JPH01193099A - Impeller of centrifugal flower - Google Patents

Impeller of centrifugal flower

Info

Publication number
JPH01193099A
JPH01193099A JP1629388A JP1629388A JPH01193099A JP H01193099 A JPH01193099 A JP H01193099A JP 1629388 A JP1629388 A JP 1629388A JP 1629388 A JP1629388 A JP 1629388A JP H01193099 A JPH01193099 A JP H01193099A
Authority
JP
Japan
Prior art keywords
impeller
angle
degrees
inlet
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1629388A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyazaki
啓 宮崎
Naoteru Hashizume
橋詰 直輝
Takehide Matsumoto
健秀 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Diesel Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diesel Kiki Co Ltd filed Critical Diesel Kiki Co Ltd
Priority to JP1629388A priority Critical patent/JPH01193099A/en
Publication of JPH01193099A publication Critical patent/JPH01193099A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To reduce noises and improves efficiency by specifying relations between vane length and vane thickness/acting face, and decreasing width of a flow passage as it goes from an inlet to an outlet end side. CONSTITUTION:Vanes 7 of an impeller 3 are wing-shaped. In the vanes 7 of the impeller 3, a measurement ratio (Wm/c) of a maximum thicknesses Wm9 of vanes against vane lengths (c) between an inlet end and outlet end of an inflow passage is ranged between 0.14 and 0.16. A measurement ratio (Lm/C) of the vane lengths C between the inlet end and outlet end against a maximum distance Lm between a line from the inlet to the outlet end acting faces ranges from 0.2 to 0.3. Widths of flow passages 13 between the vanes next to each other decrease as they go from the inlet to the outlet end sides. Noise generation can be prevented surely, while efficiency can be improved enough.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は空調装置等に用いられる遠心送風機の羽根車
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an impeller for a centrifugal blower used in an air conditioner or the like.

(従来の技術) 遠心送風機の羽根車には、羽根車の外周に軸方向に長く
延出した複数の羽根が取付られており、羽根車はその回
転により内側から取り入れた空気を外側に吹き出すもの
である。
(Prior art) The impeller of a centrifugal blower has a plurality of long blades attached to the outer periphery of the impeller that extend in the axial direction, and as the impeller rotates, air taken in from the inside is blown out to the outside. It is.

この種の遠心送風機の羽根車には、従来−様な肉厚の羽
根が設けられていたが、騒音の低減及び効率の向上を図
るために、例えば特開昭60−156997号公報には
、肉厚を内側から外側へ次第に小さくなるように形成す
る構成が提案されている。この公報に開示された羽根車
によれば、羽根に沿って流れる空気流の剥離を減少する
とともに羽根付近の乱流の発生を少なくすることができ
る。
The impeller of this type of centrifugal blower was provided with thick blades as in the past, but in order to reduce noise and improve efficiency, for example, Japanese Patent Application Laid-Open No. 156997/1983 discloses A structure has been proposed in which the wall thickness is gradually reduced from the inside to the outside. According to the impeller disclosed in this publication, it is possible to reduce separation of the airflow flowing along the blades and to reduce the occurrence of turbulence near the blades.

(発明が解決しようとする課題) しかしながら、遠心送風機における騒音および効率の低
下は、単に羽根に沿って流れる空気の流れ状態に起因す
るだけでなく、空気が羽根車から吹出た後に羽根車が収
納された遠心送風機のケースに吹き当たるときの状態等
にも起因すると考えられる。このため、従来の遠心送風
機の羽根車では充分に騒音を防止し、効率を向上させる
ことができないという問題点がある。
(Problem to be Solved by the Invention) However, the noise and reduction in efficiency in centrifugal blowers are not only caused by the flow condition of air flowing along the blades, but also by the fact that the impeller is retracted after the air is blown out from the impeller. This is also thought to be caused by the conditions in which the air blows against the case of the centrifugal blower. Therefore, there is a problem in that the impeller of the conventional centrifugal blower cannot sufficiently prevent noise and improve efficiency.

そこで、この発明は騒音を確実に防止するとともに充分
な効率の向上を図ることができる遠心送風機の羽根車を
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an impeller for a centrifugal blower that can reliably prevent noise and sufficiently improve efficiency.

(課題を解決するための手段) 上記課題を解決するため、この発明の遠心送風機の羽根
車は、同一円周面上に軸線方向に延出する複数枚の羽根
を配し、互いに隣合う羽根の圧力面11と負圧面12と
の間に流路を形成し、遠心力によりその内側から外側へ
空気を吹き出す遠心送風機の羽根車において、第1図に
示すように、前記羽根車の羽根は翼型形状をなし、入口
端と出口端との間の羽根の長さCに対する羽根の厚みの
最大値W、の寸法比(Wm/C)が0.14以上0.1
6以下、 入口端と出口端との間の羽根の長さCに対する入口端と
出口端とを結ぶ線Sと圧力面との間の距離における最大
値L1の寸法比(Lm /C)が0゜2以上0.3以下
、且つ 前記圧いに隣合う羽根間の流路の幅寸法が羽根車の内側
から外側に次第に小さくなる構成としている。
(Means for Solving the Problems) In order to solve the above problems, the impeller of the centrifugal blower of the present invention has a plurality of blades extending in the axial direction on the same circumferential surface, and the blades adjacent to each other are In an impeller of a centrifugal blower that forms a flow path between a pressure surface 11 and a negative pressure surface 12 and blows air from the inside to the outside by centrifugal force, the blades of the impeller are as shown in FIG. It has an airfoil shape, and the dimension ratio (Wm/C) of the maximum thickness W of the blade to the length C of the blade between the inlet end and the outlet end is 0.14 or more and 0.1
6 or less, the size ratio (Lm/C) of the maximum value L1 in the distance between the line S connecting the inlet end and the outlet end and the pressure surface to the length C of the impeller between the inlet end and the outlet end is 0. The width of the flow path between the blades adjacent to the impeller is set to be 0.3 or more, and the width dimension of the flow path between the blades adjacent to the pressure plate gradually decreases from the inside to the outside of the impeller.

また、前記羽根の基端における流路を形成する圧力面の
接線Mと羽根車の接線Nとのなす角度とを出口角度Aと
するとき、出口角度Aを5度以上20度以下とすること
が好ましい。
Further, when the angle formed by the tangent M of the pressure surface forming the flow path at the base end of the blade and the tangent N of the impeller is defined as the exit angle A, the exit angle A should be 5 degrees or more and 20 degrees or less. is preferred.

更に、羽根の先端において羽根車の中心を結ぶ中心線G
の法線Hと該先端における圧力面の接線Jとのなす角度
を人口角度Bとするとき、入口角度Bは70度以上95
度以下とすることが好ましい。
Furthermore, the center line G connecting the center of the impeller at the tip of the blade
When the angle between the normal H and the tangent J to the pressure surface at the tip is the artificial angle B, the entrance angle B is 70 degrees or more and 95 degrees
It is preferable that the temperature is less than 1.

また、羽根の基端と先端とを結ぶ線Sと羽根車の中心m
Gとの成す角度を取付角度りとするとき、前記取付角度
りは30度以上50度以下とすることが好ましい。
Also, the line S connecting the base end and tip of the blade and the center m of the impeller
When the angle formed with G is defined as the mounting angle, the mounting angle is preferably 30 degrees or more and 50 degrees or less.

(作用) 上記のように構成された遠心送風機の羽根車を用いた場
合、羽根の長さCに対する羽根の厚みW、の比(Wm 
/C)が0.14より小さいと負圧面における空気の流
れる速度が小さくなって空気が剥離し、0.16より大
きいと吸入した空気が羽根入口で衝突するために損失抵
抗が大となる。
(Function) When using the impeller of the centrifugal blower configured as described above, the ratio of the blade thickness W to the blade length C (Wm
When /C) is smaller than 0.14, the speed of air flow on the negative pressure surface becomes low and the air separates, and when it is larger than 0.16, the sucked air collides at the blade inlet, resulting in a large loss resistance.

また、羽根の長さCに対する圧力面の距離L1の比(L
m/C)が0.2より小さいと出口角度が大きくなり吹
き出された風がケースに衝突する際の衝撃が大きくなり
、0.3より大きいと負圧面での空気剥離が生じる。
Also, the ratio of the distance L1 of the pressure surface to the length C of the blade (L
If m/C) is smaller than 0.2, the exit angle will be large and the impact when the blown wind collides with the case will be large, and if it is larger than 0.3, air separation will occur on the negative pressure surface.

更に、空気流路の幅を次第に小さくすることにより吹出
空気の流速を高めることができるから、送風効率を向上
させることができるとともに負圧面の流速が圧力面の流
速より早いこともあいまって吹出口における空気の剥離
を防止することができる。
Furthermore, by gradually reducing the width of the air flow path, the flow velocity of the blown air can be increased, so the blowing efficiency can be improved, and the flow velocity on the negative pressure side is faster than the flow velocity on the pressure side. can prevent air separation.

尚、空気の出口角度Aが20度より大きい場合には、吹
出空気のケースに吹き当たる際の抵抗が大きくなり所定
の効果を得ることができず、5度より小さいと負圧面に
おいて空気の剥離が起こり所定の吹出風量を得ることが
できないと共に騒音の原因になる。
Note that if the air outlet angle A is larger than 20 degrees, the resistance when the blown air hits the case becomes large and the desired effect cannot be obtained, and if it is smaller than 5 degrees, the air may separate on the negative pressure surface. This occurs, making it impossible to obtain a predetermined amount of airflow and causing noise.

更に、空気の入口角度Bを70度以上95度以下に限定
することにより羽根に沿ってスムーズに空気を取り入れ
ることができるので、羽根に沿って流れる空気の乱れを
防止して、騒音の低下と効率の向上を図ることができる
Furthermore, by limiting the air inlet angle B to 70 degrees or more and 95 degrees or less, air can be taken in smoothly along the blades, which prevents turbulence in the air flowing along the blades and reduces noise. Efficiency can be improved.

この場合、70度より小さいと放射状に流入する空気が
羽根の負圧面入口で衝突が起こり、吸入時の抵抗が大き
くなり、95度より大きいと羽根の負圧面に沿って流れ
る空気が剥離して渦を生じる等の乱れが生じる。
In this case, if the angle is less than 70 degrees, the air flowing radially will collide with the inlet of the suction surface of the blade, increasing the resistance during intake, and if it is more than 95 degrees, the air flowing along the suction surface of the blade will separate. Disturbances such as vortices occur.

また、取付角度りは30度以上50度以下が好ましく、
30度より小さいと放射状に流入する空気が羽根の負圧
面入口で衝突し、吸入時の抵抗が大きくなり、50度よ
り大きいと負圧面で剥離が生じ易くなる。
In addition, the mounting angle is preferably 30 degrees or more and 50 degrees or less,
If the angle is smaller than 30 degrees, the air flowing radially collides at the inlet of the suction surface of the blade, increasing resistance during suction, and if it is larger than 50 degrees, separation tends to occur on the suction surface.

(実施例) 以下に添付図面を参照してこの発明の実施例を詳細に説
明する。
(Examples) Examples of the present invention will be described in detail below with reference to the accompanying drawings.

第5図に示すように、遠心送風機1には、ケース2の内
側に略円筒形状の羽根車3が収納されており、羽根車3
の回転により中央部から取り入れられた空気がケース2
内を渦巻状に案内されて吹出口4から吹き出されるよう
になっている。
As shown in FIG. 5, the centrifugal blower 1 has a substantially cylindrical impeller 3 housed inside a case 2.
The air taken in from the center by the rotation of Case 2
The air is guided inside in a spiral manner and is blown out from the air outlet 4.

羽根車3には、第3図及び4図に示すように、その外周
面に42枚の羽根が半径方向内側に向けて延出されてい
る。羽根車3はその軸線方向の一方に空気を取り得れる
空気取り入れ口5が形成されており、他方は壁6により
塞がれているとともに、羽根車を回転駆動するためのシ
ャフトが接続されるようになっている。
As shown in FIGS. 3 and 4, the impeller 3 has 42 blades extending radially inward on its outer peripheral surface. The impeller 3 has an air intake 5 formed on one side in the axial direction thereof, and the other side is blocked by a wall 6, and a shaft for rotationally driving the impeller is connected to the impeller 3. It has become.

羽根車3は金属材料または合成樹脂材料から型を用いて
一体成形されている。
The impeller 3 is integrally molded from a metal material or a synthetic resin material using a mold.

各羽根7の形状は、第1図及び第2図に示すように、肉
厚が一様でなく基端部8と先端部9とで小さくなり、中
途部10で厚くなるように形成されている。例えば、羽
根車の外形直径140mの場合においては、延出方向の
長さCは14.2鴎であり、基端部8、先端部9は路光
鈍化されており、最大羽根厚部W、は2.1鰭である。
As shown in FIGS. 1 and 2, the shape of each blade 7 is such that the wall thickness is not uniform and becomes smaller at the base end 8 and tip end 9, and thicker at the middle part 10. There is. For example, in the case where the outer diameter of the impeller is 140 m, the length C in the extending direction is 14.2 mm, the base end 8 and the tip end 9 are blunted, and the maximum blade thickness W, is 2.1 fins.

前記羽根車の羽根は、入口端と出口端との間の羽根の長
さCに対する羽根の厚みの最大値W、の寸法比(Wm/
C)が0.148に設定されている。
The blades of the impeller have a dimensional ratio (Wm/
C) is set to 0.148.

入口端と出口端との間の羽根の長さCに対する、入口端
と出口端とを結ぶ線Sと圧力面との間の距離における最
大値し1の寸法比(Lm/C)は0゜23である。
The maximum dimension ratio (Lm/C) of 1 in the distance between the line S connecting the inlet end and the outlet end and the pressure surface with respect to the length C of the blade between the inlet end and the outlet end is 0°. It is 23.

入口端と出口端との間の羽根の長さCに対する、入口端
と出口端とを結ぶ線Sと負圧面との間の距離における最
大値U、の寸法比(U、/C)は0゜3以上0.5以下
が好ましく、この実施例では0゜37である。
The size ratio (U, /C) of the maximum value U in the distance between the line S connecting the inlet end and the outlet end and the suction surface to the length C of the blade between the inlet end and the outlet end is 0. It is preferably 0.5 to 0.3°, and in this example it is 0°37.

互いに隣接する羽根の圧力面11と負圧面12とで形成
される空気流路13は、入口端側の寸法に対する出口端
側の寸法比が0.4以上0.8以下が好ましく、0.4
より小さいと吹出口付近で急激に吹き出すために空気の
乱れを生じ易くなり、0.8より大きいと十分な吹出圧
力を得難くなる。
The air flow path 13 formed by the pressure surface 11 and the negative pressure surface 12 of mutually adjacent blades has a dimension ratio of the outlet end side to the inlet end side dimension of preferably 0.4 or more and 0.8 or less, and 0.4
If it is smaller than 0.8, the air is likely to be turbulent due to sudden blowout near the outlet, and if it is larger than 0.8, it becomes difficult to obtain sufficient blowout pressure.

この場合、第2図に示すように、空気流路13の人口端
側において内接する円の半径R1が約7゜5鶴であり、
出口端側において内接する円の半径R1が約4.0fl
の寸法になるように形成されており、次第に空気流路1
3が狭まっており、内側の寸法に対する外側の寸法比は
約0.53である。
In this case, as shown in FIG. 2, the radius R1 of the circle inscribed on the artificial end side of the air flow path 13 is approximately 7°5,
The radius R1 of the circle inscribed on the exit end side is approximately 4.0 fl.
The air flow path 1 is gradually formed to have the dimensions of
3 is narrow, and the outer to inner dimension ratio is about 0.53.

出口角度(A)は、この実施例では約1o度に設定し、
入口角度(B)は約85度に設定している。これは空気
流入角度が略放射状であることがら起因して設計されて
いる。
The exit angle (A) is set at approximately 10 degrees in this example,
The entrance angle (B) is set to approximately 85 degrees. This design is due to the fact that the air inflow angle is approximately radial.

また、取付角度(D)は、約41度に設定している。Further, the mounting angle (D) is set to approximately 41 degrees.

羽根7における、その負圧面及び圧力面の形状は複数の
円弧、スプライン曲線を組あわせて作られている。
The shape of the suction surface and pressure surface of the blade 7 is made by combining a plurality of circular arcs and spline curves.

また、第4図に示すように、空気を取り入れる先端部と
空気を吹き出す基端部とが羽根車の中心に対してなす角
度θは約7.5度である。
Further, as shown in FIG. 4, the angle θ formed by the tip end that takes in air and the base end that blows out air with respect to the center of the impeller is about 7.5 degrees.

以上の構成により羽根車を用いた遠心送風機の送風にお
ける効率について実験をした結果を第5図乃至第8図を
参照して説明する。
The results of an experiment regarding the air blowing efficiency of a centrifugal blower using an impeller with the above configuration will be explained with reference to FIGS. 5 to 8.

第5図には羽根車3から外側に吹き出す空気の流れ方向
を示しており、羽根車から外側へ吹出ケース内側に吹き
当たる空気の流れは、矢印■で示すように、羽根車の接
線Wに対して従来の吹出方向V′より緩和され、ケース
2に吹き当たる角度も小さくなり、空気がケース2に吹
き当たる際の衝撃を小さくすることができる。従って、
エネルギー損失を軽減し、効率を向上させることができ
るとともに、吹き当たる際の騒音を防止することができ
る。
Figure 5 shows the flow direction of air blown outward from the impeller 3, and the flow of air blowing outward from the impeller to the inside of the blowout case is directed to the tangent W of the impeller, as shown by the arrow ■. On the other hand, the direction of air blowing is gentler than that of the conventional blowing direction V', and the angle at which the air blows against the case 2 becomes smaller, so that the impact when the air blows against the case 2 can be reduced. Therefore,
Energy loss can be reduced, efficiency can be improved, and noise caused by blowing can be prevented.

更に、この実施例によれば、互いに隣合う羽根7間に沿
って流れる空気の剥がれや乱れをも防止しているから送
風機の送風における効率を更に高め、羽根7における騒
音をも防止することができる。
Furthermore, according to this embodiment, separation and turbulence of the air flowing between the adjacent blades 7 is also prevented, which further increases the efficiency of air blowing by the blower and also prevents noise in the blades 7. can.

第6図は、横軸に吐出風ff1(Irr/h)を取り、
縦軸に全圧効率ηF (%)を取り、本発明の実験の結
果を従来と比較してプロットしたものである。
In Fig. 6, the horizontal axis represents the discharge wind ff1 (Irr/h),
The vertical axis represents the total pressure efficiency ηF (%), and the experimental results of the present invention are plotted in comparison with the conventional results.

ここで、全圧効率η、は次式により求めた。Here, the total pressure efficiency η was determined by the following equation.

ηF=(遠心送風機の全圧GVx風ff1H)÷モータ
の軸出力しくワット) この第6図から明らかなように、この発明によれば、遠
心送風機の効率を従来に比較して約10%向上すること
ができると共に底い吐出風量域でも高効率を得ることが
できる。また、同時に騒音についても測定したところ、
従来に比較して音が静かであった。
ηF = (Total pressure GV x wind ff1H of centrifugal blower) ÷ Shaft output of motor (watts) As is clear from Fig. 6, according to this invention, the efficiency of the centrifugal blower is improved by about 10% compared to the conventional one. It is possible to achieve high efficiency even in the lowest discharge air volume range. At the same time, we also measured noise.
The sound was quieter than before.

第7図は第6図に示す測定値において通風抵抗を種々変
化させた場合を示したもので、実線は本発明を示し一点
鎖線は従来の羽根車による実験の結果を示している。図
中符号aは通風抵抗が480rrr/h−55mmAq
、bは通風抵抗が400d/ h −62+n A q
、 cは通風抵抗が300rr?/h−70mAqにお
ける通風抵抗、dは通風抵抗が600rrr/h−45
mmAqの場合を示している。
FIG. 7 shows the case where the ventilation resistance was varied in the measured values shown in FIG. 6, where the solid line represents the present invention and the dashed-dotted line represents the results of an experiment using a conventional impeller. Symbol a in the figure indicates ventilation resistance of 480rrr/h-55mmAq
, b has ventilation resistance of 400d/h -62+n A q
, c has ventilation resistance of 300rr? Ventilation resistance at /h-70mAq, d is ventilation resistance at 600rrr/h-45
The case of mmAq is shown.

この第7図から明らかなように、従来は通風抵抗により
効率が著しるしく異なるが、本発明においては通風抵抗
が変化しても略均−でしかも、低風量域から高風量域に
おいて高い効率を得ることができる。
As is clear from FIG. 7, in the past, the efficiency differed significantly depending on the ventilation resistance, but in the present invention, even if the ventilation resistance changes, the efficiency is approximately equal, and the efficiency is high from the low air volume range to the high air volume range. can be obtained.

第8図は、第6図に示す測定値において回転数を種々変
化させた場合の結果を示したものであり、実線は本発明
を示し一点鎖線は従来の羽根車による実験の結果を示し
ている。図中符号eは回転数が150Orpmの場合、
fは3000rpmの場合における吐出風量と全圧効率
との関係を示している。この第8図から明らかなように
、符号eに示すように低回転の場合においても従来に比
較して常に高い全圧効率を得ることができるとともに、
吐出風量が変化しても全圧効率が大きく変化することが
なく常に安定した効果を期待できる。また、符号rに示
すように、高い回転数の場合には、言うまでもな〈従来
より高効率を得ることができるとともに、吐出風量が広
範囲に渡って変化した場合においても全圧効率の変化量
が従来に比べて小さく、期待した効率を得ることができ
るものである。
Figure 8 shows the results obtained when the rotational speed was varied in the measured values shown in Figure 6, with the solid line representing the present invention and the dashed-dotted line representing the results of an experiment using a conventional impeller. There is. The symbol e in the figure is when the rotation speed is 150 Orpm.
f indicates the relationship between the discharge air volume and the total pressure efficiency in the case of 3000 rpm. As is clear from FIG. 8, even at low rotation speeds, as shown by symbol e, it is possible to always obtain a higher total pressure efficiency than before, and
Even if the discharge air volume changes, the total pressure efficiency does not change significantly, so you can always expect a stable effect. In addition, as shown by the symbol r, in the case of high rotational speeds, it goes without saying that higher efficiency can be obtained than before, and even when the discharge air volume changes over a wide range, the amount of change in total pressure efficiency is lower than before. It is small compared to , and it is possible to obtain the expected efficiency.

以上のように、本発明によれば高効率及び低騒音を達成
できるとともに低風量域で高効率化も実現できた。更に
、通風抵抗を変化させても効率がほとんど変化のないこ
とが確認できた。これにより、例えば自動車用空調装置
のようにベント、ヒータ等の通風抵抗の異なるモードを
有する装置であっても各モードで高効率を実現できる。
As described above, according to the present invention, high efficiency and low noise can be achieved, and high efficiency can also be achieved in a low air volume region. Furthermore, it was confirmed that there was almost no change in efficiency even when the ventilation resistance was changed. This makes it possible to achieve high efficiency in each mode, even if the device has different ventilation resistance modes, such as a vent and a heater, such as an automobile air conditioner.

また、言うまでもなくこの発明は自動車用空調装置に限
らず他のユニットに適用しても同様な高効率を得ること
ができる。
Needless to say, the present invention is not limited to automotive air conditioners, but can be applied to other units to achieve similar high efficiency.

(発明の効果) 本発明は上述のように構成されているので、次に記載す
る効果を奏する。
(Effects of the Invention) Since the present invention is configured as described above, it produces the following effects.

請求項1に記載の遠心送風機の羽根車によれば、羽根を
翼壁形状とし、羽根の長さCに対する羽根の厚みWII
O比(Wffi/C)を0.14以上0゜16、圧力面
との距離LffiO比(Lffi/C)を0゜2以上0
.3以下、且つ互いに隣あう羽根間の流路の幅寸法を入
口端側から出口端側に向けて次第に狭くしているから、
これらの相乗効果により、空気がケースに吹き当たる際
の騒音を小さくするとともに効率を向上させることがで
きる。
According to the impeller of the centrifugal blower according to claim 1, the blade has a blade wall shape, and the blade thickness WII with respect to the blade length C.
O ratio (Wffi/C) is 0.14 or more 0°16, distance to pressure surface LffiO ratio (Lffi/C) is 0°2 or more 0
.. 3 or less, and the width of the flow path between adjacent blades is gradually narrowed from the inlet end to the outlet end.
These synergistic effects can reduce noise when air blows against the case and improve efficiency.

請求項2に記載の遠心送風機の羽根車によれば、出口角
度Aを5度以上20度以下に設定しているから、吹き出
される風がケースに吹き当たる際の抵抗が小さくなり、
エネルギの損失を小さくすることができる。従って、更
に騒音の低下と効率の向上を図ることができる。
According to the impeller of the centrifugal blower according to claim 2, since the outlet angle A is set to 5 degrees or more and 20 degrees or less, the resistance when the blown wind blows against the case is reduced.
Energy loss can be reduced. Therefore, it is possible to further reduce noise and improve efficiency.

請求項3に記載の遠心送風機の羽根車によれば、入口角
度Bを70度以上95度以下に設定しているから、羽根
に沿ってスムーズに空気を取り入れることができるので
、羽根に沿って流れる空気の乱れを防止して、騒音の低
下と効率の向上を図ることができる。
According to the impeller of the centrifugal blower according to claim 3, since the inlet angle B is set to 70 degrees or more and 95 degrees or less, air can be taken in smoothly along the blades. By preventing turbulence in the flowing air, it is possible to reduce noise and improve efficiency.

請求項4に記載の遠心送風機の羽根車によれば、取付角
度りを30度以上50度以下に設定しているから、負圧
面における空気の剥離を防止することができる。
According to the impeller of the centrifugal blower according to the fourth aspect, since the mounting angle is set to 30 degrees or more and 50 degrees or less, separation of air on the negative pressure surface can be prevented.

第1図はこの発明に係る羽根車の羽根を拡大して示す側
面図、第2図は羽根車の空気流路を示す側面図、第3図
は羽根車の一部を示す斜視図、第4図は羽根車の側面図
、第5図は羽根車を用いた遠心送風機の断面図、第6図
はこの実施例による吐出量と効率との関係を従来と比較
して示すグラフ図、第7図は抵抗を変化させた場合の吐
出量と効率との関係を従来と比較して示すグラフ図、第
8図は回転数を変化させた場合の吐出量と効率との関係
を従来と比較して示すグラフ図である。
FIG. 1 is an enlarged side view showing the blades of the impeller according to the present invention, FIG. 2 is a side view showing the air flow path of the impeller, and FIG. 3 is a perspective view showing a part of the impeller. Figure 4 is a side view of an impeller, Figure 5 is a cross-sectional view of a centrifugal blower using an impeller, Figure 6 is a graph showing the relationship between the discharge amount and efficiency of this embodiment in comparison with the conventional one. Figure 7 is a graph showing the relationship between the discharge amount and efficiency when the resistance is changed compared to the conventional one, and Figure 8 is a graph showing the relationship between the discharge amount and efficiency when the rotation speed is changed compared to the conventional one. FIG.

3・・・・・・羽根車、7・・・・・・羽根、13・・
・・・・空気流路、基端・・・・・・8.9・・・・・
・先端、A・・・・・・出口角度、B・・・・・・入口
角度、C・・・・・・、取付角度、D・・・・・・羽根
の長さ、G・・・・・・中心線、M・・・・・・圧力面
の接線、N・・・・・・羽根車の周面の接線、Ll・・
・・・・圧力面までの距離、W、・・・・・・厚みの最
大値、X・・・・・・吹出角度。
3...impeller, 7...blade, 13...
...Air flow path, proximal end...8.9...
・Tip, A...Outlet angle, B...Inlet angle, C...Installation angle, D...Blade length, G... ...Center line, M...Tangential line to the pressure surface, N...Tangential line to the circumferential surface of the impeller, Ll...
...Distance to the pressure surface, W, ...Maximum thickness, X...Blowout angle.

第3図 第4図 第5図 第6図Figure 3 Figure 4 Figure 5 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)同一円周面上に軸線方向に延出する複数枚の羽根
を配し、互いに隣合う羽根の圧力面と負圧面との間に空
気流路を形成し、遠心力により羽根車の内側から外側へ
空気を吹き出す遠心送風機の羽根車において、前記羽根
車の羽根は翼型形状をなし、空気流入路の入口端と出口
端との間の羽根の長さ(C)に対する羽根の厚みの最大
値(W_m)の寸法比(W_m/C)が0.14以上0
.16以下、 入口端と出口端との間の羽根の長さ(C)に対する入口
端と出口端とを結ぶ線(S)と圧力面との間の距離にお
ける最大値(L_m)の寸法比(L_m/C)が0.2
以上0.3.以下であり、且つ前記互いに隣合う羽根間
の空気流路の幅寸法は入口端側から出口端側に次第に小
さくなることを特徴とする遠心送風機の羽根車。
(1) A plurality of blades extending in the axial direction are arranged on the same circumferential surface, an air flow path is formed between the pressure surface and the negative pressure surface of the adjacent blades, and the centrifugal force causes the impeller to In an impeller of a centrifugal blower that blows air from the inside to the outside, the blades of the impeller have an airfoil shape, and the thickness of the blade with respect to the length (C) of the blade between the inlet end and the outlet end of the air inflow path. The dimension ratio (W_m/C) of the maximum value (W_m) of 0.14 or more is 0
.. 16 or less, the dimension ratio of the maximum value (L_m) of the distance between the line (S) connecting the inlet end and the outlet end and the pressure surface to the length (C) of the impeller between the inlet end and the outlet end ( L_m/C) is 0.2
More than 0.3. An impeller for a centrifugal blower, wherein the width of the air flow path between the adjacent blades gradually decreases from the inlet end to the outlet end.
(2)前記羽根車の羽根の基端における空気流路を形成
する圧力面の接線(M)と羽根車の周面の接線(N)と
のなす角度とを出口角度(A)とするとき、 出口角度(A)が5度以上20度以下であることを特徴
とする請求項1に記載の遠心送風機の羽根車。
(2) When the angle formed by the tangent (M) of the pressure surface forming the air flow path at the base end of the blade of the impeller and the tangent (N) of the circumferential surface of the impeller is defined as the exit angle (A). The impeller for a centrifugal blower according to claim 1, wherein the outlet angle (A) is 5 degrees or more and 20 degrees or less.
(3)前記羽根の先端において、羽根車の中心を結ぶ中
心線(G)の法線(H)と該先端における圧力面の接線
(J)とのなす角度を入口角度(B)とするとき、 前記入口角度(B)は70度以上95度以下であること
を特徴とする請求項1記載の遠心送風機の羽根車。
(3) At the tip of the blade, when the inlet angle (B) is the angle between the normal (H) to the center line (G) connecting the centers of the impeller and the tangent (J) to the pressure surface at the tip. The impeller for a centrifugal blower according to claim 1, wherein the inlet angle (B) is 70 degrees or more and 95 degrees or less.
(4)前記羽根の前記基端と前記先端とを結ぶ線(S)
と羽根車の中心線(G)との成す角度を取付角度(D)
とするとき、 前記取付角度(D)は30度以上50度以下であること
を特徴とする請求項1記載の遠心送風機の羽根車。
(4) A line (S) connecting the base end and the tip of the blade
and the center line of the impeller (G) is the installation angle (D).
The impeller for a centrifugal blower according to claim 1, wherein the mounting angle (D) is 30 degrees or more and 50 degrees or less.
JP1629388A 1988-01-27 1988-01-27 Impeller of centrifugal flower Pending JPH01193099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1629388A JPH01193099A (en) 1988-01-27 1988-01-27 Impeller of centrifugal flower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1629388A JPH01193099A (en) 1988-01-27 1988-01-27 Impeller of centrifugal flower

Publications (1)

Publication Number Publication Date
JPH01193099A true JPH01193099A (en) 1989-08-03

Family

ID=11912498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1629388A Pending JPH01193099A (en) 1988-01-27 1988-01-27 Impeller of centrifugal flower

Country Status (1)

Country Link
JP (1) JPH01193099A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339199A (en) * 1991-05-15 1992-11-26 Hitachi Ltd Multiple blade impeller
JP2004100663A (en) * 2002-09-13 2004-04-02 Hitachi Home & Life Solutions Inc Air conditioner
US6964555B2 (en) 2002-12-25 2005-11-15 Denso Corporation Centrifugal blower
US7066712B2 (en) 2003-06-03 2006-06-27 Samsung Electronics Co., Ltd. Turbofan and air conditioner having the turbofan
US7070389B2 (en) 2003-06-03 2006-07-04 Samsung Electronics Co., Ltd. Turbofan and method of manufacturing the same
US7121799B2 (en) * 2003-06-03 2006-10-17 Samsung Electronics Co., Ltd. Turbofan and mold manufacturing the same
JP2007278268A (en) * 2006-03-15 2007-10-25 Denso Corp Centrifugal multiblade fan
KR100845262B1 (en) * 2002-03-22 2008-07-09 한라공조주식회사 Blade of blower for vehicle airconditioner and method for determinating shape of the blade
WO2008123212A1 (en) * 2007-03-27 2008-10-16 Mitsubishi Electric Corporation Sirocco fan and air conditioner
EP2192354A3 (en) * 2008-11-26 2011-03-16 LG Electronics, Inc. Indoor unit for air conditioning apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331206A (en) * 1976-09-06 1978-03-24 Hitachi Ltd Fan with forward blades
JPS5743389B2 (en) * 1975-12-23 1982-09-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743389B2 (en) * 1975-12-23 1982-09-14
JPS5331206A (en) * 1976-09-06 1978-03-24 Hitachi Ltd Fan with forward blades

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339199A (en) * 1991-05-15 1992-11-26 Hitachi Ltd Multiple blade impeller
KR100845262B1 (en) * 2002-03-22 2008-07-09 한라공조주식회사 Blade of blower for vehicle airconditioner and method for determinating shape of the blade
JP2004100663A (en) * 2002-09-13 2004-04-02 Hitachi Home & Life Solutions Inc Air conditioner
US6964555B2 (en) 2002-12-25 2005-11-15 Denso Corporation Centrifugal blower
US7066712B2 (en) 2003-06-03 2006-06-27 Samsung Electronics Co., Ltd. Turbofan and air conditioner having the turbofan
US7070389B2 (en) 2003-06-03 2006-07-04 Samsung Electronics Co., Ltd. Turbofan and method of manufacturing the same
US7121799B2 (en) * 2003-06-03 2006-10-17 Samsung Electronics Co., Ltd. Turbofan and mold manufacturing the same
JP2007278268A (en) * 2006-03-15 2007-10-25 Denso Corp Centrifugal multiblade fan
US8011891B2 (en) 2006-03-15 2011-09-06 Denso Corporation Centrifugal multiblade fan
WO2008123212A1 (en) * 2007-03-27 2008-10-16 Mitsubishi Electric Corporation Sirocco fan and air conditioner
AU2008236113B2 (en) * 2007-03-27 2010-11-18 Mitsubishi Electric Corporation Sirocco fan and air conditioner
JP5235867B2 (en) * 2007-03-27 2013-07-10 三菱電機株式会社 Sirocco fan and air conditioner
EP2192354A3 (en) * 2008-11-26 2011-03-16 LG Electronics, Inc. Indoor unit for air conditioning apparatus

Similar Documents

Publication Publication Date Title
JP4035237B2 (en) Axial blower
EP1979623B1 (en) Improved impeller and fan
JP4358965B2 (en) Centrifugal impeller and air purifier
US5951245A (en) Centrifugal fan assembly for an automotive vehicle
WO2004097225A1 (en) Multi-vane centrifugal blower
US20080187439A1 (en) Blower assembly with pre-swirler
JP3516909B2 (en) Centrifugal blower
JP3812537B2 (en) Centrifugal blower
JPH01193099A (en) Impeller of centrifugal flower
JP4712714B2 (en) Centrifugal multi-blade fan
JP2003184792A (en) Blower
CN110914553B (en) Impeller, blower and air conditioner
JP2002257096A (en) Outdoor unit for blower and air conditioner
JPH09195988A (en) Multiblade blower
JPH04334798A (en) Diffuser for centrifugal fluid machine
JP2001032794A (en) Centrifugal fan
JP3726386B2 (en) Centrifugal blower
JPH05296195A (en) Axial fan
KR20060026084A (en) Assembly of fan and shroud
JP3902193B2 (en) Multi-blade centrifugal blower
JPH0121198Y2 (en)
JP2000120582A (en) Centrifugal blower
WO2020115872A1 (en) Centrifugal blower
JP3520017B2 (en) Cross flow fan
JPH10196590A (en) Blower in air conditioner etc.