り低くする必要が生じている。   The exposure dose of the employee is managed so that it does not exceed the prescribed value for each person. In recent years, this specified value has been reduced, and it has become necessary to reduce the exposure dose of each person as much as possible.

そこで、配管の炉水と接触する表面への放射性核種の付着を低減する方法、及び炉水中の放射性核種の濃度を低減する方法が様々検討されている。   Therefore, various methods for reducing the adhesion of radionuclides to the surface of the piping in contact with the reactor water and methods for reducing the concentration of radionuclides in the reactor water have been studied.

このような方法の一つとして、亜鉛などの金属イオンを炉水中に共存させ、炉水と接触する配管の内面及び構造物の表面に、亜鉛を含む緻密な酸化皮膜を形成することによって、この酸化皮膜中へのコバルト60及びコバルト58等の放射性核種の取り込みを抑制する方法が特開昭58−79196号公報に記載されている。   As one of such methods, metal ions such as zinc coexist in the reactor water, and a dense oxide film containing zinc is formed on the inner surface of the piping and the surface of the structure in contact with the reactor water. A method for suppressing the incorporation of radionuclides such as cobalt 60 and cobalt 58 into the oxide film is described in JP-A-58-79196.

また、特許第3344608号公報には、亜鉛溶解槽内の水溶液中に炭酸ガスを導入して炭酸ガスで飽和した水溶液を生成し、亜鉛溶解槽内のこの水溶液に亜鉛(例えば、酸化亜鉛)を供給してこの亜鉛を炭酸ガスで飽和した水溶液に溶解させること記載している。生成された、亜鉛イオンを含む水溶液がRPV内に供給される。   Also, in Japanese Patent No. 3344608, carbon dioxide gas is introduced into an aqueous solution in a zinc dissolution tank to produce an aqueous solution saturated with carbon dioxide, and zinc (for example, zinc oxide) is added to the aqueous solution in the zinc dissolution tank. It is described that this zinc is dissolved in an aqueous solution saturated with carbon dioxide. The produced aqueous solution containing zinc ions is supplied into the RPV.

特開昭58−79196号公報JP 58-79196 A 特許第3344608号公報Japanese Patent No. 3344608

亜鉛イオンを作製しようとする場合、亜鉛の塩及び亜鉛化合物或いは亜鉛金属を酸及びアルカリで溶解する方法がある。いずれの場合も亜鉛イオンと反対の電荷を持つ対アニオン或いは対カチオンも炉水に持ち込まれることになるため、炉水及び構成部材への影響が少ない化学形態が望まれる。そのような化学形態の一つとして特許第3344608号公報では炭酸水を用いて亜鉛化合物(例えば、酸化亜鉛粉末)を溶解して亜鉛イオンを作製している。   When preparing zinc ions, there is a method of dissolving a zinc salt and a zinc compound or zinc metal with an acid and an alkali. In either case, since a counter anion or counter cation having a charge opposite to that of zinc ions is also brought into the reactor water, a chemical form with little influence on the reactor water and components is desired. As one such chemical form, in Japanese Patent No. 3344608, zinc ions are prepared by dissolving a zinc compound (for example, zinc oxide powder) using carbonated water.

特許第3344608号公報に記載された亜鉛注入方法では、亜鉛溶解槽内で生成した炭酸ガスで飽和した水溶液に亜鉛を溶解し、亜鉛イオンを含む水溶液を生成しているため、その水溶液に含まれる亜鉛の濃度が低くなる。亜鉛濃度の低い水溶液をRPVの炉水に注入した場合には、例えば、炉内構造物の表面及びRPVに接続された配管内面への放射性核種の付着を抑制する効果が小さくなる。   In the zinc injection method described in Japanese Patent No. 3344608, zinc is dissolved in an aqueous solution saturated with carbon dioxide gas generated in a zinc dissolution tank, and an aqueous solution containing zinc ions is generated. The zinc concentration is lowered. When an aqueous solution having a low zinc concentration is injected into the RPV reactor water, for example, the effect of suppressing the attachment of radionuclides to the surface of the reactor internal structure and the pipe inner surface connected to the RPV is reduced.

本発明の目的は、原子炉圧力容器内に注入する、亜鉛イオンを含む炭酸水溶液の亜鉛イオン濃度をさらに増加することができる亜鉛注入方法及び亜鉛注入装置を提供することにある。   An object of the present invention is to provide a zinc injection method and a zinc injection apparatus capable of further increasing the zinc ion concentration of an aqueous carbonate solution containing zinc ions injected into a reactor pressure vessel.

上記した目的を達成する本発明の特徴は、炭酸ガス溶解領域内に存在する炭酸水溶液に炭酸ガスを注入してこの炭酸ガスを炭酸水溶液に溶解し、炭酸ガス溶解領域内の炭酸水溶液を、炭酸ガス溶解領域、及び亜鉛を含む固体物質が存在する亜鉛溶解領域を含む閉ループ内を循環させ、固体物質に含まれる亜鉛を、亜鉛溶解領域内において、その循環によって炭酸ガス溶解領域から亜鉛溶解領域に供給される炭酸水溶液に溶解し、溶解した亜鉛を含む炭酸水溶液をその循環によって炭酸ガス溶解領域に供給し、炭酸ガス溶解領域内の、亜鉛を含む炭酸水溶液を、原子炉圧力容器に接続された配管を通して原子炉圧力容器に供給することことにある。   The feature of the present invention that achieves the above-described object is that carbon dioxide gas is injected into a carbonic acid aqueous solution existing in the carbon dioxide gas dissolving region to dissolve the carbon dioxide gas in the carbonic acid aqueous solution. The gas dissolution region and the closed loop including the zinc dissolution region where the solid substance containing zinc exists are circulated, and the zinc contained in the solid material is moved from the carbon dioxide dissolution region to the zinc dissolution region by the circulation in the zinc dissolution region. Dissolved in the supplied carbonic acid aqueous solution, the carbonic acid aqueous solution containing dissolved zinc was supplied to the carbon dioxide dissolving region by circulation, and the carbonic acid aqueous solution containing zinc in the carbon dioxide dissolving region was connected to the reactor pressure vessel To supply to the reactor pressure vessel through piping.

亜鉛を含む炭酸水溶液を、炭酸ガス溶解領域及び亜鉛溶解領域を含む閉ループ内を循環させるため、亜鉛溶解領域を通過するたびに、固体物質に含まれる亜鉛が炭酸水溶液に溶解し、炭酸水溶液の亜鉛イオン濃度をさらに増加させることができる。このため、原子炉圧力容器内の炉水の亜鉛イオン濃度も、より短時間で増加させることができる。   Since the carbonic acid aqueous solution containing zinc is circulated in the closed loop including the carbon dioxide dissolving region and the zinc dissolving region, the zinc contained in the solid substance is dissolved in the carbonic acid aqueous solution every time it passes through the zinc dissolving region. The ion concentration can be further increased. For this reason, the zinc ion concentration of the reactor water in the reactor pressure vessel can also be increased in a shorter time.

好ましくは、炭酸水溶液の亜鉛濃度が設定亜鉛濃度よりも小さいときに亜鉛溶解領域に供給される炭酸水溶液の第1流速は、炭酸水溶液の亜鉛濃度が設定亜鉛濃度になったときに亜鉛溶解領域に供給される炭酸水溶液の第2流速よりも速くすることが望ましい。   Preferably, the first flow rate of the aqueous carbonate solution supplied to the zinc dissolving region when the zinc concentration of the aqueous carbonate solution is smaller than the set zinc concentration is such that the zinc flow rate in the zinc dissolving region is reached when the zinc concentration of the aqueous carbonate solution reaches the set zinc concentration. It is desirable to make it faster than the second flow rate of the aqueous carbonate solution supplied.

本発明によれば、原子炉圧力容器内に注入する、亜鉛イオンを含む炭酸水溶液の亜鉛イオン濃度をさらに増加することができる。   According to the present invention, it is possible to further increase the zinc ion concentration of the aqueous carbonate solution containing zinc ions injected into the reactor pressure vessel.

本発明の好適な一実施例である実施例1の亜鉛注入方法に用いられる亜鉛注入装置の構成図である。It is a block diagram of the zinc injection | pouring apparatus used for the zinc injection | pouring method of Example 1 which is one preferable Example of this invention. 図1に示す亜鉛注入装置を用いた、沸騰水型原子力プラントにおける原子炉圧力容器内への亜鉛イオン注入方法の説明図である。It is explanatory drawing of the zinc ion implantation method into the reactor pressure vessel in a boiling water nuclear power plant using the zinc injection apparatus shown in FIG. 炭酸飽和溶解水における亜鉛溶解濃度とpHの関係を示す説明図である。It is explanatory drawing which shows the relationship between the zinc melt | dissolution density | concentration in carbonate saturated melt | dissolution water, and pH. 炭酸水の線流速と酸化亜鉛の表面に形成される、炭酸水の拡散層の厚みの関係を示す特性図である。It is a characteristic view which shows the relationship between the linear flow rate of carbonated water, and the thickness of the diffusion layer of carbonated water formed on the surface of zinc oxide. 炭酸水による酸化亜鉛の溶解時間と亜鉛濃度の関係を示す特性図である。It is a characteristic view which shows the relationship between the dissolution time of zinc oxide by carbonated water and zinc concentration. 炭酸飽和水における亜鉛濃度と導電率の関係を示す特性図である。It is a characteristic view which shows the relationship between the zinc concentration in carbonic acid saturated water, and electrical conductivity. 本発明の他の好適な実施例である実施例2の亜鉛注入方法に用いられる亜鉛注入装置の構成図である。It is a block diagram of the zinc injection | pouring apparatus used for the zinc injection | pouring method of Example 2 which is another suitable Example of this invention. 本発明の他の好適な実施例である実施例3の亜鉛注入方法に用いられる亜鉛注入装置の構成図である。It is a block diagram of the zinc injection | pouring apparatus used for the zinc injection | pouring method of Example 3 which is another suitable Example of this invention.

特許第3344608号公報では、前述したように、炭酸水を用いて亜鉛化合物(例えば、酸化亜鉛粉末)を溶解して亜鉛イオンを作製している。炭酸ガスを亜鉛溶解槽の底部から亜鉛溶解槽内の水中にバブリングして炭酸水を生成し、同じ亜鉛溶解槽に亜鉛化合物を添加して撹拌することによって亜鉛化合物を溶解し、亜鉛イオンを生成することができる。亜鉛化合物が添加された水中に炭酸ガスをバブリングすると、式(1)、式(2)及び式(3)で表される炭酸イオンの平衡反応が生じる。   In Japanese Patent No. 3344608, as described above, zinc ions are prepared by dissolving a zinc compound (for example, zinc oxide powder) using carbonated water. Carbon dioxide is bubbled into the water in the zinc dissolution tank from the bottom of the zinc dissolution tank to generate carbonated water, and the zinc compound is dissolved in the same zinc dissolution tank and stirred to generate zinc ions. can do. When carbon dioxide gas is bubbled into water to which a zinc compound is added, an equilibrium reaction of carbonate ions represented by the formulas (1), (2), and (3) occurs.

CO2(g)=CO2(aq) ; KH=[CO2(aq)]/PCO2=0.034(25℃で) ……(1)
CO2(aq)+H2O=HCO3 -+H+ ; K1=[HCO3 -][H+]/[CO2(aq)]=4.45×10-7 ……(2)
HCO3 -=CO3 2-+H+ ; K2=[CO3 2-][H+]/[HCO3 -]=4.69×10-11 ……(3)
これら三つの平衡式に加え水のイオン積[H+][OH-]=10-14、全圧101.3kPa、及び25℃の水の水蒸気圧8.44kPaを用いて、式(4)の電荷均衡式を解くと、pHは3.91となる。
CO 2 (g) = CO 2 (aq); K H = [CO 2 (aq)] / P CO2 = 0.034 (at 25 ° C.) (1)
CO 2 (aq) + H 2 O = HCO 3 + H + ; K 1 = [HCO 3 ] [H + ] / [CO 2 (aq)] = 4.45 × 10 −7 (2)
HCO 3 = CO 3 2− + H + ; K 2 = [CO 3 2− ] [H + ] / [HCO 3 ] = 4.69 × 10 −11 (3)
In addition to these three equilibrium equations, the ionic product of water [H + ] [OH ] = 10 −14 , the total pressure 101.3 kPa, and the water vapor pressure of water at 25 ° C. of 8.44 kPa, When the charge balance equation is solved, the pH is 3.91.

[OH-]+[HCO3 -]+2[CO3 2-]=[H+] ……(4)
この炭酸水に亜鉛を溶解させると式(5)から式(9)で表される亜鉛イオンの各平衡反応が加わることになる。
[OH ] + [HCO 3 ] +2 [CO 3 2− ] = [H + ] (4)
When zinc is dissolved in the carbonated water, each equilibrium reaction of zinc ions represented by the formulas (5) to (9) is added.

Zn2++OH-=Zn(OH)+ ; KZn1=[Zn(OH)+]/([Zn2+][OH])=2.04×106 ……(5)
Zn2++2OH-=Zn(OH)2 ; KZn2=[Zn(OH)2]/([Zn2+][OH-]2)=1.55×1011 ……(6)
Zn2++3OH-=Zn(OH)3 - ; KZn3=[Zn(OH)3 -]/([Zn2+][OH-]3)=2.04×1014 ……(7)
[Zn2+]+[CO3 2-]=[ZnCO3] ; KZnC=[ZnCO3]/([Zn2+][CO3 2-]))2.00×103 ……(8)
[Zn2+]+[HCO3 -]=[ZnHCO3 +] ; KZnHC=[ZnHCO3 +]/([Zn2+][HCO3 -])=7.08 ……(9)
亜鉛を加えた電荷均衡式及び亜鉛の質量均衡式を以下に示す。
Zn 2+ + OH = Zn (OH) + ; K Zn1 = [Zn (OH) + ] / ([Zn 2+ ] [OH ]) = 2.04 × 10 6 (5)
Zn 2+ + 2OH = Zn (OH) 2 ; K Zn2 = [Zn (OH) 2 ] / ([Zn 2+ ] [OH ] 2 ) = 1.55 × 10 11 (6)
Zn 2+ + 3OH = Zn (OH) 3 ; K Zn3 = [Zn (OH) 3 ] / ([Zn 2+ ] [OH ] 3 ) = 2.04 × 10 14 (7)
[Zn 2+ ] + [CO 3 2- ] = [ZnCO 3 ]; K ZnC = [ZnCO 3 ] / ([Zn 2+ ] [CO 3 2- ])) 2.00 × 10 3 (8) )
[Zn 2+ ] + [HCO 3 ] = [ZnHCO 3 + ]; K ZnHC = [ZnHCO 3 + ] / ([Zn 2+ ] [HCO 3 ]) = 7.08 (9)
The charge balance formula with zinc and the mass balance formula of zinc are shown below.

[Zn]T=[Zn2+]+[Zn(OH)+]+[Zn(OH)2]+[ZnCO3]+[ZnHCO3 +] ……(10)
[H+]+2[Zn2+]+[Zn(OH)+]+[ZnHCO3 +]=[OH-]+[HCO3 -]+2[CO3 2-] ……(11)
式(1)から式(11)を用いて亜鉛全濃度[Zn]TとpHの関係を求めた結果を図3に示す。図3に基づけば、亜鉛の溶解が進んで濃度が上昇するとpHも上昇することが分かる。この亜鉛濃度は亜鉛の飽和溶解濃度であり、実際の溶液中の亜鉛濃度との差分を駆動力として、亜鉛の溶解速度は次式の固体の溶解速度を表すNernst-Noyes-Whitney’s式で表すことができる。
[Zn] T = [Zn 2+ ] + [Zn (OH) + ] + [Zn (OH) 2 ] + [ZnCO 3 ] + [ZnHCO 3 + ] (10)
[H + ] +2 [Zn 2+ ] + [Zn (OH) + ] + [ZnHCO 3 + ] = [OH ] + [HCO 3 ] +2 [CO 3 2− ] (11)
FIG. 3 shows the results of determining the relationship between the total zinc concentration [Zn] T and pH using the equations (1) to (11). Based on FIG. 3, it can be seen that the pH increases as the concentration of zinc increases and the concentration increases. This zinc concentration is the saturated dissolution concentration of zinc, and the difference from the actual zinc concentration in the solution is the driving force, and the dissolution rate of zinc is expressed by the Nernst-Noyes-Whitney's equation, which represents the dissolution rate of solids of the following equation: Can do.

Figure 0006144480
Figure 0006144480

ここで、cは溶質濃度(ppm)、tは溶解時間(h)、Aは溶質表面積(cm)、Dは拡散係数(cm/h)、csは溶質飽和濃度(ppm)、Vは溶解液量(cm)、δは拡散層厚み(cm)である。 Here, c is the solute concentration (ppm), t is the dissolution time (h), A is the solute surface area (cm 2 ), D is the diffusion coefficient (cm 2 / h), c s is the solute saturation concentration (ppm), V Is the amount of solution (cm 3 ), and δ is the thickness of the diffusion layer (cm).

溶解液量Vは溶解装置の大きさで決まり、溶質表面積Aは装置に仕込む亜鉛を含む固体物質の量で決まる値である。拡散係数Dは飽和溶質濃度csと同様に、温度や固体物質の種類によって決まる値である。一方、拡散層厚みδは亜鉛を含む固体物質に形成される炭酸水の拡散層厚みであり、固体物質と炭酸水の相対速度が速いほど薄くなるという性質がある。 The amount of solution V is determined by the size of the dissolution apparatus, and the solute surface area A is a value determined by the amount of solid material containing zinc charged in the apparatus. Similar to the saturated solute concentration c s , the diffusion coefficient D is a value determined by the temperature and the type of solid substance. On the other hand, the diffusion layer thickness δ is the diffusion layer thickness of carbonated water formed on a solid material containing zinc, and has a property that the faster the relative speed of the solid material and carbonated water, the thinner.

発明者らはこの関係を実験により求め、図4に示す結果を得た。図4から分かるように、炭酸水の流速が速くなると、亜鉛を含む固体物質の表面に形成される拡散層厚みが急激に薄くなり、ある程度の流速以上ではその減少率が鈍くなっている。流速5500cm/hでその固体物質の表面に形成される拡散層厚みは流速124cm/hでその固体物質の表面に形成される拡散層厚みに比較して約1/3になる。式(12)に基づけば、亜鉛を含む固体物質の溶解速度も3倍になることが分かる。これを利用すると、炭酸水の亜鉛濃度が低い場合は炭酸水の流速を速くし、その亜鉛濃度が上昇して来たらその流速を遅くするという運用が可能になる。   The inventors obtained this relationship by experiment and obtained the results shown in FIG. As can be seen from FIG. 4, when the flow rate of carbonated water is increased, the thickness of the diffusion layer formed on the surface of the solid substance containing zinc is rapidly reduced, and the rate of decrease is slow above a certain flow rate. The thickness of the diffusion layer formed on the surface of the solid material at a flow rate of 5500 cm / h is about 1/3 compared to the thickness of the diffusion layer formed on the surface of the solid material at a flow rate of 124 cm / h. Based on Formula (12), it turns out that the dissolution rate of the solid substance containing zinc is also tripled. If this is utilized, the operation of increasing the flow rate of carbonated water when the zinc concentration of carbonated water is low and decreasing the flow rate when the zinc concentration increases will be possible.

亜鉛によるCo−60付着抑制効果は、炉水の亜鉛濃度が2〜10ppbのときに生じる。この効果を得るためには、例えば、110万kWクラスのBWRプラントにおいて0.2ppb程度の、給水の亜鉛濃度が必要になる。原子炉圧力容器に供給される給水流量は約6400t/hであるため、給水への亜鉛の注入速度は1.3g/hとなる。1つの運転サイクルを1年としたとき、この運転サイクルで使用する亜鉛の量は11.4kgとなり、亜鉛を酸化亜鉛により供給する場合には必要な酸化亜鉛の量は14.2kgとなる。原子力プラントの定期検査の期間中において、その量以上の酸化亜鉛を亜鉛溶解装置の亜鉛溶解槽内に充填しておけば、原料である酸化亜鉛を、原子力プラントの運転中において溶解槽内に供給する必要はない。   The effect of suppressing the Co-60 adhesion by zinc occurs when the zinc concentration in the reactor water is 2 to 10 ppb. In order to obtain this effect, for example, a zinc concentration of feed water of about 0.2 ppb is required in a BWR plant of the 1.1 million kW class. Since the feed water flow rate supplied to the reactor pressure vessel is about 6400 t / h, the injection rate of zinc into the feed water is 1.3 g / h. When one operation cycle is set to one year, the amount of zinc used in this operation cycle is 11.4 kg, and when zinc is supplied by zinc oxide, the amount of zinc oxide required is 14.2 kg. If the zinc oxide in the zinc dissolution unit is filled in the zinc dissolution tank during the periodic inspection of the nuclear power plant, the raw material zinc oxide is supplied into the dissolution tank during operation of the nuclear power plant. do not have to.

以上に述べた検討結果を反映した本発明の実施例を、以下に説明する。   Examples of the present invention reflecting the above-described examination results will be described below.

本発明の好適な一実施例である実施例1の亜鉛注入方法を、図1及び図2を用いて説明する。本実施例の亜鉛注入方法は、沸騰水型原子力プラント(以下、BWRプラントという)に適用される。   A zinc injection method according to embodiment 1, which is a preferred embodiment of the present invention, will be described with reference to FIGS. The zinc injection method of the present embodiment is applied to a boiling water nuclear plant (hereinafter referred to as a BWR plant).

まず、本実施例の亜鉛注入方法が適用されるこのBWRプラントの概略構成を、図2を用いて説明する。BWRプラントは、原子炉26、タービン34、復水器35、再循環系、原子炉浄化系及び給水系等を備えている。原子炉格納容器32内に設置された原子炉26は、炉心28を内蔵する原子炉圧力容器(以下、RPVという)27を有し、RPV27内にジェットポンプ29を設置している。炉心28には複数の燃料集合体(図示せず)が装荷されている。各燃料集合体は、核燃料物質で製造された複数の燃料ペレットを充填した複数の燃料棒を含んでいる。再循環系は再循環ポンプ30及びステンレス鋼製の再循環系配管31を有し、再循環ポンプ30が再循環系配管31に設置されている。給水系は、復水器35とRPV27を連絡する給水配管36に、復水器35からRPV27に向かって、復水ポンプ37、復水浄化装置38、低圧給水加熱器40、給水ポンプ39及び高圧給水加熱器41をこの順に設置して構成される。水素注入装置49が、復水器35と復水ポンプ37の間で給水配管36に接続されている。原子炉水浄化系は、再循環系配管31と給水配管36を連絡する浄化系配管43に、浄化系ポンプ45,再生熱交換器46,非再生熱交換器47及び浄化装置48を設置して構成される。浄化系配管43は、再循環ポンプ30より上流で再循環系配管31に接続される。 First, a schematic configuration of this BWR plant to which the zinc injection method of the present embodiment is applied will be described with reference to FIG. The BWR plant includes a nuclear reactor 26, a turbine 34, a condenser 35, a recirculation system, a nuclear reactor purification system, a water supply system, and the like. The nuclear reactor 26 installed in the nuclear reactor containment vessel 32 has a nuclear reactor pressure vessel (hereinafter referred to as RPV) 27 containing a core 28, and a jet pump 29 is installed in the RPV 27. The core 28 is loaded with a plurality of fuel assemblies (not shown). Each fuel assembly includes a plurality of fuel rods filled with a plurality of fuel pellets made of nuclear fuel material. The recirculation system includes a recirculation pump 30 and a stainless steel recirculation pipe 31, and the recirculation pump 30 is installed in the recirculation pipe 31. The water supply system is connected to a water supply pipe 36 connecting the condenser 35 and the RPV 27, from the condenser 35 to the RPV 27, a condensate pump 37, a condensate purification device 38, a low pressure feed water heater 40, a feed water pump 39, and a high pressure. The feed water heater 41 is installed in this order. A hydrogen injection device 49 is connected to the water supply pipe 36 between the condenser 35 and the condensate pump 37. Reactor water cleanup system is installed in a clean system pipe 43 to contact the recirculation pipe 31 and the water supply pipe 36, cleaning system pump 45, the regenerative heat exchanger 46, a non-regenerative heat exchanger 47及BiKiyoshi apparatus 48 Configured. The purification system pipe 43 is connected to the recirculation system pipe 31 upstream from the recirculation pump 30.

RPV27内の冷却水(以下、炉水という)は、再循環ポンプ30で昇圧され、再循環系配管31を通ってジェットポンプ29のノズル(図示せず)からジェットポンプ29のベルマウス(図示せず)内に噴出される。ノズルの周囲に存在する炉水も、ノズルから噴出される噴出流の作用により、ベルマウス内に吸引される。ジェットポンプ29から吐出された炉水は、炉心28に供給され、燃料棒内の核燃料物質の核分裂で発生する熱によって加熱される。加熱された炉水の一部が蒸気になる。この蒸気は、RPV27から主蒸気配管33を通ってタービン34に導かれ、タービン34を回転させる。タービン34に連結された発電機(図示せず)が回転され、電力が発生する。タービン34から排出された蒸気は、復水器35で凝縮され、水になる。   Cooling water (hereinafter referred to as “reactor water”) in the RPV 27 is pressurized by the recirculation pump 30, passes through the recirculation system pipe 31, and from the nozzle (not shown) of the jet pump 29 to the bell mouth (not shown) of the jet pump 29. ) The reactor water present around the nozzle is also sucked into the bell mouth by the action of the jet flow jetted from the nozzle. Reactor water discharged from the jet pump 29 is supplied to the core 28 and heated by heat generated by fission of nuclear fuel material in the fuel rods. Part of the heated reactor water becomes steam. The steam is guided from the RPV 27 through the main steam pipe 33 to the turbine 34 to rotate the turbine 34. A generator (not shown) connected to the turbine 34 is rotated to generate electric power. The steam discharged from the turbine 34 is condensed by the condenser 35 to become water.

この水は、給水として、給水配管36を通りRPV27内に供給される。給水配管36を流れる給水は、復水ポンプ37で昇圧され、復水浄化装置38で不純物が除去され、給水ポンプ39でさらに昇圧され、低圧給水加熱器40及び高圧給水加熱器41で加熱される。抽気配管42で主蒸気配管33,タービン34から抽気された抽気蒸気が、低圧給水加熱器40及び高圧給水加熱器41にそれぞれ供給され、給水の加熱源となる。 This water is supplied into the RPV 27 through the water supply pipe 36 as water supply. The feed water flowing through the feed water pipe 36 is boosted by a condensate pump 37, impurities are removed by a condensate purification device 38, further boosted by a feed water pump 39, and heated by a low pressure feed water heater 40 and a high pressure feed water heater 41. . Extracted steam extracted from the main steam pipe 33 and the turbine 34 by the extracted pipe 42 is supplied to the low-pressure feed water heater 40 and the high-pressure feed water heater 41, respectively, and serves as a heating source for the feed water.

給水として炉心に持ち込まれた水は核燃料物質の核分裂に伴って発生する放射線の照射を受けて放射線分解を起こし、過酸化水素及びや酸素などの酸化性化学種を生ずる。この酸化性化学種によって炉水と接触する構成部材の腐食電位が上昇する。このため、応力腐食割れに対する環境緩和対策として水素注入装置49から給水に水素を注入して、この水素と酸化剤を反応させることで酸化剤濃度を低減させて腐食電位を下げる運転が行われている。この給水に水素を注入しながら行う運転を水素注入水質運転(HWC:Hydrogen Water Chemistry)、水素注入を行わない従来の運転を通常水質運転(NWC:Normal Water Chemistry)と呼んでいる。水素注入による腐食電位低下運転は運転中継続することが望ましいが、中断される場合があり、この時に腐食電位の高い状態となる。   The water brought into the reactor core as the feed water is irradiated with radiation generated as a result of nuclear fission of the nuclear fuel material and undergoes radiolysis to produce oxidizing species such as hydrogen peroxide and oxygen. This oxidizing chemical species raises the corrosion potential of the components in contact with the reactor water. Therefore, as an environmental mitigation measure against stress corrosion cracking, hydrogen is injected into the feed water from the hydrogen injection device 49, and this hydrogen and an oxidizing agent are reacted to reduce the oxidizing agent concentration and lower the corrosion potential. Yes. The operation performed while injecting hydrogen into this water supply is called hydrogen injection water quality operation (HWC: Hydrogen Water Chemistry), and the conventional operation without hydrogen injection is called normal water quality operation (NWC: Normal Water Chemistry). Although it is desirable to continue the operation for decreasing the corrosion potential by hydrogen injection during the operation, it may be interrupted, and at this time, the corrosion potential becomes high.

再循環系配管31内を流れる炉水の一部は、浄化系ポンプ45の駆動によって浄化系配管43内に流入し、浄化装置48で浄化される。浄化された炉水は、浄化系配管43及び給水配管36を経てRPV27内に戻される。   A part of the reactor water flowing in the recirculation system pipe 31 flows into the purification system pipe 43 by the drive of the purification system pump 45 and is purified by the purification device 48. The purified reactor water is returned to the RPV 27 through the purification system pipe 43 and the water supply pipe 36.

BWRプラントは、一つの運転サイクルでの運転が終了した後に停止される。この運転停止後に、BWRプラントに対して定期検査が実施される。この定期検査が終了した後、BWRプラントが再度起動される。この定期検査の期間中において、炉心28内の一部の燃料集合体が新燃料集合体と交換される。すなわち、炉心28内の一部の燃料集合体が、使用済燃料集合体としてRPV27から取り出され、燃焼度ゼロの新たな燃料集合体が炉心28に装荷される。   The BWR plant is stopped after the operation in one operation cycle is completed. After this shutdown, a periodic inspection is performed on the BWR plant. After this periodic inspection is completed, the BWR plant is started again. During this periodical inspection, some fuel assemblies in the core 28 are replaced with new fuel assemblies. That is, a part of the fuel assembly in the core 28 is taken out from the RPV 27 as a spent fuel assembly, and a new fuel assembly having zero burnup is loaded into the core 28.

本実施例の亜鉛注入方法に用いられる亜鉛注入装置1は、復水浄化装置38と低圧給水加熱器40の間の給水配管36に亜鉛注入配管21を介して接続される。亜鉛注入装置1の詳細を、図1を用いて説明する。亜鉛注入装置1は、内部に亜鉛溶解領域を形成する亜鉛溶解槽(第2溶解槽)2、内部に炭酸ガス溶解領域を形成する炭酸ガス溶解槽(第1溶解槽)4、及び炭酸ガス供給装置13を有する。炭酸ガス溶解槽4の底部に一端部が接続される配管7の他端部が、亜鉛溶解槽2の底部に接続される。配管8の一端部が亜鉛溶解槽2の頂部に接続され、配管8の他端部が炭酸ガス溶解槽4の頂部に接続される。炭酸ガス溶解槽4、配管7、亜鉛溶解槽2及び配管8によって、閉ループが形成される。循環ポンプ6及び流量計12が配管7に設けられる。水位計10及び導電率計11が炭酸ガス溶解槽4に設けられる。   The zinc injection device 1 used in the zinc injection method of the present embodiment is connected to the feed water pipe 36 between the condensate purification device 38 and the low-pressure feed water heater 40 via the zinc injection pipe 21. Details of the zinc injection device 1 will be described with reference to FIG. The zinc injection apparatus 1 includes a zinc dissolution tank (second dissolution tank) 2 that forms a zinc dissolution area therein, a carbon dioxide dissolution tank (first dissolution tank) 4 that forms a carbon dioxide dissolution area therein, and a carbon dioxide supply It has a device 13. The other end of the pipe 7 whose one end is connected to the bottom of the carbon dioxide dissolution tank 4 is connected to the bottom of the zinc dissolution tank 2. One end of the pipe 8 is connected to the top of the zinc dissolution tank 2, and the other end of the pipe 8 is connected to the top of the carbon dioxide gas dissolution tank 4. A closed loop is formed by the carbon dioxide gas dissolution tank 4, the pipe 7, the zinc dissolution tank 2 and the pipe 8. A circulation pump 6 and a flow meter 12 are provided in the pipe 7. A water level meter 10 and a conductivity meter 11 are provided in the carbon dioxide gas dissolution tank 4.

亜鉛溶解槽2の内部には亜鉛を含む粒状の固体を充填する。この粒状の固形物は循環ポンプ6で昇圧された炭酸水溶液24の流れで容易に流動しない大きさとする。そのような固形物としては例えば酸化亜鉛の円柱状焼結体(直径1cm、高さ1cm)または金属亜鉛球(直径1cm)などがある。   The zinc dissolution tank 2 is filled with a granular solid containing zinc. The granular solid is set to a size that does not easily flow due to the flow of the carbonic acid aqueous solution 24 pressurized by the circulation pump 6. Examples of such a solid include a cylindrical sintered body of zinc oxide (diameter 1 cm, height 1 cm) or metal zinc sphere (diameter 1 cm).

炭酸ガス供給装置13は、散気管5、炭酸ガス供給管15及び炭酸ガスボンベ14を有する。散気管5は、多数の噴出孔が形成され、炭酸ガス溶解槽4内の底部に配置される。炭酸ガス供給管15は、散気管5及び炭酸ガスボンベ14に接続される。バルブ16が炭酸ガス供給管15に設けられる。 Carbon dioxide supply apparatus 13 includes a diffuser tube 5, carbon dioxide supply piping 15 and the carbon dioxide cylinder 14. The air diffuser 5 is formed with a large number of ejection holes and is arranged at the bottom in the carbon dioxide dissolution tank 4. Carbon dioxide supply piping 15 is connected to the diffuser tube 5 and the carbon dioxide cylinder 14. Valve 16 is provided in the carbon dioxide gas supply piping 15.

亜鉛注入配管21が、循環ポンプ6の上流で配管7に接続され、さらに、給水配管36に接続される。注入ポンプ20及び流量計22が亜鉛注入配管21に設けられる。制御装置23が、信号線により、水位計10、導電率計11及び流量計12及び22に接続される。   The zinc injection pipe 21 is connected to the pipe 7 upstream of the circulation pump 6 and further connected to the water supply pipe 36. An injection pump 20 and a flow meter 22 are provided in the zinc injection pipe 21. The control device 23 is connected to the water level meter 10, the conductivity meter 11, and the flow meters 12 and 22 by signal lines.

亜鉛注入装置1を用いた本実施例の亜鉛注入方法を、以下に具体的に説明する。   The zinc injection method of the present embodiment using the zinc injection device 1 will be specifically described below.

制御装置23から出力される制御指令に基づいてポンプ18が駆動され、補給水が補給水源17から補給水配管19を通して炭酸ガス溶解槽4に供給される。水位計10計測された水位信号が制御装置23に入力される。制御装置23が、水位計10からの水位信号に基づいて炭酸ガス溶解槽が満水になったと判定したとき、制御装置23がポンプ18の駆動を停止し、補給水の炭酸ガス溶解槽4への供給が停止される。 The pump 18 is driven based on a control command output from the control device 23, and makeup water is supplied from the makeup water source 17 to the carbon dioxide gas dissolution tank 4 through the makeup water pipe 19. The water level signal measured by the water level gauge 10 is input to the control device 23. When the control device 23 determines that the carbon dioxide gas dissolution tank 4 is full based on the water level signal from the water level gauge 10, the control device 23 stops driving the pump 18 and supplies the makeup water to the carbon dioxide gas dissolution tank 4. Is stopped.

炭酸ガス溶解槽4が満水になった後、制御装置23はバルブ16を開く。炭酸ガスボンベ14内の炭酸ガスが、炭酸ガス供給配管15を通って散気管5に供給され、散気管5から炭酸ガス溶解槽4の水中に放出される。放出された炭酸ガスは炭酸ガス溶解槽4内の水に溶解する。この水に溶解しなかった炭酸ガスは、炭酸ガス溶解槽4内を上昇して炭酸ガス溶解槽4からベント配管9に放出される。   After the carbon dioxide gas dissolution tank 4 is full, the control device 23 opens the valve 16. Carbon dioxide gas in the carbon dioxide cylinder 14 is supplied to the diffuser pipe 5 through the carbon dioxide supply pipe 15 and is released from the diffuser pipe 5 into the water of the carbon dioxide dissolution tank 4. The released carbon dioxide is dissolved in the water in the carbon dioxide dissolution tank 4. The carbon dioxide gas not dissolved in the water rises in the carbon dioxide dissolution tank 4 and is discharged from the carbon dioxide dissolution tank 4 to the vent pipe 9.

炭酸ガス溶解槽4に供給された炭酸ガスは、式(1)の反応により、水との界面から水に溶解し、CO2(aq)となる。続いて、式(2)及び式(3)の平衡反応が生じ、炭酸水素イオン(HCO3 -)及び炭酸イオン(CO3 2-)が生じる。炭酸ガス溶解槽4の圧力は大気圧(101.3kPa)であり、気相部には炭酸ガスの他、25℃での飽和水蒸気8.44kPaが含まれる。炭酸ガス溶解水のpHは式(1)から式(3)の平衡定数と式(4)の関係を使って計算すると、炭酸ガスの水への溶解が平衡に達したときには炭酸ガス溶解槽4内の炭酸水溶液24のpHが3.91になる。 The carbon dioxide gas supplied to the carbon dioxide gas dissolution tank 4 is dissolved in water from the interface with water by the reaction of the formula (1), and becomes CO 2 (aq). Subsequently, the equilibrium reactions of the formulas (2) and (3) occur, and hydrogen carbonate ions (HCO 3 ) and carbonate ions (CO 3 2− ) are generated. The pressure of the carbon dioxide dissolution tank 4 is atmospheric pressure (101.3 kPa), and the vapor phase portion contains 8.44 kPa of saturated water vapor at 25 ° C. in addition to carbon dioxide. The pH of the carbon dioxide dissolved water is calculated using the relationship between the equilibrium constants of equations (1) to (3) and equation (4). When the dissolution of carbon dioxide into water reaches equilibrium, the carbon dioxide dissolution tank 4 The pH of the aqueous carbonate solution 24 becomes 3.91.

炭酸ガス溶解槽4内の炭酸水溶液24のpHの低下に伴ってその炭酸水溶液24の導電率は上昇する。このpHが飽和炭酸水のpH3.91に近づいてくると、炭酸ガス溶解槽4内の炭酸水溶液24の導電率の上昇が飽和する。この導電率の上昇が飽和したことは、例えば、10分以上、炭酸ガス溶解槽4内で生成された炭酸水溶液24の導電率が上昇傾向を示さなくなったことをもって判定される。   As the pH of the aqueous carbonate solution 24 in the carbon dioxide dissolution tank 4 decreases, the conductivity of the aqueous carbonate solution 24 increases. When this pH approaches pH 3.91 of saturated carbonated water, the increase in the conductivity of the aqueous carbonate solution 24 in the carbon dioxide gas dissolution tank 4 is saturated. The saturation of the increase in conductivity is determined, for example, when the conductivity of the carbonic acid aqueous solution 24 generated in the carbon dioxide dissolution tank 4 does not show an increasing tendency for 10 minutes or more.

導電率計11は炭酸ガス溶解槽4内の炭酸水溶液24の導電率を計測する。制御装置23は、導電率計11で計測された導電率を入力し、入力した導電率に基づいて炭酸ガス溶解槽4内の炭酸水溶液24の導電率の上昇が飽和したと判定したとき、循環ポンプ6に駆動開始信号を出力する。これにより、循環ポンプ6が駆動され、炭酸ガス溶解槽4内の炭酸水溶液24が、配管7を通って亜鉛溶解槽2に供給される。 The conductivity meter 11 measures the conductivity of the carbonic acid aqueous solution 24 in the carbon dioxide gas dissolution tank 4. When the controller 23 inputs the conductivity measured by the conductivity meter 11 and determines that the increase in the conductivity of the carbonic acid aqueous solution 24 in the carbon dioxide dissolution tank 4 is saturated based on the input conductivity, the controller 23 circulates. A drive start signal is output to the pump 6. Thereby, the circulation pump 6 is driven, and the aqueous carbonic acid solution 24 in the carbon dioxide dissolution tank 4 is supplied to the zinc dissolution tank 2 through the pipe 7.

BWRプラントの一つの運転サイクルでの消費量以上、例えば、30kg以上の酸化亜鉛ペレット(亜鉛を含む固体物質)3が、亜鉛溶解槽2内に予め充填されている。酸化亜鉛の替わりとして炭酸亜鉛、塩基性炭酸亜鉛、及び金属亜鉛のいずれかを用いることも可能である。酸化亜鉛ペレット3は、亜鉛溶解槽2内で上昇する炭酸水溶液24の流速では浮遊しない程度の大きさとする。このため、酸化亜鉛ペレット3の大きさは、例えば、粒径5mm以上とする。これは、亜鉛溶解槽2内に予め充填する酸化亜鉛が微細な粉末である場合には、この酸化亜鉛が、炭酸水溶液24の流れに乗って、溶解しない状態のまま、配管8、及び亜鉛注入配管21を通って給水配管36に注入される。このため、溶解しない酸化亜鉛によって亜鉛注入配管21に目詰まりが生じる恐れがあり、さらに、RPV27内の炉水の亜鉛濃度を管理する上でも好ましくない。   More than the amount consumed in one operation cycle of the BWR plant, for example, 30 kg or more of zinc oxide pellets (solid substance containing zinc) 3 is filled in the zinc dissolution tank 2 in advance. Instead of zinc oxide, any of zinc carbonate, basic zinc carbonate, and metallic zinc can be used. The zinc oxide pellet 3 is set to a size that does not float at the flow rate of the aqueous carbonate solution 24 rising in the zinc dissolution tank 2. For this reason, the magnitude | size of the zinc oxide pellet 3 shall be 5 mm or more in particle size, for example. This is because, when the zinc oxide previously filled in the zinc dissolution tank 2 is a fine powder, the zinc oxide rides on the flow of the aqueous carbonic acid solution 24 and remains in a state of not being dissolved. It is injected into the water supply pipe 36 through the pipe 21. For this reason, there is a possibility that the zinc injection pipe 21 may be clogged by zinc oxide that does not dissolve, and it is not preferable for managing the zinc concentration of the reactor water in the RPV 27.

炭酸ガス溶解槽4から亜鉛溶解槽2内に供給された炭酸水溶液24は、亜鉛溶解槽2内で、充填された多数の酸化亜鉛ペレット3の相互間を酸化亜鉛ペレット3に接触しながら上昇する。上昇する低いpHの炭酸水溶液24が酸化亜鉛ペレット3を溶解し、酸化亜鉛ペレット3に含まれる亜鉛がイオンとなって炭酸水溶液24内に溶出する。この時の酸化亜鉛ペレット3の溶解反応は、式(13)で表される。   The aqueous carbonic acid solution 24 supplied from the carbon dioxide gas dissolution tank 4 into the zinc dissolution tank 2 rises in contact with the zinc oxide pellets 3 among the many zinc oxide pellets 3 filled in the zinc dissolution tank 2. . The rising low pH carbonic acid aqueous solution 24 dissolves the zinc oxide pellets 3, and the zinc contained in the zinc oxide pellets 3 is ionized and eluted into the carbonic acid aqueous solution 24. The dissolution reaction of the zinc oxide pellet 3 at this time is represented by the formula (13).

ZnO+H++H2O = Zn2++2OH- ……(13)
この結果、亜鉛イオンを含む炭酸水溶液(亜鉛イオンを含む注入水)24が亜鉛溶解槽内で生成される。この亜鉛イオンを含む炭酸水溶液では、式(4)から式(9)の平衡関係が成立し、電荷均衡式である式(10)及び亜鉛の質量均衡式である式(11)が成立する。式(1)から式(11)の関係式を用いることにより、図3に示すような炭酸水溶液の亜鉛全濃度[Zn]と炭酸水溶液のpHの関係が求められる。
ZnO + H + + H 2 O = Zn 2+ + 2OH (13)
As a result, an aqueous carbonate solution containing zinc ions (injected water containing zinc ions) 24 is generated in the zinc dissolution tank 2 . In the aqueous carbonate solution containing zinc ions, the equilibrium relations of the equations (4) to (9) are established, and the equation (10) that is a charge balance equation and the equation (11) that is a mass balance equation of zinc are established. By using the relational expressions of Expression (1) to Expression (11), the relationship between the total zinc concentration [Zn] T of the aqueous carbonate solution and the pH of the aqueous carbonate solution as shown in FIG. 3 is obtained.

亜鉛溶解槽2内における亜鉛の溶出によって亜鉛溶解槽2内の炭酸水溶液24のpHが、図3に示すように、中性側に変化し、炭酸水溶液24への亜鉛の溶出度合いが抑制される。亜鉛イオンを含む炭酸水溶液24は、亜鉛溶解槽2の頂部から配管8に排出され、配管8を通って炭酸ガス溶解槽4に供給される。炭酸ガス溶解槽4に供給された亜鉛イオンを含む炭酸水溶液24は、炭酸ガス溶解槽4内の炭酸水溶液24と混合され、循環ポンプ6で昇圧されて配管7を通して亜鉛溶解槽2に導入される。この亜鉛イオンを含む炭酸水溶液24は、亜鉛溶解槽2内で酸化亜鉛ペレット3に接触し、前述したように、酸化亜鉛ペレット3に含まれる亜鉛がイオンとなってその炭酸水溶液24に溶出する。このため、亜鉛イオンを含む炭酸水溶液24の亜鉛イオンの濃度が増加する。   As shown in FIG. 3, the elution of zinc in the zinc dissolution tank 2 causes the pH of the aqueous carbonate solution 24 in the zinc dissolution tank 2 to change to the neutral side, and the degree of zinc elution into the aqueous carbonate solution 24 is suppressed. . The aqueous carbonate solution 24 containing zinc ions is discharged from the top of the zinc dissolution tank 2 to the pipe 8 and supplied to the carbon dioxide dissolution tank 4 through the pipe 8. The carbonic acid aqueous solution 24 containing zinc ions supplied to the carbon dioxide dissolving tank 4 is mixed with the carbonic acid aqueous solution 24 in the carbon dioxide dissolving tank 4, pressurized by the circulation pump 6, and introduced into the zinc dissolving tank 2 through the pipe 7. . The aqueous carbonate solution 24 containing zinc ions comes into contact with the zinc oxide pellets 3 in the zinc dissolution tank 2, and the zinc contained in the zinc oxide pellets 3 is ionized and eluted into the aqueous carbonate solution 24 as described above. For this reason, the density | concentration of the zinc ion of the carbonic acid aqueous solution 24 containing a zinc ion increases.

亜鉛溶解槽2内の亜鉛イオンを含む炭酸水溶液24は、炭酸ガス溶解槽4、配管7、亜鉛溶解槽2及び配管8によって形成される閉ループ内を循環する。このような亜鉛イオンを含む炭酸水溶液24の循環により、この炭酸水溶液24の亜鉛イオン濃度は、酸化亜鉛ペレット3が充填された亜鉛溶解槽2内を炭酸水溶液24が通過するたびに、増加する。閉ループ内を循環する炭酸水溶液24の亜鉛イオンの濃度は、やがて、飽和濃度に到達する。炭酸水溶液24を、酸化亜鉛ペレット3を充填した亜鉛溶解槽2を含む上記の閉ループ内で循環させることによって、亜鉛イオンの濃度が飽和濃度付近まで上昇した炭酸水溶液24を容易に得ることができる。   The aqueous carbonate solution 24 containing zinc ions in the zinc dissolution tank 2 circulates in a closed loop formed by the carbon dioxide dissolution tank 4, the pipe 7, the zinc dissolution tank 2 and the pipe 8. The circulation of the aqueous carbonate solution 24 containing zinc ions increases the zinc ion concentration of the aqueous carbonate solution 24 each time the aqueous carbonate solution 24 passes through the zinc dissolution tank 2 filled with the zinc oxide pellets 3. The concentration of zinc ions in the aqueous carbonic acid solution 24 circulating in the closed loop will eventually reach a saturation concentration. By circulating the carbonic acid aqueous solution 24 in the closed loop including the zinc dissolution tank 2 filled with the zinc oxide pellets 3, the carbonic acid aqueous solution 24 in which the concentration of zinc ions is increased to near the saturation concentration can be easily obtained.

発明者らは、このときの酸化亜鉛ペレット3から炭酸水溶液24に溶解する亜鉛の溶解速度を、図1に示す構成を有する試験装置を用いて検討した。この試験装置は、図1に示された亜鉛注入装置1を小型化したものである。使用する水の量が10リットル、亜鉛溶解槽に充填される酸化亜鉛ペレットが770gである。さらに、この試験装置では、亜鉛注入装置1に設けられる、ポンプ18を設置している補給水配管19、及び注入ポンプ20を設置している亜鉛注入配管21が除去されている。   The inventors examined the dissolution rate of zinc dissolved in the aqueous carbonate solution 24 from the zinc oxide pellet 3 at this time using a test apparatus having the configuration shown in FIG. This test apparatus is a miniaturized version of the zinc injection apparatus 1 shown in FIG. The amount of water used is 10 liters, and 770 g of zinc oxide pellets filled in the zinc dissolution tank. Further, in this test apparatus, the makeup water pipe 19 provided with the pump 18 and the zinc injection pipe 21 provided with the injection pump 20 provided in the zinc injection apparatus 1 are removed.

炭酸ガス溶解槽内の水の温度を30℃にして炭酸ガスを散気管からその水の中にバブリングし、炭酸ガス溶解槽内で炭酸水溶液を生成した。炭酸水溶液の導電率の上昇が飽和したところで、循環ポンプを駆動して炭酸ガス溶解槽内の炭酸水溶液を、酸化亜鉛ペレットが充填された亜鉛溶解槽に供給した。この時における亜鉛溶解槽への炭酸水溶液の供給時間と炭酸水溶液の亜鉛濃度の関係を図5に示す。図5の特性に基づけば、亜鉛溶解槽への炭酸水溶液の供給を開始した時点から約20時間を経過したときに、亜鉛溶解槽内の炭酸水溶液の亜鉛濃度が飽和濃度に到達していることが分かる。図5に示された菱形のプロット(実験値)と式(12)に基づいて、溶解した亜鉛の拡散速度係数D、酸化亜鉛ペレットの表面に形成された拡散層厚みδ、亜鉛の飽和溶解度cをフィッティングで求め、これらの値を用いて計算した亜鉛濃度の経時変化を図5に実線で示した。 The temperature of the water in the carbon dioxide dissolution tank was set to 30 ° C., and carbon dioxide was bubbled into the water from the diffuser tube to generate an aqueous carbonate solution in the carbon dioxide dissolution tank. When the increase in the conductivity of the aqueous carbonate solution was saturated, the circulation pump was driven to supply the aqueous carbonate solution in the carbon dioxide dissolution tank to the zinc dissolution tank filled with zinc oxide pellets. FIG. 5 shows the relationship between the supply time of the aqueous carbonate solution to the zinc dissolution tank at this time and the zinc concentration of the aqueous carbonate solution. Based on the characteristics of FIG. 5, the zinc concentration of the aqueous carbonate solution in the zinc dissolution vessel has reached the saturation concentration when about 20 hours have elapsed since the start of the supply of the aqueous carbonate solution to the zinc dissolution vessel. I understand. Based on the rhombus plot (experimental value) and the equation (12) shown in FIG. 5, the diffusion rate coefficient D of the dissolved zinc, the thickness of the diffusion layer δ formed on the surface of the zinc oxide pellet, the saturation solubility c of zinc s was obtained by fitting, and the change over time in the zinc concentration calculated using these values was shown by a solid line in FIG.

同様の実験を炭酸水溶液の流速を変化させて行い、求めた拡散層の厚みδと炭酸水溶液の流速の関係を求めた。この結果、炭酸水溶液の流速が変化すると、拡散層の厚みδが図4に示すように変化した。この図4によれば、炭酸水溶液の流速が速くなると拡散層の厚みδが薄くなり、式(12)から拡散層の厚みδが薄くなるほど亜鉛の溶解速度が速くなることが分かる。例えば、炭酸水溶液の流速が5500cm/hであるときの拡散層の厚み0.034cmに比べてその流速が124cm/hであるときの拡散層の厚みは0.11cmと約3倍になる。この結果、炭酸水溶液の流速が124cm/hであるときの亜鉛の溶解速度は、炭酸水溶液の流速が5500cm/hであるときの亜鉛の溶解速度の1/3に低下する。従って、酸化亜鉛ペレットに接触する炭酸水溶液の流速が速いほどこの炭酸水溶液の亜鉛濃度が早く飽和溶解度に到達することになる。亜鉛濃度が飽和溶解度付近に到達してしまえば、循環ポンプ6の回転速度を下げて亜鉛溶解槽内における炭酸水溶液の流速を下げ、循環ポンプ6の負荷を減らすことが望ましい。   A similar experiment was performed by changing the flow rate of the aqueous carbonate solution, and the relationship between the obtained thickness δ of the diffusion layer and the flow rate of the aqueous carbonate solution was determined. As a result, when the flow rate of the aqueous carbonate solution changed, the thickness δ of the diffusion layer changed as shown in FIG. According to FIG. 4, it can be seen that the diffusion layer thickness δ decreases as the flow rate of the aqueous carbonate solution increases, and the dissolution rate of zinc increases as the diffusion layer thickness δ decreases from equation (12). For example, the thickness of the diffusion layer when the flow rate is 124 cm / h is about 0.13 cm, which is about three times as large as the diffusion layer thickness of 0.034 cm when the flow rate of the aqueous carbonate solution is 5500 cm / h. As a result, the dissolution rate of zinc when the flow rate of the aqueous carbonate solution is 124 cm / h is reduced to 1/3 of the dissolution rate of zinc when the flow rate of the aqueous carbonate solution is 5500 cm / h. Therefore, the faster the flow rate of the aqueous carbonate solution in contact with the zinc oxide pellets, the faster the zinc concentration of the aqueous carbonate solution reaches the saturation solubility. When the zinc concentration reaches near the saturation solubility, it is desirable to reduce the load of the circulation pump 6 by lowering the rotational speed of the circulation pump 6 to reduce the flow rate of the aqueous carbonate solution in the zinc dissolution tank.

亜鉛注入装置1を用いた本実施例の亜鉛注入方法を、図4及び図5に示された特性を用いて更に説明する。亜鉛注入装置1の閉ループ内を循環する炭酸水溶液24の総量を200kgとし、その炭酸水溶液24の線流速を5500cm/hとした場合、炭酸水溶液24の亜鉛濃度が約10時間で飽和溶解度に近い350ppmに到達する。そこで、制御装置23は、導電率計11で計測された導電率に基づいて、炭酸ガスをバブリングしている炭酸水溶液24の炭酸濃度が炭酸飽和濃度に到達したと判定したとき、亜鉛溶解槽2内の炭酸水溶液24の線流速が5500cm/hになるように、循環ポンプ6を駆動する。   The zinc injection method of the present embodiment using the zinc injection device 1 will be further described using the characteristics shown in FIGS. When the total amount of the carbonic acid aqueous solution 24 circulating in the closed loop of the zinc injection device 1 is 200 kg and the linear flow rate of the carbonic acid aqueous solution 24 is 5500 cm / h, the zinc concentration of the carbonic acid aqueous solution 24 is 350 ppm close to the saturation solubility in about 10 hours. To reach. Therefore, when the control device 23 determines that the carbonic acid concentration of the carbonic acid aqueous solution 24 bubbling carbon dioxide gas has reached the carbonic acid saturation concentration based on the conductivity measured by the conductivity meter 11, the zinc dissolution tank 2 is used. The circulation pump 6 is driven so that the linear flow rate of the aqueous carbonate solution 24 becomes 5500 cm / h.

発明者らが実験によって求めた、炭酸が飽和した炭酸水溶液24中の亜鉛濃度とその炭酸水溶液24の導電率の関係を示す特性を、図6に示す。図6に示されたこの特性は制御装置23のメモリ(図示せず)に予め記憶されている。制御装置23は、導電率計11で計測した炭酸水溶液24の導電率を用いてその炭酸水溶液24の亜鉛濃度を求め、この亜鉛濃度が例えば350ppmに到達したときに、循環ポンプ6の回転数を制御して亜鉛溶解槽2を流れる炭酸水溶液24の流速を例えば124cm/hまで低下させる。亜鉛溶解槽2内での亜鉛の溶解初期では亜鉛を早く炭酸水溶液24に溶解した方が、RPV27内への亜鉛注入が早期にできるので好ましい。しかし、一旦、炭酸水溶液24の亜鉛濃度が飽和溶解度になるとその後は線流速を下げて亜鉛の溶解速度を落として、循環ポンプ6の駆動電力を節約することが望ましい。   FIG. 6 shows the characteristics obtained by experiments by the inventors and showing the relationship between the zinc concentration in the carbonated aqueous solution 24 saturated with carbonic acid and the conductivity of the carbonated aqueous solution 24. This characteristic shown in FIG. 6 is stored in advance in a memory (not shown) of the control device 23. The control device 23 obtains the zinc concentration of the aqueous carbonate solution 24 using the conductivity of the aqueous carbonate solution 24 measured by the conductivity meter 11, and when the zinc concentration reaches, for example, 350 ppm, the rotational speed of the circulation pump 6 is determined. The flow rate of the aqueous carbonate solution 24 flowing through the zinc dissolution tank 2 is controlled to be lowered to, for example, 124 cm / h. In the initial stage of zinc dissolution in the zinc dissolution tank 2, it is preferable to dissolve zinc in the aqueous carbonate solution 24 earlier because zinc can be injected into the RPV 27 earlier. However, once the zinc concentration of the aqueous carbonic acid solution 24 reaches the saturation solubility, it is desirable to reduce the linear flow rate to lower the zinc dissolution rate and save the driving power of the circulation pump 6.

制御装置23は、炭酸水溶液24の亜鉛濃度が350ppmに到達したと判定したとき、注入ポンプ20の起動信号を出力する。注入ポンプ20は、この起動信号により起動される。注入ポンプ20が起動すると、炭酸ガス溶解槽4から排出された、亜鉛濃度が350ppmである炭酸水溶液24が、亜鉛注入配管21を通して給水配管36に注入される。亜鉛濃度350ppmの炭酸水溶液24は、給水配管36内を流れる給水に混入される。更に、制御装置23は、注入する炭酸水溶液24の亜鉛濃度及び給水配管36内を流れる給水の流量(給水流量)に基づいてRPV27に供給される給水の亜鉛濃度が所定の値、例えば0.2ppb(設定亜鉛濃度)になるように、給水配管36への炭酸水溶液24の注入量を制御する。110万kWのBWRプラントでは給水流量が6400t/hであるので、制御装置23は、注入する炭酸水溶液24の亜鉛濃度、給水流量及び設定亜鉛濃度に基づいて、亜鉛濃度350ppmの炭酸水溶液24の注入量を3.5kg/hと算出し、炭酸水溶液24の注入量がこの値になるように注入ポンプ20の回転速度を制御する。炭酸水溶液24中では、亜鉛はイオン状になっている。   When it is determined that the zinc concentration of the aqueous carbonate solution 24 has reached 350 ppm, the control device 23 outputs an activation signal for the infusion pump 20. The infusion pump 20 is activated by this activation signal. When the injection pump 20 is started, the carbonic acid aqueous solution 24 having a zinc concentration of 350 ppm discharged from the carbon dioxide dissolution tank 4 is injected into the water supply pipe 36 through the zinc injection pipe 21. The carbonic acid aqueous solution 24 having a zinc concentration of 350 ppm is mixed into the feed water flowing through the feed water pipe 36. Further, the control device 23 determines that the zinc concentration of the feed water supplied to the RPV 27 based on the zinc concentration of the carbonated aqueous solution 24 to be injected and the flow rate (feed water flow rate) of the feed water flowing in the feed water pipe 36 is a predetermined value, for example, 0.2 ppb. The injection amount of the carbonic acid aqueous solution 24 into the water supply pipe 36 is controlled so as to be (set zinc concentration). Since the feed water flow rate is 6400 t / h in the BWR plant of 1.1 million kW, the control device 23 injects the carbonate aqueous solution 24 having a zinc concentration of 350 ppm based on the zinc concentration of the carbonate aqueous solution 24 to be injected, the feed water flow rate, and the set zinc concentration. The amount is calculated as 3.5 kg / h, and the rotation speed of the injection pump 20 is controlled so that the injection amount of the aqueous carbonate solution 24 becomes this value. In the carbonic acid aqueous solution 24, zinc is ionic.

給水配管36内に注入された亜鉛イオンを含む炭酸水溶液24は給水配管36内で給水に混合され、この亜鉛イオンを含む給水が、RPV27に供給される。給水に含まれた亜鉛イオンはRPV27内で炉水に混入される。亜鉛イオンを含む炉水が、RPV27内を循環し、RPV27に接続された配管(例えば、再循環系配管31及び浄化系配管43等)内を流れる。亜鉛イオンを含む炭酸水溶液24の給水配管36への注入が継続して行われると、炭酸ガス溶解槽4内の水位が低下する。このため、補給水源17から炭酸ガス溶解槽4内に水が補給される。例えば、水位計10で計測された、炭酸ガス溶解槽4の水位を入力した制御装置23は、この水位に基づいて、炭酸ガス溶解槽4の水位が炭酸ガス溶解槽4の保有水量200kgのうち一割が給水配管36に注入された状態における炭酸ガス溶解槽4の下限設定水位まで低下したと判定したとき、ポンプ18の起動信号を出力する。ポンプ18が起動され、補給水源17の水が補給水配管19を通して炭酸ガス溶解槽4に供給される。制御装置23は、補給水の供給により、水位計10で計測された水位が満水状態を示す上限設定水位に達したと判定したとき、ポンプ1の停止信号を出力する。このとき、ポンプ18の駆動が停止される。 The aqueous carbonate solution 24 containing zinc ions injected into the water supply pipe 36 is mixed with the water supply in the water supply pipe 36, and the water supply containing the zinc ions is supplied to the RPV 27. Zinc ions contained in the feed water are mixed into the reactor water in the RPV 27. Reactor water containing zinc ions circulates in the RPV 27 and flows in pipes connected to the RPV 27 (for example, the recirculation system pipe 31 and the purification system pipe 43). If the carbonic acid aqueous solution 24 containing zinc ions is continuously injected into the water supply pipe 36, the water level in the carbon dioxide gas dissolution tank 4 is lowered. For this reason, water is replenished from the makeup water source 17 into the carbon dioxide gas dissolution tank 4. For example, the control device 23 that has input the water level of the carbon dioxide gas dissolution tank 4 measured by the water level gauge 10 determines that the water level of the carbon dioxide gas dissolution tank 4 is based on this water level out of the retained water amount 200 kg of the carbon dioxide gas dissolution tank 4. When it is determined that the water level has been lowered to the lower limit set water level of the carbon dioxide gas dissolution tank 4 in a state where 10% is injected into the water supply pipe 36, an activation signal of the pump 18 is output. The pump 18 is activated, and the water from the makeup water source 17 is supplied to the carbon dioxide dissolution tank 4 through the makeup water pipe 19. When the control device 23 determines that the water level measured by the water level gauge 10 has reached the upper limit set water level indicating a full water state by supplying makeup water, it outputs a stop signal for the pump 18 . At this time, the drive of the pump 18 is stopped.

補給水の炭酸ガス溶解槽4への供給により、炭酸ガス溶解槽4内の炭酸水溶液24の亜鉛濃度が下がり、炭酸水溶液24の導電率も低下する。制御装置23は、導電率計11で計測した導電率に基づいて求めた、炭酸ガス溶解槽4内の炭酸水溶液24の亜鉛濃度が、亜鉛の飽和濃度の、例えば、20%減の280ppmを下回ったと判定したとき、循環ポンプ6の回転速度を増加させる。亜鉛溶解槽2内を上昇する炭酸水溶液24の線流速が5500cm/hに速められ、炭酸水溶液24の亜鉛イオン濃度が亜鉛の飽和濃度に到達するまでに要する時間が短縮される。炭酸水溶液24の亜鉛濃度が亜鉛の飽和濃度よりも低い期間では、給水に注入される炭酸水溶液24の亜鉛濃度を0.2ppbに維持できるように、制御装置23が注入ポンプ20の駆動を制御し、注入速度を上げて炭酸水溶液24の注入量を増やすことで対応する。例えば、炭酸水溶液24の亜鉛濃度が280ppmの場合には、制御装置23は、給水配管36への炭酸水溶液24の注入量を4.6kg/hと算出し、炭酸水溶液24の注入量がこの値になるように注入ポンプ20の駆動を制御する。 By supplying makeup water to the carbon dioxide dissolution tank 4, the zinc concentration of the aqueous carbonate solution 24 in the carbon dioxide dissolution tank 4 is lowered, and the conductivity of the aqueous carbonate solution 24 is also lowered. The control device 23 determines that the zinc concentration of the aqueous carbonic acid solution 24 in the carbon dioxide dissolution tank 4 obtained based on the conductivity measured by the conductivity meter 11 is lower than the saturation concentration of zinc, for example, 280 ppm, which is a 20% decrease. When it is determined that the rotation has occurred, the rotational speed of the circulation pump 6 is increased. The linear flow rate of the aqueous carbonate solution 24 rising in the zinc dissolution tank 2 is increased to 5500 cm / h, and the time required for the zinc ion concentration of the aqueous carbonate solution 24 to reach the saturated zinc concentration is shortened. In a period in which the zinc concentration of the aqueous carbonate solution 24 is lower than the saturation concentration of zinc, the controller 23 controls the driving of the injection pump 20 so that the zinc concentration of the aqueous carbonate solution 24 injected into the feed water can be maintained at 0.2 ppb. This can be dealt with by increasing the injection rate and increasing the injection amount of the aqueous carbonate solution 24. For example, when the zinc concentration of the aqueous carbonate solution 24 is 280 ppm, the control device 23 calculates the injection amount of the aqueous carbonate solution 24 to the water supply pipe 36 as 4.6 kg / h, and the injection amount of the aqueous carbonate solution 24 is this value. The drive of the infusion pump 20 is controlled so that

なお、流量計12で計測された、亜鉛溶解槽2に供給される炭酸水溶液24の流量は、制御装置23に入力される。制御装置23は、炭酸水溶液24の亜鉛の飽和濃度に対応した、亜鉛溶解槽2に供給される炭酸水溶液24の流量(設定流量)を記憶しており、流量計12から入力した流量に基づいて亜鉛溶解槽2に供給される炭酸水溶液24の流量が設定流量になったかを確認する。また、流量計22で計測された流量も制御装置23に入力される。制御装置23は、流量計22から入力した流量、及び導電率計11で計測した導電率を用いて求めた炭酸水溶液24の亜鉛濃度に基づいて、注入ポンプ20の回転速度を調節し、給水配管36に注入する亜鉛を含む炭酸水溶液の注入量を制御する。 The flow rate of the aqueous carbonate solution 24 supplied to the zinc dissolution tank 2 measured by the flow meter 12 is input to the control device 23. Control unit 23, corresponding to the saturation concentration of zinc carbonate aqueous solution 24 stores a flow rate (set flow rate) of the carbonate aqueous solution 24 to be supplied to the zinc dissolving tank 2, based on the flow rate inputted from the flow meter 12 Then, it is confirmed whether the flow rate of the aqueous carbonate solution 24 supplied to the zinc dissolution tank 2 has reached the set flow rate. Further, the flow rate measured by the flow meter 22 is also input to the control device 23. The control device 23 adjusts the rotation speed of the injection pump 20 based on the flow rate input from the flow meter 22 and the zinc concentration of the aqueous carbonate solution 24 determined using the conductivity measured by the conductivity meter 11, and the water supply pipe The injection amount of the carbonic acid aqueous solution containing zinc injected into 36 is controlled.

このように、本実施例では炭酸ガス溶解槽4内での炭酸ガスの溶解、亜鉛溶解槽2内での炭酸水溶液24による亜鉛の溶解、及び亜鉛イオンを溶解した炭酸水溶液24の炭酸ガス溶解槽4及び亜鉛溶解槽2への再循環により、亜鉛濃度が亜鉛の飽和濃度に近い、亜鉛を含む炭酸水溶液24を作成し、この亜鉛含有炭酸水溶液を給水に注入し、この注入によって減少した水量を補うため水を炭酸ガス溶解槽4に補給するという亜鉛注入装置1の運転が、BWRプラントの1つの運転サイクルにおいて繰り返されることで、亜鉛イオンを含む給水がRPV27に供給される。   As described above, in this embodiment, the carbon dioxide gas is dissolved in the carbon dioxide dissolution tank 4, the zinc is dissolved by the carbon dioxide solution 24 in the zinc dissolution tank 2, and the carbon dioxide dissolution tank of the carbon dioxide solution 24 in which zinc ions are dissolved. 4 and by recirculation to the zinc dissolution tank 2, a zinc carbonate aqueous solution 24 having a zinc concentration close to the saturation concentration of zinc is prepared, this zinc-containing carbonate aqueous solution is injected into the feed water, and the amount of water reduced by this injection is reduced. The supply of water containing zinc ions is supplied to the RPV 27 by repeating the operation of the zinc injection device 1 for supplying water to the carbon dioxide dissolution tank 4 to make up for it in one operation cycle of the BWR plant.

本実施例では、350ppmの亜鉛イオンを含む炭酸水溶液24を3.5kg/hで給水に注入しているが、これは1.2g/hの亜鉛イオンの供給速度に相当する。1つの運転サイクルを10000hとすると、亜鉛を含む固体物質の消費量は、亜鉛で12kg、酸化亜鉛では15kgとなる。本実施例では30kgの酸化亜鉛ペレット3がBWRプラント起動前の定期検査中に亜鉛溶解槽2へ供給されているので、プラント運転中は亜鉛イオンの原料を補給する必要はなく、プラント運転中は亜鉛注入装置1を連続して運転することが可能である。   In this embodiment, the aqueous carbonate solution 24 containing 350 ppm of zinc ions is injected into the feed water at 3.5 kg / h, which corresponds to a supply rate of 1.2 g / h of zinc ions. Assuming that one operation cycle is 10,000 h, the consumption amount of the solid substance containing zinc is 12 kg for zinc and 15 kg for zinc oxide. In this embodiment, 30 kg of zinc oxide pellets 3 are supplied to the zinc dissolution tank 2 during the periodic inspection before the start of the BWR plant, so there is no need to replenish zinc ion raw materials during plant operation, It is possible to operate the zinc injection device 1 continuously.

本実施例は、亜鉛注入装置1で上記したように生成された亜鉛イオンを含む炭酸水溶液24を給水配管36に注入し、亜鉛イオンを含む給水をRPV27内の炉水に供給するので、再循環系配管31及び浄化系配管43等の炉水の流れる配管の内面への放射性コバルトの付着量を低減することができる。このため、定期検査の作業時における従事者の放射線被ばくを低減することができる。   In this embodiment, the aqueous carbonate solution 24 containing zinc ions generated as described above in the zinc injection device 1 is injected into the water supply pipe 36, and the supply water containing zinc ions is supplied to the reactor water in the RPV 27. It is possible to reduce the amount of radioactive cobalt attached to the inner surfaces of the piping through which the reactor water flows, such as the system piping 31 and the purification system piping 43. For this reason, the radiation exposure of the worker at the time of the work of the periodic inspection can be reduced.

本実施例によれば、炭酸ガス溶解槽4内の炭酸水溶液24を、酸化亜鉛ペレット3を充填した亜鉛溶解槽2及び炭酸ガス溶解槽4を含む閉ループ内で循環させるので、亜鉛イオンを含みRPV27に注入される炭酸水溶液(注入水)24の亜鉛イオン濃度を高くすることができる。このため、RPV27内の炉水の亜鉛イオン濃度をより短時間で増加させることができる。   According to the present embodiment, the carbonic acid aqueous solution 24 in the carbon dioxide dissolution tank 4 is circulated in the closed loop including the zinc dissolution tank 2 filled with the zinc oxide pellets 3 and the carbon dioxide dissolution tank 4, so that the RPV 27 containing zinc ions is contained. The zinc ion concentration of the carbonic acid aqueous solution (injected water) 24 injected into the can be increased. For this reason, the zinc ion concentration of the reactor water in the RPV 27 can be increased in a shorter time.

本実施例では、炭酸ガス溶解槽4から配管7を通して亜鉛溶解槽2に供給する炭酸水溶液24の流速を調節することができるので、炭酸水溶液24の亜鉛イオン濃度を設定亜鉛イオン濃度まで高めるのに要する時間を短くすることができる。また、炭酸水溶液24の亜鉛イオン濃度が設定亜鉛イオン濃度に増加した後では、亜鉛溶解槽2内の炭酸水溶液24の流速が遅くなるように調節することができる。これによって、炭酸ガス溶解槽4から亜鉛溶解槽2に炭酸水溶液24を供給する循環ポンプ6の負荷を低減することができ、循環ポンプ6で消費する電力を少なくすることができる。 In this embodiment, since the flow rate of the carbonic acid aqueous solution 24 supplied from the carbon dioxide dissolving tank 4 to the zinc dissolving tank 2 through the pipe 7 can be adjusted, the zinc ion concentration of the carbonic acid aqueous solution 24 is increased to the set zinc ion concentration. The time required can be shortened. Moreover, after the zinc ion concentration of the carbonic acid aqueous solution 24 increases to the set zinc ion concentration, the flow rate of the carbonic acid aqueous solution 24 in the zinc dissolution tank 2 can be adjusted to be slow. As a result, the load on the circulation pump 6 that supplies the aqueous carbonate solution 24 from the carbon dioxide dissolution tank 4 to the zinc dissolution tank 2 can be reduced, and the power consumed by the circulation pump 6 can be reduced.

本実施例では、炭酸ガスの溶解と亜鉛の溶解を別々の溶解槽で行っているので、すなわち、炭酸ガス溶解槽4において炭酸ガスの溶解により炭酸水溶液24を生成し、亜鉛溶解槽2においてこの炭酸水溶液24を用いて亜鉛を溶解するので、炭酸ガスの溶解により生成される炭酸水溶液24の炭酸濃度の調節を容易に行うことができ、所定濃度の亜鉛イオンを含む炭酸水溶液24の生成を容易に行うことができる。   In the present embodiment, the dissolution of carbon dioxide and the dissolution of zinc are performed in separate dissolution tanks, that is, the carbon dioxide aqueous solution 24 is generated by the dissolution of carbon dioxide in the carbon dioxide dissolution tank 4, and this is dissolved in the zinc dissolution tank 2. Since zinc is dissolved using the carbonic acid aqueous solution 24, the carbonic acid concentration of the carbonic acid aqueous solution 24 generated by dissolving carbon dioxide gas can be easily adjusted, and the carbonic acid aqueous solution 24 containing a predetermined concentration of zinc ions can be easily generated. Can be done.

本実施例は、炭酸ガス溶解槽4に導電率計11を設置しているので、導電率計11の導電率計測値に基づいて炭酸ガス溶解槽4内で生成された炭酸水溶液24の炭酸濃度を容易に確認することができる。設定炭酸濃度になった炭酸水溶液24を酸化亜鉛ペレット3が充填された亜鉛溶解槽2に供給することができ、亜鉛溶解槽2内での亜鉛の溶解を効率良く行うことができる。また、本実施例では、その導電率計11の導電率計測値に基づいて炭酸水溶液24の亜鉛イオン濃度を求めるので、炭酸水溶液24の亜鉛イオン濃度を精度良く求めることができる。このため、RPV27内の炉水に注入する亜鉛イオン濃度を所定濃度に調節することができる。導電率計11の計測値は、炭酸水溶液24の炭酸濃度及び亜鉛濃度の算出に利用することができる。   In this embodiment, since the conductivity meter 11 is installed in the carbon dioxide gas dissolution tank 4, the carbon dioxide concentration of the aqueous carbonic acid solution 24 generated in the carbon dioxide gas dissolution tank 4 based on the measured conductivity value of the conductivity meter 11. Can be easily confirmed. The aqueous carbonic acid solution 24 having a set carbonic acid concentration can be supplied to the zinc dissolution tank 2 filled with the zinc oxide pellets 3, and the zinc can be efficiently dissolved in the zinc dissolution tank 2. In this embodiment, since the zinc ion concentration of the aqueous carbonate solution 24 is obtained based on the measured conductivity value of the conductivity meter 11, the zinc ion concentration of the aqueous carbonate solution 24 can be obtained with high accuracy. For this reason, the zinc ion concentration injected into the reactor water in the RPV 27 can be adjusted to a predetermined concentration. The measured value of the conductivity meter 11 can be used to calculate the carbonic acid concentration and the zinc concentration of the aqueous carbonic acid solution 24.

所定濃度の亜鉛イオンを含む炭酸水溶液24を給水に注水しながら、炭酸ガス溶解槽4に補給水を供給して炭酸水溶液24を亜鉛溶解槽2に供給するので、亜鉛イオンを含む炭酸水溶液24の給水への注水を、継続して行いことができる。   While the carbonated water solution 24 containing a predetermined concentration of zinc ions is poured into the feed water, makeup water is supplied to the carbon dioxide gas dissolution tank 4 and the carbonated water solution 24 is supplied to the zinc dissolution tank 2. Water can be continuously poured into the water supply.

本実施例では、炭酸ガスの炭酸ガス溶解槽4への注入、停止の判定、炭酸水溶液の亜鉛濃度の判定、亜鉛溶解槽2に供給される炭酸水溶液24の流速の調節、及び給水配管36への亜鉛イオンを含む炭酸水溶液24の注入量の制御、補給水の供給及び停止の制御、及びバルブ16の制御を制御装置23で行っていたが、これらの制御操作の一部または全てを運転員が行うことも可能である。しかし、運転員の負担軽減の観点からは出来るだけ制御装置23を用いて行うことが望ましい。   In the present embodiment, injection of carbon dioxide into the carbon dioxide dissolution tank 4, determination of stoppage, determination of the zinc concentration of the aqueous carbonate solution, adjustment of the flow rate of the aqueous carbonate solution 24 supplied to the zinc dissolution tank 2, and the water supply pipe 36 The control device 23 controls the injection amount of the aqueous carbonate solution 24 containing zinc ions, the supply and stop of the makeup water, and the valve 16. However, some or all of these control operations are performed by the operator. Can also be done. However, it is desirable to use the control device 23 as much as possible from the viewpoint of reducing the burden on the operator.

亜鉛注入装置1を給水配管36ではなく浄化装置48よりも下流で浄化系配管43に接続し、亜鉛注入装置1で生成された亜鉛イオンを含む炭酸水溶液24を浄化装置48よりも下流の浄化系配管43に注入しても良い。浄化装置48よりも下流の浄化系配管43に注入された、亜鉛イオンを含む炭酸水溶液24は、給水配管36を経てRPV27内に供給される。   The zinc injection device 1 is connected to the purification system pipe 43 downstream of the purification device 48 instead of the water supply pipe 36, and the aqueous carbonate solution 24 containing zinc ions generated by the zinc injection device 1 is purified downstream of the purification device 48. You may inject | pour into the piping 43. FIG. The aqueous carbonate solution 24 containing zinc ions injected into the purification system pipe 43 downstream of the purification device 48 is supplied into the RPV 27 through the water supply pipe 36.

本発明の他の好適な実施例である実施例2の亜鉛注入方法を、図7を用いて説明する。本実施例の亜鉛注入方法は、沸騰水型原子力プラント(以下、BWRプラントという)に適用される。   A zinc injection method according to embodiment 2, which is another preferred embodiment of the present invention, will be described with reference to FIG. The zinc injection method of the present embodiment is applied to a boiling water nuclear plant (hereinafter referred to as a BWR plant).

本実施例の亜鉛注入方法に用いられる亜鉛注入装置1Aを、図2を用いて説明する。亜鉛注入装置1Aは、本質的には、実施例1に用いられる亜鉛注入装置1において亜鉛溶解槽2及び炭酸ガス溶解槽4を一体化した溶解槽25を有している。循環ポンプ6及び流量計12が設けられた配管7の一端部が溶解槽25の底部に接続され、配管7の他端部が溶解槽25の頂部に接続される。溶解槽25は亜鉛溶解槽2と炭酸ガス溶解槽4を一体化した構成を有し、溶解槽25内には酸化亜鉛ペレット3が充填される亜鉛溶解領域52、及び亜鉛溶解領域52の下方に位置する溶液貯留領域50が形成される。配管7の他端部は亜鉛溶解領域52の上方で溶解槽25に接続される。補給水配管19が亜鉛溶解領域52の上方で溶解槽25に連絡される。圧力計51が排気バルブ(図示せず)を設けた配管により溶解槽25に接続される。炭酸ガス供給装置13の替りに設置した炭酸ガス供給装置13Aは、散気管5を有していなく、炭酸ガス供給配管15及び炭酸ガスボンベ14を有する。亜鉛注入装置1Aの他の構成は前述の亜鉛注入装置1と同じである。溶液貯留領域50が実施例1における炭酸ガス溶解槽4に該当し、亜鉛溶解領域52が実施例1における亜鉛溶解槽2に該当する。炭酸ガス供給配管15は、溶解槽25に接続され、溶解槽25内で溶液貯留領域50と亜鉛溶解領域52の間に形成される空間に連絡される。 A zinc injection apparatus 1A used in the zinc injection method of this embodiment will be described with reference to FIG. The zinc injection apparatus 1A essentially has a dissolution tank 25 in which the zinc dissolution tank 2 and the carbon dioxide gas dissolution tank 4 are integrated in the zinc injection apparatus 1 used in the first embodiment. One end of the pipe 7 provided with the circulation pump 6 and the flow meter 12 is connected to the bottom of the dissolution tank 25, and the other end of the pipe 7 is connected to the top of the dissolution tank 25. The dissolution tank 25 has a configuration in which the zinc dissolution tank 2 and the carbon dioxide dissolution tank 4 are integrated. The dissolution tank 25 is filled with the zinc oxide pellets 3 and below the zinc dissolution area 52. A positioned solution storage area 50 is formed. The other end of the pipe 7 is connected to the dissolution tank 25 above the zinc dissolution region 52. The makeup water pipe 19 is connected to the dissolution tank 25 above the zinc dissolution region 52. A pressure gauge 51 is connected to the dissolution tank 25 by a pipe provided with an exhaust valve (not shown). A carbon dioxide supply device 13 </ b> A installed in place of the carbon dioxide supply device 13 does not have the diffuser pipe 5 but has a carbon dioxide supply pipe 15 and a carbon dioxide cylinder 14. Other configurations of the zinc injection device 1A are the same as those of the zinc injection device 1 described above. The solution storage area 50 corresponds to the carbon dioxide dissolution tank 4 in the first embodiment, and the zinc dissolution area 52 corresponds to the zinc dissolution tank 2 in the first embodiment. The carbon dioxide gas supply pipe 15 is connected to the dissolution tank 25 and communicates with a space formed between the solution storage area 50 and the zinc dissolution area 52 in the dissolution tank 25.

亜鉛注入装置1Aを用いた本実施例の亜鉛注入方法を以下に説明する。制御装置23Aがバルブ16の開信号を出力する。この開信号の出力によってバルブ16が開いて炭酸ガスボンベ14内の炭酸ガスが炭酸ガス供給配管15を通して溶解槽25内に注入される。この炭酸ガスは、溶解槽25内において亜鉛溶解領域52内の酸化亜鉛ペレット3相互間にも充填される。炭酸ガスの溶解槽25内への充填後、上記の排気バルブは制御装置23Aから出力された閉信号によって閉じられる。制御装置23Aは、圧力計51で計測した溶解槽25内の圧力が、設定圧力である大気圧よりも高い値、例えば1.5気圧になったとき、閉信号の出力によりバルブ16を閉める。バルブ16を閉めた時点では溶液貯留領域50に水が存在しないので、注入された1.5気圧の炭酸ガスは、溶液貯留領域50及び亜鉛溶解領域52を含む溶解槽25内の全域に存在する。   The zinc injection method of the present embodiment using the zinc injection device 1A will be described below. The control device 23A outputs an opening signal of the valve 16. The valve 16 is opened by the output of the open signal, and the carbon dioxide in the carbon dioxide cylinder 14 is injected into the dissolution tank 25 through the carbon dioxide supply pipe 15. This carbon dioxide gas is also filled between the zinc oxide pellets 3 in the zinc dissolution region 52 in the dissolution tank 25. After the carbon dioxide gas is filled into the dissolution tank 25, the exhaust valve is closed by a close signal output from the control device 23A. When the pressure in the dissolution tank 25 measured by the pressure gauge 51 becomes a value higher than the set atmospheric pressure, for example, 1.5 atmospheric pressure, the control device 23A closes the valve 16 by outputting a closing signal. Since water does not exist in the solution storage region 50 when the valve 16 is closed, the injected 1.5 atmospheric pressure carbon dioxide gas exists in the entire dissolution tank 25 including the solution storage region 50 and the zinc dissolution region 52. .

バルブ16が閉じられた後、制御装置23Aがポンプ18に起動信号を出力する。ポンプ18が駆動し、補給水源17から水が補給水配管19を通して溶解槽25内に供給される。補給水配管19から供給された水は、溶解槽25内で頂部に設けられて補給水配管19に接続された噴射ノズル(図示せず)から亜鉛溶解領域52に向かってシャワー状に噴射される。噴射された水は、亜鉛溶解領域52内の酸化亜鉛ペレット3に降り注がれ、亜鉛溶解領域52の上端部に存在する各酸化亜鉛ペレット3の表面に水膜を形成する。溶解槽25内に先に充填した炭酸ガスがそれらの酸化亜鉛ペレット3の表面に形成された水膜に溶解し、各水膜のpHが低下する。水膜のpHの低下により酸化亜鉛ペレット3の表面が溶解し始める。噴射ノズルから水の噴射が継続されている関係上、この水膜は、気相中の炭酸ガス及び酸化亜鉛ペレット3に含まれる亜鉛を溶解しながら、各酸化亜鉛ペレット3の表面を伝って亜鉛溶解領域52の下端に向かって流下する。やがて、炭酸ガス及び亜鉛を溶解した水膜が、亜鉛イオンを含む炭酸水溶液24となって、亜鉛溶解領域52から溶液貯留領域50に落下する。循環ポンプ及び注入ポンプ20が駆動されていないため、落下した亜鉛イオンを含む炭酸水溶液24は、溶液貯留領域50に蓄えられる。 After the valve 16 is closed, the control device 23 </ b> A outputs an activation signal to the pump 18. The pump 18 is driven, and water is supplied from the make-up water source 17 into the dissolution tank 25 through the make-up water pipe 19. The water supplied from the make-up water pipe 19 is sprayed in a shower shape toward the zinc dissolving region 52 from an injection nozzle (not shown) provided at the top in the dissolution tank 25 and connected to the make-up water pipe 19. The The sprayed water is poured onto the zinc oxide pellets 3 in the zinc dissolution region 52 and forms a water film on the surface of each zinc oxide pellet 3 present at the upper end of the zinc dissolution region 52. The carbon dioxide gas previously filled in the dissolution tank 25 is dissolved in the water film formed on the surface of the zinc oxide pellets 3, and the pH of each water film is lowered. The surface of the zinc oxide pellet 3 begins to dissolve due to a decrease in the pH of the water film. Since water is continuously sprayed from the spray nozzle, this water film dissolves the carbon dioxide in the gas phase and zinc contained in the zinc oxide pellets 3, while passing through the surface of each zinc oxide pellet 3. It flows down toward the lower end of the dissolution region 52. Eventually, the water film in which carbon dioxide gas and zinc are dissolved becomes a carbonic acid aqueous solution 24 containing zinc ions, and falls from the zinc dissolution region 52 to the solution storage region 50. Since the circulation pump and the injection pump 20 are not driven, the carbonated aqueous solution 24 containing the dropped zinc ions is stored in the solution storage region 50.

水位計10で計測された溶液貯留領域50内の水位が制御装置23Aに入力され、制御装置23Aがその計測された水位が溶液貯留領域50における満水状態の上限設定水位になったと判定したとき、制御装置23Aが、ポンプ18を停止させ、補給水配管19から溶解槽25への水の供給を停止させる。溶液貯留領域50において満水状態になったとき、溶液貯留領域50に形成される、亜鉛イオンを含む炭酸水溶液24の液面と亜鉛溶解領域52の下端の間に空間が形成される。   When the water level in the solution storage region 50 measured by the water level meter 10 is input to the control device 23A, and the control device 23A determines that the measured water level has reached the upper limit set water level in the solution storage region 50, The control device 23 </ b> A stops the pump 18 and stops the supply of water from the makeup water pipe 19 to the dissolution tank 25. When the solution storage region 50 becomes full, a space is formed between the liquid surface of the aqueous carbonate solution 24 containing zinc ions and the lower end of the zinc dissolution region 52 formed in the solution storage region 50.

溶解槽25内の、亜鉛イオンを含む炭酸水溶液24の液面が上限設定水位になったとき、制御装置23は循環ポンプ6を起動する。溶液貯留領域50内の亜鉛イオンを含む炭酸水溶液24が、循環ポンプ6の起動によって昇圧され、配管7を通って溶解槽25の頂部の噴射ノズルに導かれる。亜鉛イオンを含む炭酸水溶液24が、噴射ノズルから、亜鉛溶解領域52の上端に位置している各酸化亜鉛ペレット3に向かってシャワー状に噴射される。噴射された亜鉛イオンを含む炭酸水溶液24が、亜鉛溶解領域52内の各酸化亜鉛ペレット3の表面を伝わって下降しながら、亜鉛溶解領域52の気相部に存在する炭酸ガスを溶解し、酸化亜鉛ペレット3に含まれる亜鉛を溶解する。炭酸及び亜鉛のそれぞれの濃度が増加しながら各酸化亜鉛ペレット3の表面を伝わって下降する亜鉛イオンを含む炭酸水溶液24は、亜鉛溶解領域52から溶液貯留領域50に向かって落下する。溶液貯留領域50に落下する亜鉛イオンを含む炭酸水溶液24の亜鉛濃度は、噴射ノズルから噴射される亜鉛イオンを含む炭酸水溶液24の亜鉛濃度よりも増加している。   When the level of the aqueous carbonate solution 24 containing zinc ions in the dissolution tank 25 reaches the upper limit set water level, the control device 23 activates the circulation pump 6. The aqueous carbonate solution 24 containing zinc ions in the solution storage region 50 is pressurized by the activation of the circulation pump 6, and is guided to the injection nozzle at the top of the dissolution tank 25 through the pipe 7. Carbonic acid aqueous solution 24 containing zinc ions is sprayed in a shower shape from the spray nozzle toward each zinc oxide pellet 3 located at the upper end of the zinc dissolution region 52. While the carbonated aqueous solution 24 containing the injected zinc ions descends along the surface of each zinc oxide pellet 3 in the zinc dissolution region 52, the carbon dioxide gas existing in the gas phase portion of the zinc dissolution region 52 is dissolved and oxidized. Zinc contained in the zinc pellet 3 is dissolved. The carbonic acid aqueous solution 24 containing zinc ions descending along the surface of each zinc oxide pellet 3 while the respective concentrations of carbonic acid and zinc are increased falls from the zinc dissolution region 52 toward the solution storage region 50. The zinc concentration of the aqueous carbonate solution 24 containing zinc ions falling into the solution storage area 50 is higher than the zinc concentration of the aqueous carbonate solution 24 containing zinc ions ejected from the ejection nozzle.

溶液貯留領域50内の亜鉛イオンを含む炭酸水溶液24は、循環ポンプ6によって配管7内での線流速が5500cm/hになるように流れる。このため、噴射ノズルから噴射されて各酸化亜鉛ペレット3の表面に沿って亜鉛溶解領域52内を下降する亜鉛イオンを含む炭酸水溶液24の下降速度も増加し、それだけ、酸化亜鉛ペレット3から亜鉛イオンを含む炭酸水溶液24への亜鉛の溶解速度が増加する。   The aqueous carbonate solution 24 containing zinc ions in the solution storage region 50 flows by the circulation pump 6 so that the linear flow velocity in the pipe 7 is 5500 cm / h. For this reason, the descending speed of the carbonic acid aqueous solution 24 containing zinc ions ejected from the ejection nozzle and descending in the zinc dissolution region 52 along the surface of each zinc oxide pellet 3 is also increased. The dissolution rate of zinc in the carbonic acid aqueous solution 24 containing sucrose increases.

亜鉛イオンを含む炭酸水溶液24は、循環ポンプ6の駆動により、溶解槽25内の溶液貯留領域50、配管7、溶解槽25内の亜鉛溶解領域52及び溶解槽25内の溶液貯留領域50を含む閉ループ内を循環する。亜鉛イオンを含む炭酸水溶液24のそのような循環が継続されることによって、亜鉛イオンを含む炭酸水溶液24の亜鉛濃度が増加する。その炭酸水溶液24の循環が継続されると、上記したように溶解槽25内の炭酸ガスが亜鉛イオンを含む炭酸水溶液24に溶解するため、溶解槽25内の圧力が徐々に低下する。   The aqueous carbonate solution 24 containing zinc ions includes a solution storage area 50 in the dissolution tank 25, a pipe 7, a zinc dissolution area 52 in the dissolution tank 25, and a solution storage area 50 in the dissolution tank 25 by driving the circulation pump 6. Circulate in a closed loop. By continuing such circulation of the aqueous carbonate solution 24 containing zinc ions, the zinc concentration of the aqueous carbonate solution 24 containing zinc ions increases. When the circulation of the carbonic acid aqueous solution 24 is continued, the carbon dioxide gas in the dissolution tank 25 is dissolved in the carbonic acid aqueous solution 24 containing zinc ions as described above, so that the pressure in the dissolution tank 25 gradually decreases.

制御装置23は、入力する、圧力計51で計測した圧力が例えば1.2気圧になったときに、バルブ16を開く。炭酸ガスが炭酸ガスボンベ14から炭酸ガス供給配管15を通って溶解槽25内に供給され、制御装置23は溶解槽25内の圧力が1.5気圧に維持されるように、バルブ16の開度を制御する。   The control device 23 opens the valve 16 when the input pressure measured by the pressure gauge 51 becomes, for example, 1.2 atmospheres. Carbon dioxide gas is supplied from the carbon dioxide cylinder 14 through the carbon dioxide supply pipe 15 into the dissolution tank 25, and the controller 23 opens the valve 16 so that the pressure in the dissolution tank 25 is maintained at 1.5 atm. To control.

上記の閉ループ内での亜鉛を含む炭酸水溶液24の循環が継続して行われると、溶液貯留領域50内に存在する亜鉛を含む炭酸水溶液24の亜鉛濃度が増加し、この炭酸水溶液24の導電率が上昇する。炭酸水溶液24の導電率の計測は導電率計11で行われ、計測された導電率が制御装置23に入力される。制御装置23は、入力した導電率を用いて溶液貯留領域50内の炭酸水溶液24の亜鉛濃度を求め、この亜鉛濃度が飽和濃度、例えば350ppmに到達したとき、循環ポンプ6の回転速度を低下させる。これにより、配管7内を流れる炭酸水溶液24の流速が例えば124cm/hまで低下され、亜鉛溶解領域52内で酸化亜鉛ペレット3の表面に沿って下降する亜鉛イオンを含む炭酸水溶液24の流速が遅くなる。それだけ、酸化亜鉛ペレット3から亜鉛イオンを含む炭酸水溶液24への亜鉛の溶解速度が減少する。   When the circulation of the aqueous carbonate solution 24 containing zinc in the closed loop is continuously performed, the zinc concentration of the aqueous carbonate solution 24 containing zinc existing in the solution storage region 50 increases, and the conductivity of the aqueous carbonate solution 24 is increased. Rises. The conductivity of the aqueous carbonate solution 24 is measured by the conductivity meter 11, and the measured conductivity is input to the control device 23. The control device 23 obtains the zinc concentration of the carbonic acid aqueous solution 24 in the solution storage region 50 using the input conductivity, and reduces the rotational speed of the circulation pump 6 when the zinc concentration reaches a saturation concentration, for example, 350 ppm. . Thereby, the flow rate of the aqueous carbonate solution 24 flowing in the pipe 7 is reduced to, for example, 124 cm / h, and the flow rate of the aqueous carbonate solution 24 containing zinc ions descending along the surface of the zinc oxide pellet 3 in the zinc dissolution region 52 is slow. Become. Accordingly, the dissolution rate of zinc from the zinc oxide pellet 3 into the aqueous carbonate solution 24 containing zinc ions decreases.

さらに、溶液貯留領域50内の炭酸水溶液24の亜鉛濃度が350ppmになったとき、制御装置23は、注入ポンプ20を起動する。亜鉛濃度が350ppmになっている、溶液貯留領域50内の炭酸水溶液24は、注入ポンプ20で昇圧され、亜鉛注入配管21を通って給水配管36内を流れる給水に注入される。亜鉛イオンを含む給水が給水配管36よりRPV27内に供給される。制御装置23は、実施例1と同様に、注入する炭酸水溶液24の亜鉛濃度、給水流量及び設定亜鉛濃度に基づいて、亜鉛濃度350ppmの炭酸水溶液24の給水配管36への注入量を算出し、炭酸水溶液24の注入量が算出した値になるように注入ポンプ20の回転速度を制御する。   Furthermore, when the zinc concentration of the aqueous carbonic acid solution 24 in the solution storage area 50 reaches 350 ppm, the control device 23 activates the infusion pump 20. The aqueous carbonate solution 24 in the solution storage area 50 having a zinc concentration of 350 ppm is pressurized by the injection pump 20 and injected into the feed water flowing through the feed water pipe 36 through the zinc injection pipe 21. Supply water containing zinc ions is supplied into the RPV 27 from the supply water pipe 36. Similarly to the first embodiment, the control device 23 calculates the injection amount of the carbonated aqueous solution 24 having a zinc concentration of 350 ppm into the feed pipe 36 based on the zinc concentration, the feed water flow rate and the set zinc concentration of the carbonated aqueous solution 24 to be injected, The rotation speed of the injection pump 20 is controlled so that the injection amount of the carbonic acid aqueous solution 24 becomes the calculated value.

溶液貯留領域50内の亜鉛イオンを含む炭酸水溶液24の給水配管36への注入によって、溶液貯留領域50内の水位が下限設定水位まで低下したときには、実施例1と同様に、補給水を補給水配管19を通して溶解槽25内に供給することにより、溶液貯留領域50内の水位が上限設定水位まで回復される。   When the water level in the solution storage area 50 is lowered to the lower limit set water level due to the injection of the aqueous carbonate solution 24 containing zinc ions in the solution storage area 50 into the water supply pipe 36, the makeup water is supplied to the makeup water as in the first embodiment. By supplying into the dissolution tank 25 through the pipe 19, the water level in the solution storage area 50 is recovered to the upper limit set water level.

本実施例は実施例1で生じる効果のうち、炭酸ガスの溶解と亜鉛の溶解を別々の溶解槽で行っていることにより得られる効果を除いて、残りの各効果を得ることができる。実施例1における各効果の説明における、炭酸ガス溶解槽4は本実施例では溶液貯留領域50に相当し、亜鉛溶解槽2は亜鉛溶解領域52に相当している。   This example can obtain the remaining effects except for the effect obtained by performing dissolution of carbon dioxide gas and dissolution of zinc in separate dissolution tanks among the effects produced in Example 1. In the description of each effect in the first embodiment, the carbon dioxide dissolution tank 4 corresponds to the solution storage area 50 in this embodiment, and the zinc dissolution tank 2 corresponds to the zinc dissolution area 52.

本実施例では、亜鉛溶解領域52及び溶液貯留領域50を溶解槽25内に配置しているので、実施例1において亜鉛溶解槽2と炭酸ガス溶解槽4を連絡する配管8が不要になる。さらに、本実施例では、炭酸ガスの溶解槽25への注入口が気相になっており、散気管5が設置されていない。本実施例では、炭酸ガスを水中に吹き込んでいないので、炭酸ガスの水への溶解効率が低くなるが、亜鉛溶解領域52に充填した酸化亜鉛ペレット3をラヒシリングの代わりとして使用することができ、気液接触面積を拡大することができる。このため、炭酸ガスの水への溶解効率の低下を抑制することができる。   In the present embodiment, since the zinc dissolution region 52 and the solution storage region 50 are arranged in the dissolution tank 25, the pipe 8 connecting the zinc dissolution tank 2 and the carbon dioxide gas dissolution tank 4 in the first embodiment is not necessary. Furthermore, in this embodiment, the inlet of the carbon dioxide gas into the dissolution tank 25 is in the gas phase, and the air diffuser 5 is not installed. In this embodiment, since carbon dioxide gas is not blown into water, the dissolution efficiency of carbon dioxide gas in water is lowered, but the zinc oxide pellets 3 filled in the zinc dissolution region 52 can be used as an alternative to rahisling, The gas-liquid contact area can be enlarged. For this reason, the fall of the melt | dissolution efficiency to the water of a carbon dioxide gas can be suppressed.

本発明の他の好適な実施例である実施例3の亜鉛注入方法を、図8を用いて説明する。本実施例の亜鉛注入方法は、沸騰水型原子力プラント(以下、BWRプラントという)に適用される。   A zinc injection method according to embodiment 3, which is another preferred embodiment of the present invention, will be described with reference to FIG. The zinc injection method of the present embodiment is applied to a boiling water nuclear plant (hereinafter referred to as a BWR plant).

本実施例の亜鉛注入方法に用いられる亜鉛注入装置1Bを、図8を用いて説明する。亜鉛注入装置1Bは、実施例2で用いられる亜鉛注入装置1Aに実施例1で用いられる亜鉛注入装置1における散気管5を溶液貯留領域50内の底部に配置し、この散気管5に炭酸ガス供給装置13Aの炭酸ガス供給配管15を接続した構成を有する。亜鉛注入装置1Bの他の構成は亜鉛注入装置1Aと同じである。溶解槽(第3溶解槽)25は実施例1における亜鉛溶解槽2及び炭酸ガス溶解槽4を一体化した構成である。   A zinc injection apparatus 1B used in the zinc injection method of this embodiment will be described with reference to FIG. In the zinc injection device 1B, the diffuser pipe 5 in the zinc injection device 1 used in the first embodiment is arranged in the bottom of the solution storage region 50 in the zinc injection device 1A used in the second embodiment. The carbon dioxide gas supply pipe 15 of the supply device 13A is connected. Other configurations of the zinc injection device 1B are the same as those of the zinc injection device 1A. The dissolution tank (third dissolution tank) 25 has a configuration in which the zinc dissolution tank 2 and the carbon dioxide dissolution tank 4 in Example 1 are integrated.

本実施例では、実施例1と同様に、炭酸ガスを散気管5から炭酸水溶液24にバブリングさせて炭酸ガスを炭酸水溶液24に溶解させる。本実施例では、散気管5から放出した炭酸ガスの炭酸水溶液24への溶解は溶液貯留領域50内で行われる。本実施例における溶液貯留領域50は、炭酸水溶液24への炭酸ガスの溶解を行う炭酸ガス溶解領域である。実施例2の亜鉛注入方法で生じる各作用は、本実施例でも生じる。本実施例では、散気管5から放出されて溶液貯留領域50内の炭酸水溶液24に溶解しきれなかった炭酸ガスは、溶液貯留領域50の液面上方まで上昇し、亜鉛溶解領域52内で各酸化亜鉛ペレット3の表面を伝って下降する炭酸水溶液24に溶解される。   In the present embodiment, as in the first embodiment, carbon dioxide is bubbled from the air diffuser 5 to the aqueous carbonate solution 24 to dissolve the carbon dioxide in the aqueous carbonate solution 24. In this embodiment, the carbon dioxide gas released from the air diffuser 5 is dissolved in the aqueous solution 24 in the solution storage area 50. The solution storage area 50 in the present embodiment is a carbon dioxide dissolution area where the carbon dioxide is dissolved in the aqueous carbonate solution 24. Each action produced by the zinc injection method of Example 2 also occurs in this example. In this embodiment, the carbon dioxide gas released from the air diffuser 5 and not completely dissolved in the aqueous carbonate solution 24 in the solution storage area 50 rises to above the liquid level in the solution storage area 50, It is dissolved in the aqueous carbonate solution 24 descending along the surface of the zinc oxide pellet 3.

溶液貯留領域50内の亜鉛濃度350ppmの炭酸水溶液24は、注入ポンプ20の駆動によって給水配管36内を流れる給水に注入され、RPV27内の炉水に混入される。   The aqueous carbonate solution 24 having a zinc concentration of 350 ppm in the solution storage area 50 is injected into the feed water flowing through the feed water pipe 36 by driving the injection pump 20 and mixed into the reactor water in the RPV 27.

本実施例は、実施例2で生じる各効果を得ることができる。   In the present embodiment, each effect produced in the second embodiment can be obtained.

実施例1ないし3は、加圧水型原子力プラントに適用することができる。   Examples 1 to 3 can be applied to a pressurized water nuclear plant.

1,1A,1B…亜鉛注入装置、2…亜鉛溶解槽、3…酸化亜鉛ペレット、4…炭酸ガス溶解槽、5…散気管、6…循環ポンプ、7,8…配管、10…水位計、11…導電率計、13…炭酸ガス供給装置、14…炭酸ガスボンベ、19…補給水配管、20…注入ポンプ、21…亜鉛注入配管、23,23A…制御装置、26…原子炉、27…原子炉圧力容器、28…炉心、31…再循環系配管、33…主蒸気配管、34…タービン、35…復水器、36…給水配管、39…給水ポンプ、49…水素注入装置、50…溶液貯留領域、51…圧力計、52…亜鉛溶解領域。   DESCRIPTION OF SYMBOLS 1,1A, 1B ... Zinc injection | pouring apparatus, 2 ... Zinc dissolution tank, 3 ... Zinc oxide pellet, 4 ... Carbon dioxide dissolution tank, 5 ... Aeration pipe, 6 ... Circulation pump, 7, 8 ... Piping, 10 ... Water level meter, DESCRIPTION OF SYMBOLS 11 ... Conductivity meter, 13 ... Carbon dioxide supply device, 14 ... Carbon dioxide gas cylinder, 19 ... Supply water piping, 20 ... Injection pump, 21 ... Zinc injection piping, 23, 23A ... Control device, 26 ... Reactor, 27 ... Atom Reactor pressure vessel, 28 ... core, 31 ... recirculation piping, 33 ... main steam piping, 34 ... turbine, 35 ... condenser, 36 ... feeding piping, 39 ... feed pump, 49 ... hydrogen injection device, 50 ... solution Storage area, 51 ... pressure gauge, 52 ... zinc dissolution area.

Claims (9)

炭酸ガス溶解領域内に存在する炭酸水溶液に炭酸ガスを注入して前記炭酸ガスを前記炭酸水溶液に溶解し、
記炭酸ガス溶解領域、及び亜鉛を含む固体物質が存在する亜鉛溶解領域を含む閉ループに設けたポンプ装置を駆動して、前記炭酸ガス溶解領域内の前記炭酸水溶液を前記閉ループ循環させ、
前記固体物質に含まれる前記亜鉛を、前記亜鉛溶解領域内において、前記循環によって前記炭酸ガス溶解領域から前記亜鉛溶解領域に供給される前記炭酸水溶液に溶解し、
記炭酸ガス溶解領域内の、溶解した前記亜鉛を含む炭酸水溶液を、原子炉圧力容器に接続された配管を通して前記原子炉圧力容器に供給し、
前記亜鉛溶解領域から排出された、前記溶解した亜鉛を含む前記炭酸水溶液を、前記循環によって前記炭酸ガス溶解領域に供給すると共に、前記炭酸ガス溶解領域内に存在する前記炭酸水溶液と混合させ、
前記炭酸ガス溶解領域内で前記炭酸水溶液と混合された、前記溶解した亜鉛を含む前記炭酸水溶液を、前記亜鉛溶解領域に供給し、
前記溶解した亜鉛を含む炭酸水溶液の亜鉛濃度に基づいた前記ポンプ装置の制御により、前記亜鉛溶解領域に供給する前記炭酸水溶液の流速を変えることによって、前記亜鉛溶解領域内における、前記固体物質から前記炭酸水溶液への前記亜鉛の溶解速度を制御すること特徴とする亜鉛注入方法。
Injecting carbon dioxide into a carbon dioxide aqueous solution present in the carbon dioxide dissolution region to dissolve the carbon dioxide gas in the carbon dioxide aqueous solution,
Before SL carbon dioxide dissolution zone, and by driving the pump device provided in a closed loop comprising zinc dissolution zone the solid material is present, including zinc, the carbonate solution in the carbonic acid gas dissolving region is circulated in the closed loop,
The zinc contained in the solid substance is dissolved in the aqueous solution of carbonic acid supplied from the carbon dioxide dissolution region to the zinc dissolution region by the circulation in the zinc dissolution region,
Before SL carbon dioxide dissolved in the region, a carbonate aqueous solution containing the zinc dissolved, was supplied to the reactor pressure vessel through pipe connected to the reactor pressure vessel,
The carbonic acid aqueous solution containing the dissolved zinc discharged from the zinc dissolving region is supplied to the carbon dioxide dissolving region by the circulation, and mixed with the carbonic acid aqueous solution present in the carbon dioxide dissolving region,
Supplying the aqueous carbonate solution containing the dissolved zinc mixed with the aqueous carbonate solution in the carbon dioxide dissolution region to the zinc dissolution region;
By controlling the pump device based on the zinc concentration of the carbonated aqueous solution containing the dissolved zinc, the flow rate of the carbonated aqueous solution supplied to the zinc-dissolved region is changed to change the solid substance in the zinc-dissolved region from the solid substance. A zinc injection method characterized by controlling the dissolution rate of the zinc in an aqueous carbonate solution .
前記炭酸水溶液の前記亜鉛濃度が設定亜鉛濃度よりも小さいときに前記亜鉛溶解領域に供給される前記炭酸水溶液の第1流速、前記炭酸水溶液の前記亜鉛濃度が前記設定亜鉛濃度になったときに前記亜鉛溶解領域に供給される前記炭酸水溶液の第2流速よりも速くする請求項1に記載の亜鉛注入方法。 A first flow rate of the carbonic acid aqueous solution in which the zinc concentration of the carbonate aqueous solution is supplied to the zinc dissolution zone when less than the set concentration of zinc, the zinc concentration of the carbonate aqueous solution to the set concentration of zinc 2. The zinc injection method according to claim 1, wherein the zinc injection method is made faster than the second flow rate of the aqueous carbonate solution supplied to the zinc dissolution region when the first and second zinc dissolution regions become. 前記閉ループ内を循環した前記溶解した亜鉛を含む炭酸水溶液の前記原子炉圧力容器への供給により前記炭酸ガス溶解領域内の水位が下限設定水位に低下したとき、前記炭酸ガス溶解領域内に水を補給する請求項1またはに記載の亜鉛注入方法。 When the water level in the carbon dioxide gas dissolution zone is lowered to the lower limit set water level by supplying the carbonated aqueous solution containing dissolved zinc circulated in the closed loop to the reactor pressure vessel, water is introduced into the carbon dioxide gas dissolution zone. The zinc injection method according to claim 1 or 2 , wherein replenishment is performed. 前記炭酸ガス溶解領域内の前記水位が上限設定水位まで上昇したとき、前記炭酸ガス溶解領域への前記水の補給を停止する請求項に記載の亜鉛注入方法。 4. The zinc injection method according to claim 3 , wherein when the water level in the carbon dioxide dissolution region rises to an upper limit set water level, supply of the water to the carbon dioxide dissolution region is stopped. 前記炭酸水溶液の導電率を計測し、計測された前記導電率を用いて前記炭酸水溶液の前記亜鉛濃度を算出し、前記算出された亜鉛濃度に基づいて前記亜鉛溶解領域に供給する前記炭酸水溶液の流速を制御する請求項1に記載の亜鉛注入方法。 Measuring the conductivity of the carbonate aqueous solution, using the conductivity which is measured to calculate the zinc concentration of the carbonate aqueous solution, the supply to the zinc dissolution region based on the calculated zinc concentrations The zinc injection method according to claim 1, wherein the flow rate of the aqueous carbonate solution is controlled. 前記炭酸ガスの注入が、第1溶解槽内に形成された前記炭酸ガス溶解領域内の前記炭酸水溶液に対して行われ、前記亜鉛の溶解が第2溶解槽内に形成された前記亜鉛溶解領域内で行われる請求項1に記載の亜鉛注入方法。   The injection of the carbon dioxide gas is performed on the aqueous solution of carbonic acid in the carbon dioxide gas dissolution region formed in the first dissolution tank, and the zinc dissolution region formed in the second dissolution tank is dissolved in the zinc. The method for injecting zinc according to claim 1, wherein the method is performed within the inside. 前記炭酸ガスの注入が、溶解槽内に形成された前記炭酸ガス溶解領域内の前記炭酸水溶液に対して行われ、前記亜鉛の溶解が前記溶解槽内に形成された前記亜鉛溶解領域内で行われる請求項1に記載の亜鉛注入方法。   The carbon dioxide gas is injected into the carbonic acid aqueous solution in the carbon dioxide gas dissolution region formed in the dissolution tank, and the zinc is dissolved in the zinc dissolution region formed in the dissolution tank. The zinc injection method according to claim 1. 炭酸水溶液が存在する炭酸ガス溶解領域を内部に形成する第1溶解槽と、前記炭酸ガス溶解領域に炭酸ガスを供給する炭酸ガス供給装置と、亜鉛を含む固体物質が存在する亜鉛溶解領域を内部に形成する第2溶解槽と、前記第1溶解槽及び前記第2溶解槽を含み、前記第1溶解槽及び前記第2溶解槽の間で前記炭酸水溶液を循環させる閉ループと、前記閉ループに設けられ、前記炭酸ガス溶解領域内の前記炭酸水溶液を前記亜鉛溶解領域に供給するポンプ装置と、前記炭酸ガス溶解領域内の前記亜鉛を含む前記炭酸水溶液を原子炉圧力容器に接続された配管に注入する炭酸水溶液注入装置と、前記炭酸ガス溶解領域に炭酸ガスを供給する炭酸ガス供給装置と、前記第1溶解槽から前記第2溶解槽への前記炭酸水溶液の供給時に前記ポンプ装置を駆動させ、かつ前記亜鉛を含む炭酸水溶液の亜鉛濃度に基づいて前記ポンプ装置を制御することにより、前記亜鉛溶解領域に供給する前記炭酸水溶液の流速を変え、前記亜鉛溶解領域内における、前記亜鉛を含む固体物質から前記炭酸水溶液への前記亜鉛の溶解速度を制御する制御装置とを備えたことを特徴とする亜鉛注入装置。 A first dissolution tank for forming a carbon dioxide gas dissolution region in which a carbonic acid aqueous solution exists , a carbon dioxide supply device for supplying carbon dioxide gas to the carbon dioxide dissolution region, and a zinc dissolution region in which a solid substance containing zinc exists a second dissolution tank is formed, the saw including a first dissolution tank and the second dissolving tank, a closed loop for circulating the carbonate solution between said first dissolution tank and the second dissolving tank, in the closed loop A pump device provided to supply the carbonic acid aqueous solution in the carbon dioxide dissolution region to the zinc dissolution region, and a pipe connected to the carbon dioxide aqueous solution containing the zinc in the carbon dioxide dissolution region to a reactor pressure vessel a carbonate solution injection device for injecting, said carbon dioxide supply unit for supplying carbon dioxide dissolution zone into carbon dioxide, said pump apparatus from the first dissolving tank upon supply of the carbonate solution of the the second dissolving tank By driving and controlling the pump device based on the zinc concentration of the aqueous carbonate solution containing zinc, the flow rate of the aqueous carbonate solution supplied to the zinc dissolution region is changed, and the zinc in the zinc dissolution region is changed. And a control device for controlling a dissolution rate of the zinc from the solid substance contained in the aqueous carbonate solution . 前記炭酸ガス溶解領域、及び前記炭酸ガス溶解領域の上方に配置された前記亜鉛溶解領域が内部に配置されて、前記第1溶解槽と前記第2溶解槽を一体化した第3溶解槽を備えている請求項に記載の亜鉛注入装置。 A third dissolution tank in which the carbon dioxide dissolution area and the zinc dissolution area disposed above the carbon dioxide dissolution area are disposed, and the first dissolution tank and the second dissolution tank are integrated; The zinc injection device according to claim 8 .
JP2012258400A 2012-11-27 2012-11-27 Zinc injection method and zinc injection device Active JP6144480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012258400A JP6144480B2 (en) 2012-11-27 2012-11-27 Zinc injection method and zinc injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012258400A JP6144480B2 (en) 2012-11-27 2012-11-27 Zinc injection method and zinc injection device

Publications (2)

Publication Number Publication Date
JP2014106074A JP2014106074A (en) 2014-06-09
JP6144480B2 true JP6144480B2 (en) 2017-06-07

Family

ID=51027697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012258400A Active JP6144480B2 (en) 2012-11-27 2012-11-27 Zinc injection method and zinc injection device

Country Status (1)

Country Link
JP (1) JP6144480B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523696B2 (en) * 1987-10-16 1996-08-14 株式会社日立製作所 Direct cycle nuclear power plant
JPH0353198A (en) * 1989-07-20 1991-03-07 Hitachi Ltd Suspended iron generator and boiling water type nuclear power plant contg. thereof
JPH041599A (en) * 1990-04-18 1992-01-07 Hitachi Ltd Reducing method for radioactive material of atomic energy power plant
JPH0784090A (en) * 1993-09-10 1995-03-31 Toshiba Corp Method and device for injecting metal ion into reactor primary coolant
JP2000162383A (en) * 1998-11-26 2000-06-16 Hitachi Ltd Operation method for reactor power plant

Also Published As

Publication number Publication date
JP2014106074A (en) 2014-06-09

Similar Documents

Publication Publication Date Title
TWI503845B (en) Chemical decontamination method of carbon steel components in nuclear power plant
TWI416543B (en) Suppression method of radionuclide deposition on reactor component of nuclear power plant and film formation apparatus,nuclear power plant
JP6619717B2 (en) Method for adhering noble metals to carbon steel members of nuclear power plant and method for suppressing radionuclide adhesion to carbon steel members of nuclear power plant
JP5557475B2 (en) Method and apparatus for forming ferrite film on members constituting nuclear power plant
JP6931622B2 (en) Method of attaching precious metals to carbon steel members of nuclear power plants and methods of suppressing adhesion of radionuclides to carbon steel members of nuclear power plants
JP6144480B2 (en) Zinc injection method and zinc injection device
JP2009210307A (en) Adhesion suppression method of radioactive nuclide on nuclear power plant constituting member, and ferrite film forming device
JP6059106B2 (en) Chemical decontamination method for carbon steel components in nuclear power plant
JP6523973B2 (en) Method for suppressing adhesion of radionuclides, and film forming apparatus for carbon steel piping
JP6001926B2 (en) Zinc injection method and zinc injection device
JP7344132B2 (en) Method of adhering precious metals to carbon steel members of a nuclear power plant and method of suppressing adhesion of radionuclides to carbon steel members of a nuclear power plant
JP6322493B2 (en) Method for suppressing radionuclide adhesion to carbon steel components in nuclear power plants
JP2017138139A (en) Chemical decontamination method, chemical decontamination device, and nuclear power plant using them
JP6868545B2 (en) Corrosion control method for carbon steel parts of plants
JP6751010B2 (en) Method for forming radioactive substance adhesion suppression film
JP2014137249A (en) Zinc injection method and zinc injection device
JP7411502B2 (en) Chemical decontamination method for carbon steel parts of nuclear power plants
TWI825540B (en) Chemical decontamination methods and chemical decontamination devices
JP7104616B2 (en) Method of suppressing adhesion of radionuclides to carbon steel components of nuclear power plants
JP7475171B2 (en) Chemical decontamination method and chemical decontamination apparatus
JP2020148574A (en) Method for forming nickel metallic coating onto carbon steel member of nuclear power plant, and method for suppressing adhesion of radionuclide onto carbon steel member of nuclear power plant
WO2019102768A1 (en) Method for adhering noble metal to carbon steel member of nuclear power plant and method for suppressing radionuclide adhesion to carbon steel member of nuclear power plant
JP4349956B2 (en) Operation method of residual heat removal system
JP2023161666A (en) Chemical decontamination method for carbon steel member of nuclear power plant
JP2019164059A (en) Method for suppressing radioactive nuclide deposition on carbon steel member of nuclear power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170511

R150 Certificate of patent or registration of utility model

Ref document number: 6144480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150