JPH04159498A - Impeller of multiblade fan - Google Patents
Impeller of multiblade fanInfo
- Publication number
- JPH04159498A JPH04159498A JP28200590A JP28200590A JPH04159498A JP H04159498 A JPH04159498 A JP H04159498A JP 28200590 A JP28200590 A JP 28200590A JP 28200590 A JP28200590 A JP 28200590A JP H04159498 A JPH04159498 A JP H04159498A
- Authority
- JP
- Japan
- Prior art keywords
- blade
- impeller
- angle
- pressure surface
- blades
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 5
- 239000004033 plastic Substances 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 241000270666 Testudines Species 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000035922 thirst Effects 0.000 description 1
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、前進羽根を有する多翼ファンに関し、特に多
翼ファンの低騒音・高効率化に有効な羽根形状に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multi-blade fan having forward-moving blades, and more particularly to a blade shape that is effective in reducing noise and increasing efficiency of the multi-blade fan.
従来の前進羽根を有する多翼ファンは、実開昭50−4
9704号公報に記載のように隣り合う羽根の配列は、
その1部もしくは羽根全体が等間隔に配置されており、
その形状としては円弧で構成され、その厚みは、一定と
なっていた。又、更に、実開昭53−31206号公報
に記載のように、空力性能を上げるため、もしくは低騒
音化のために、羽根の形状を−様な厚みにせず翼形とし
た多翼ファンも記載されている。The conventional multi-blade fan with forward-moving blades was developed in 1986-4.
As described in Publication No. 9704, the arrangement of adjacent blades is as follows:
One part or the entire blade is arranged at equal intervals,
Its shape was composed of a circular arc, and its thickness was constant. Furthermore, as described in Japanese Utility Model Application Publication No. 53-31206, there are multi-blade fans in which the blades are shaped like airfoils instead of having a different thickness in order to improve aerodynamic performance or reduce noise. Are listed.
上記実開昭50−49704号公報記載の従来技術は、
羽根板厚が全て等しい平板羽根であり、羽根の入口角度
β1と出口角度β2が決定されそれを円弧で結んだ形状
となっている。The prior art described in the above-mentioned Japanese Utility Model Application Publication No. 50-49704 is as follows:
The blades are all flat plate blades with the same thickness, and have a shape in which the entrance angle β1 and the exit angle β2 of the blades are determined and connected by a circular arc.
しかしながら、羽根間の流路幅比率についてはなんら記
載されていない。また、理論等から羽根入口角度β、=
90°、羽根出口角度β2=180゜が最適とされ、こ
のβ、=90°とβ2=180゜になるように、円弧で
結んだ線で、描かれた曲線に板厚を持たせて羽根形状を
決定しているため羽根間の流れに対して最適形状にはな
っていない。However, nothing is described about the channel width ratio between the blades. Also, from theory etc., the blade inlet angle β, =
90°, and the blade exit angle β2 = 180° is considered optimal, and the blade is drawn by connecting the curved line with a circular arc so that β = 90° and β2 = 180°. Since the shape is determined, it is not the optimal shape for the flow between the blades.
その結果、羽根の出口における流れの衝突損失や、羽根
負圧面における剥離現象、又、羽根出口における乱れ等
が生し、送風機における空力性能の低下、騒音が大きく
なるという問題点が生じていた。As a result, flow collision loss at the outlet of the blade, separation phenomenon on the suction surface of the blade, turbulence at the outlet of the blade, etc. occur, resulting in problems such as a decrease in aerodynamic performance and an increase in noise in the blower.
一方、上記平板羽根の問題点を解決するために実開昭5
3−31206の記載の様に羽根間の流路形状の最適値
になる様、羽根の形状を決定した例であるが、これによ
ると、流路のみ決定され、最適出口角度について言及さ
れていない。しかも、一体成形の羽根車では、このよう
な羽根車にすることは、強度上等から製作がかなり困難
であった。On the other hand, in order to solve the above-mentioned problems with flat blades,
As described in 3-31206, this is an example in which the shape of the blades is determined so that the shape of the flow path between the blades is the optimum value, but according to this, only the flow path is determined, and there is no mention of the optimal exit angle. . Moreover, it is quite difficult to manufacture such an impeller from the viewpoint of strength and other reasons when using an integrally molded impeller.
本発明は上記従来技術の問題点である最適羽根入口・出
口角度及び、流路形状を決定し、ファン効率の向上及び
騒音低減を目的とする。The present invention aims to improve fan efficiency and reduce noise by determining optimal blade inlet/outlet angles and flow path shapes, which are the problems of the prior art.
本発明は、上記目的を達成するためには、プラスチック
一体成形の多翼羽根車の羽根の圧力面側の羽根出口角度
を140°〜16o°としたものである。又、負圧面側
の羽根出口角度を170゜〜180°にし、空力性能を
最大効率に保ちながら騒音を低減したものである。In order to achieve the above object, the present invention provides a multi-blade impeller molded integrally with plastic, with a blade exit angle on the pressure surface side of 140° to 16°. In addition, the exit angle of the blade on the suction side is set to 170° to 180° to reduce noise while maintaining maximum aerodynamic performance.
又、上記羽根出口角度を保ちながら、羽根間の流路通路
の出口幅と入口幅の比率を最適に保つ形状としたもので
ある。Further, the shape is such that the ratio of the outlet width to the inlet width of the flow path between the blades is maintained at an optimum level while maintaining the above-mentioned blade exit angle.
従来の平板羽根において理論等から羽根入口角度β、及
び羽根出口角度β2は90°及び180゜が最適とされ
ていた。この場合、各角度のとる基準は、基本的には圧
力面を基準とするが、負圧面を基準とした場合でも同じ
である。In conventional flat plate blades, the optimum blade entrance angle β and blade exit angle β2 are 90° and 180° based on theory and the like. In this case, the reference for each angle is basically based on the pressure surface, but it is the same even when the negative pressure surface is used as the reference.
本発明によると、圧力面の、出口角度β2を140°〜
16o°負圧面の角度を170°〜180°とし、従来
の圧力が出る角度を持たせ、更に翼の出口における混合
損失を減少させ、それによる音を低減した効果が得られ
る。According to the present invention, the exit angle β2 of the pressure surface is set to 140° to
The angle of the 16° negative pressure surface is set to 170° to 180°, which gives the conventional pressure exit angle, and further reduces the mixing loss at the outlet of the blade, thereby achieving the effect of reducing noise.
一方、羽根入口部流路幅S工と羽根出口部流路l1li
iS2 との比率(S2/S工)を0.6〜0.65に
することにより、羽根出口側の相対速度を従来より遅く
し、それにより、性能の上昇をねらったものである。On the other hand, the flow path width S at the blade inlet and the flow path l1li at the blade outlet
By setting the ratio with iS2 (S2/S) to 0.6 to 0.65, the relative speed on the exit side of the blade is made slower than before, thereby aiming to improve performance.
以下、本発明の一実施例を第1図〜第5図を用いて説明
する。An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.
第1図は本発明の羽根車の羽根形状の詳細図を第2図は
本発明の羽根形状を取り入れた羽根車の正面図と第3図
は第2図の側面図を第4図は本発明の羽根車をケースに
収納した斜視図を第5図はその断面図を、第6図は従来
の羽根形状を示す。Figure 1 is a detailed view of the blade shape of the impeller of the present invention, Figure 2 is a front view of an impeller incorporating the blade shape of the present invention, Figure 3 is a side view of Figure 2, and Figure 4 is the main view of the impeller. FIG. 5 is a perspective view of the impeller of the invention housed in a case, FIG. 5 is a cross-sectional view thereof, and FIG. 6 is a conventional impeller shape.
第4図に示す様に、遠心送風機1には、ケース2の内側
に略円筒形状の羽根車3が収納されており、羽根車3は
、モータ1oに直結されており、該モータ10の回転に
より羽根車中央部から取り入れられた空気がケース2内
を渦巻状に案内されて吹出口4から吹き出されるように
なっている。As shown in FIG. 4, the centrifugal blower 1 has a substantially cylindrical impeller 3 housed inside a case 2. The impeller 3 is directly connected to a motor 1o, and the motor 10 rotates. The air taken in from the center of the impeller is guided in a spiral shape inside the case 2 and is blown out from the air outlet 4.
羽根車の全体図を第2図で説明する。The overall view of the impeller will be explained with reference to FIG.
本例は合成樹脂材料から型を用いて一体成形した例であ
る。該羽根車3はその軸線方向の一方に空気を取り得ら
れる空気取り入れ口5が形成されており、他方は壁(主
板)6により塞がれているとともに、羽根車を回転駆動
するためのシャフトが接続されるようにボス7が取付け
られている。This example is an example in which a synthetic resin material is integrally molded using a mold. The impeller 3 has an air intake 5 formed on one side in the axial direction thereof, and the other side is blocked by a wall (main plate) 6, and a shaft for rotationally driving the impeller is formed. A boss 7 is attached for connection.
また、空気取り入れ口側の羽根外周側に補強リング8が
取り付けられている。この補強リングは羽根が遠心力に
より外周側へ変形することを防止するものである。羽根
9は主板6に垂直に取付られ、内外径の速度差により圧
力差を発生する。羽根車3は回転することにより、空気
流は補強リング8側より流入し、羽根内径側より、外径
側へ垂直に方向転換し、別間間を通って羽根車外周へ放
出される。Further, a reinforcing ring 8 is attached to the outer circumferential side of the blade on the air intake side. This reinforcing ring prevents the blade from deforming toward the outer circumference due to centrifugal force. The blade 9 is attached perpendicularly to the main plate 6, and generates a pressure difference due to the speed difference between the inner and outer diameters. As the impeller 3 rotates, air flows in from the reinforcing ring 8 side, changes direction vertically from the inner diameter side of the impeller to the outer diameter side, passes through a separate space, and is discharged to the outer periphery of the impeller.
しかも、プラスチックの一体成形による羽根車は、強度
上から、第5図の様な従来の平板羽根にしなくてはなら
なかった。この例は羽根入口側から出口側まで等しい板
厚で構成されている。この場合、入口角度β□は90°
、出口角度β2は180°にて設定されている。この角
度基準のとり方は、圧力面あるいは負圧面においても同
様である。この角度は、理論あるいは実験から最適値と
されており、例えばβ2が170’又は160゜になる
程、逆に性能は低下し、騒音は高くなる。Moreover, the impeller made of integrally molded plastic had to be a conventional flat blade as shown in FIG. 5 for strength reasons. In this example, the plate thickness is the same from the blade inlet side to the blade outlet side. In this case, the entrance angle β□ is 90°
, the exit angle β2 is set at 180°. This method of determining the angle reference is the same for the pressure surface or the negative pressure surface. This angle is determined to be the optimum value based on theory or experimentation; for example, as β2 becomes 170' or 160°, the performance deteriorates and the noise increases.
ここで本発明の羽根の形状について、第7図を用いて説
明する。羽根入口角度β、及び出口角度β2の基準のと
り方を負圧面側とする。羽根枚数は本実施例ではZ=4
3枚、又、羽根外径φD2=140m+、羽根内径φD
□=120mである。Here, the shape of the blade of the present invention will be explained using FIG. 7. The blade inlet angle β and the outlet angle β2 are based on the suction side. The number of blades is Z=4 in this example.
3 pieces, blade outer diameter φD2=140m+, blade inner diameter φD
□=120m.
次に羽根1枚の形状について詳述する。羽根外径を43
等分された点から羽根外径中心に向う線上の点すを中心
に円を描く。該円に向って羽根外径中心から接線を羽根
内径の点まで引く。これにより、羽根負圧面側の羽根形
状が形成される。この負圧面側の円弧に厚みtを(本実
施例は1.5IIlo)を持たせて、圧力面側の形状を
作る。これにより、入口角度β1=90°、出口角度β
2=180’、板厚t=1.5onの羽根形状が形成さ
れた。これは従来の羽根車の羽根形状であり、本発明は
更に、圧力面側円弧から30°接線を引いて、圧力面側
の出口角度β2+ を150°とした。Next, the shape of one blade will be explained in detail. The outer diameter of the blade is 43
Draw a circle centered on the point on the line from the equally divided points to the center of the outer diameter of the blade. Draw a tangent to the circle from the center of the outer diameter of the blade to the point of the inner diameter of the blade. This forms the shape of the blade on the negative pressure side of the blade. This circular arc on the negative pressure side has a thickness t (1.5IIlo in this example) to create the shape on the pressure side. As a result, the entrance angle β1=90°, the exit angle β
A blade shape of 2=180′ and plate thickness t=1.5 on was formed. This is the blade shape of a conventional impeller, and in the present invention, a 30° tangent is drawn from the arc on the pressure side, and the outlet angle β2+ on the pressure side is set to 150°.
一方、負圧面側の出口角度β2−は従来と同様1806
のままである。On the other hand, the exit angle β2- on the negative pressure side is 1806 as before.
It remains as it is.
本実施例の形状の決め方は、負圧面を基準とした場合に
ついて説明したが、基準線は羽根負圧面側でなく、羽根
圧力面側でも良いし、羽根板厚の中心線でもさしつかえ
ない。次に、流路の決定方法について第6図を用いて述
べる。羽根内径側の圧力面の位置から隣接された羽根の
負圧面で一番距離の短い点とを結んだ線を羽根入口部流
路幅S□とする。一方、出口側についても同様に羽根圧
力面の羽根外径側の位置から、隣接された羽根の負圧面
で一番距離の短い点を結んだ線を、羽根出口部流路幅S
2 とする。The method of determining the shape in this embodiment has been described with reference to the suction surface, but the reference line may be on the blade pressure surface side instead of the blade suction surface side, or may be the center line of the blade plate thickness. Next, a method for determining the flow path will be described using FIG. 6. The line connecting the position of the pressure surface on the inner diameter side of the blade and the shortest point on the negative pressure surface of the adjacent blade is defined as the blade inlet channel width S□. On the other hand, on the outlet side, similarly, draw a line connecting the shortest point on the suction surface of the adjacent blade from the position on the blade outer diameter side of the blade pressure surface to the blade outlet flow path width S.
2.
前記入口流路幅S工と出口流路幅S2の割合S2/S1
を0.6〜0.65に設定する様に羽根形状を決定する
。この場合第8図のような平板羽根だと入口流路幅S1
と出口流路幅S2の割合が0.5〜0.55程度にしか
ならないので、第1図のように、翼形の形状となる。Ratio S2/S1 of the inlet channel width S and outlet channel width S2
The blade shape is determined so as to set the value to 0.6 to 0.65. In this case, if the blade is a flat plate as shown in Fig. 8, the inlet channel width S1
Since the ratio of the outlet flow path width S2 to the outlet flow path width S2 is only about 0.5 to 0.55, it has an airfoil shape as shown in FIG.
第1図を用いて本発明の羽根形状について説明する。The blade shape of the present invention will be explained using FIG.
まず、圧力面のラインについて、説明する。羽根の入口
角度β、は、従来と同様90°である。First, the pressure surface line will be explained. The entrance angle β of the blade is 90° as in the conventional case.
一方羽根出口角度β2+は150°である。この出口と
、入口との間のラインの取り方は前記に記載した方法と
同一である。On the other hand, the blade exit angle β2+ is 150°. The way the line is drawn between the outlet and the inlet is the same as described above.
次に負圧面のラインの取り方について説明する。Next, we will explain how to draw the line on the negative pressure surface.
羽根出口角度β2+は180°になるよう円弧を描く。A circular arc is drawn so that the blade exit angle β2+ is 180°.
これにより圧力面の出口と負圧面との間で一番距離の短
い所を羽根出口流路幅S2とする。As a result, the shortest distance between the outlet of the pressure surface and the negative pressure surface is defined as the blade outlet flow path width S2.
この羽根出口流路幅S2 に対し1.6倍の円を羽根圧
力面入口部に描く。この円に接するように羽根出口部か
ら描いた円弧を滑らかにつなげる。前記、円の直径を羽
根入口流路@S工とする。更に羽根圧力面の内径位置と
負圧面に描かれたラインとをRで、つなげる。羽根入口
流路幅S□と羽根出口流路幅S2との間は漸次つながる
ようにする。A circle 1.6 times larger than this blade outlet channel width S2 is drawn at the blade pressure surface inlet. Smoothly connect the arcs drawn from the blade outlet so that they touch this circle. The diameter of the circle mentioned above is defined as the blade inlet flow path @S. Furthermore, connect the inner diameter position of the blade pressure surface and the line drawn on the negative pressure surface with an R. The blade inlet channel width S□ and the blade outlet channel width S2 are made to gradually connect.
以上の羽根形状について、従来の羽根車を比較した実験
結果について第9図〜第10図を用いて説明する。第9
図から判るように、従来の平板羽根(入口角度β1=9
0°、出口角度β2=180’ )に比較し、羽根圧力
面側出口角度β2+を150゜負圧面側出口角度β2−
を180°にした羽根は、空力性能は従来の羽根と変
わらないものの、騒音は、2dB低減している。このβ
2+は、140゜〜160°が、騒音が、一番低くなっ
ており、β2+= 140° よりさらに小さくすると
騒音・性能とも、急激に悪くなる。Regarding the above blade shapes, experimental results comparing conventional impellers will be explained using FIGS. 9 and 10. 9th
As can be seen from the figure, the conventional flat blade (inlet angle β1 = 9
0°, exit angle β2 = 180'), and set the blade pressure side exit angle β2+ to 150° suction side exit angle β2-.
Although the aerodynamic performance of the blade with the angle of 180 degrees is the same as that of conventional blades, the noise is reduced by 2 dB. This β
For 2+, the noise is the lowest between 140° and 160°, and when β2+ is made even smaller than 140°, both noise and performance deteriorate rapidly.
又、入・出口流路幅比率に対する性能と比騒音の結果を
第10図に示す。この図よりS2/S1を0.6〜0.
65の範囲にすることにより、性能及び比騒音レベルが
飛躍的に改善する効果が得られた。Moreover, the results of performance and specific noise with respect to the inlet/outlet channel width ratio are shown in FIG. From this figure, S2/S1 is 0.6 to 0.
65, the effect of dramatically improving performance and specific noise level was obtained.
本発明によれば、羽根車の羽根の出口角度を圧力面側と
負圧面側で最適角度にし、又、それに付は加えて羽根間
の流路幅の最適値を見出しているため、従来の性能を保
ちながら、低騒音化できるという効果を得られる。According to the present invention, the exit angle of the blades of the impeller is set to the optimum angle on the pressure side and the suction side, and in addition, the optimum value of the width of the flow path between the blades is found, which makes it possible to It is possible to achieve the effect of reducing noise while maintaining performance.
第1図は本発明の一実施例の羽根形状を示す正面図、第
2図はその羽根車の正面図、第3図はその羽根車の縦断
面図、第4図は本発明の羽根車を組み込んだファンの斜
視図、第511’は第4図の矢視A−B−Cで示す縦断
面図、第6図は従来の羽根形状を示す正面図、第7図お
よび第8図はそれぞれ本発明の羽根形状を示す図、第9
図は性能及び騒音測定結果を示す図、第10図は流路幅
比に対する性能結果を示す図である。
1・・・遠心送風機、2・・・ケース、3・・・羽根車
、9・・・羽根、10・・・モータ。
、2−
代理人 弁理士 小川勝男1−”
°〈
′81 図
第 2 図
函耘方向
集 3 図
不 4 図
名 Sl!l
¥、bffi
¥3 l 渇
〃 q 図
IwM t40’ t2o0
千jr艮圧力面亀支β2士
妬 10 1¥1
S、13゜FIG. 1 is a front view showing the blade shape of an embodiment of the present invention, FIG. 2 is a front view of the impeller, FIG. 3 is a longitudinal sectional view of the impeller, and FIG. 4 is the impeller of the present invention. 511' is a vertical sectional view taken along arrows A-B-C in FIG. 4, FIG. 6 is a front view showing the conventional blade shape, and FIGS. 7 and 8 are FIG. 9 shows the blade shape of the present invention, respectively.
The figure shows performance and noise measurement results, and FIG. 10 shows the performance results with respect to channel width ratio. DESCRIPTION OF SYMBOLS 1... Centrifugal blower, 2... Case, 3... Impeller, 9... Vane, 10... Motor. , 2- Agent Patent attorney Katsuo Ogawa 1-" °〈 '81 Figure 2 Figure box direction collection 3 Not illustrated 4 Figure name Sl!l ¥, bffi ¥3 l thirst〃 q Figure IwM t40' t2o0 1000 yr 艮Pressure surface turtle support β2 position 10 1¥1 S, 13゜
Claims (3)
根を垂直に取付け、羽根の吸い込み側の外径を補強リン
グで支えプラスチツクの一体成形可能な多翼羽根車にお
いて、前記羽根車の羽根の出口角度をβ_2としたとき
、圧力面の出口角度β_2_pを140゜から160゜
としたことを特徴とする多翼フアンの羽根車。1. In a multi-blade impeller that can be integrally molded from plastic, a plurality of blades parallel to the axis and whose length does not change are vertically attached to the main plate, and the outer diameter of the suction side of the blades is supported by a reinforcing ring. An impeller for a multi-blade fan characterized in that, when the exit angle of the pressure surface is β_2, the exit angle β_2_p of the pressure surface is 140° to 160°.
負圧面の出口角度β_2_nを170゜から180゜と
した請求項1に記載の多翼フアンの羽根車。2. When the exit angle of the blades of the impeller is β_2,
The impeller for a multi-blade fan according to claim 1, wherein the exit angle β_2_n of the suction surface is 170° to 180°.
る出口幅の比を0.60〜0.65とした請求項1に記
載の多翼フアン羽根車。3. The multi-blade fan impeller according to claim 1, wherein the ratio of the outlet width to the inlet width of the air passage constituted by adjacent blades is 0.60 to 0.65.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28200590A JPH04159498A (en) | 1990-10-22 | 1990-10-22 | Impeller of multiblade fan |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28200590A JPH04159498A (en) | 1990-10-22 | 1990-10-22 | Impeller of multiblade fan |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04159498A true JPH04159498A (en) | 1992-06-02 |
Family
ID=17646901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28200590A Pending JPH04159498A (en) | 1990-10-22 | 1990-10-22 | Impeller of multiblade fan |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04159498A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5964576A (en) * | 1996-07-26 | 1999-10-12 | Japan Servo Co., Ltd. | Impeller of centrifugal fan |
WO2000029681A1 (en) * | 1998-11-16 | 2000-05-25 | Toto Ltd. | Toilet device and toilet device designing method |
WO2006126408A1 (en) * | 2005-05-26 | 2006-11-30 | Toshiba Carrier Corporation | Centrifugal blower and air conditioner using the same |
JP2009115028A (en) * | 2007-11-08 | 2009-05-28 | Sanden Corp | Centrifugal multiblade blower |
-
1990
- 1990-10-22 JP JP28200590A patent/JPH04159498A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5964576A (en) * | 1996-07-26 | 1999-10-12 | Japan Servo Co., Ltd. | Impeller of centrifugal fan |
WO2000029681A1 (en) * | 1998-11-16 | 2000-05-25 | Toto Ltd. | Toilet device and toilet device designing method |
WO2006126408A1 (en) * | 2005-05-26 | 2006-11-30 | Toshiba Carrier Corporation | Centrifugal blower and air conditioner using the same |
KR100917091B1 (en) * | 2005-05-26 | 2009-09-15 | 도시바 캐리어 가부시키가이샤 | Centrifugal blower and air conditioner using the same |
JP2009115028A (en) * | 2007-11-08 | 2009-05-28 | Sanden Corp | Centrifugal multiblade blower |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101019832B1 (en) | Centrifugal blower | |
JP4035237B2 (en) | Axial blower | |
JP3879764B2 (en) | Centrifugal blower | |
US8784060B2 (en) | Centrifugal fan | |
US8870541B2 (en) | Centrifugal multiblade fan | |
US9157449B2 (en) | Multi-blade centrifugal fan and air conditioner using the same | |
US5951245A (en) | Centrifugal fan assembly for an automotive vehicle | |
JP4581992B2 (en) | Centrifugal blower and air conditioner equipped with the centrifugal blower | |
JP3668782B2 (en) | Blower fan and manufacturing method thereof | |
JP2017008742A (en) | Centrifugal blower and air conditioner using the same | |
JP2667748B2 (en) | Multi-wing impeller | |
JPH04159498A (en) | Impeller of multiblade fan | |
JPH01193099A (en) | Impeller of centrifugal flower | |
JP6282720B2 (en) | Centrifugal fan | |
JP2019019759A (en) | Centrifugal fan impeller and centrifugal fan with centrifugal fan impeller | |
JP2000009083A (en) | Impeller | |
KR880000522B1 (en) | Axial-flow fan | |
JP3726386B2 (en) | Centrifugal blower | |
KR20170116754A (en) | High pressure centrifugal impeller | |
JP2718943B2 (en) | Axial fan | |
JPH08247091A (en) | Centrifugal blower | |
KR880000521B1 (en) | Axial-flow fan | |
JP2000054992A (en) | Propeller fan | |
JP7217176B2 (en) | Blade structure of centrifugal blower | |
JPH08135596A (en) | Impeller for centrifugal blower |