JPH04158205A - Endoscope device for measuring shape - Google Patents

Endoscope device for measuring shape

Info

Publication number
JPH04158205A
JPH04158205A JP2283338A JP28333890A JPH04158205A JP H04158205 A JPH04158205 A JP H04158205A JP 2283338 A JP2283338 A JP 2283338A JP 28333890 A JP28333890 A JP 28333890A JP H04158205 A JPH04158205 A JP H04158205A
Authority
JP
Japan
Prior art keywords
subject
pattern
lights
shape
projected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2283338A
Other languages
Japanese (ja)
Inventor
Yutaka Sakamoto
豊 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2283338A priority Critical patent/JPH04158205A/en
Publication of JPH04158205A publication Critical patent/JPH04158205A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0605Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for spatially modulated illumination

Abstract

PURPOSE:To enable easy and precise measurement of a shape by a method wherein at least two linear pattern projection lights intersecting each other are applied in time division. CONSTITUTION:An endoscope 1 is fitted, at the fore end part 12, with a diffraction grating 13 prepared by joining one-dimensional fiber diffraction gratings 13a and 13b in parallel so that they are perpendicular to each other. The grating 13 intercepts laser lights 14a and 14b entering through the scope 1, at a prescribed interval and alternately, and pattern lights obtained by the gratings 13a and 13b respectively are projected onto a subject alternately. An image pickup element picks up an image of the subject synchronously with periods of changeover of the laser lights 14a and 14b. Thereby cross-shaped pattern lights 5a and 5b are separated from each other and images of the pattern lights 5a and 5b projected on the subject are presented on a screen alternately. then, the positional coordinates of the subject at each measuring point on the pattern lights are determined for each of these images, and the shape of the subject is measured by putting them in a composite. According to this constitution, the shape of the subject can be measured precisely by using the two pattern lights 5a and 5b.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、被写体の形状を精度良く計測する形状内視鏡
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a shape endoscope device that accurately measures the shape of a subject.

(従来の技術) 一般に、形状計測内視鏡では内視鏡スコープの先端部か
ら被写体ヘレーザ光パターンを出射し、この反射光を撮
像素子で検出することで被写体の形状を計測している。
(Prior Art) Generally, in a shape measuring endoscope, the shape of the subject is measured by emitting a laser light pattern onto the subject from the tip of the endoscope and detecting the reflected light with an image sensor.

第4図はこのような形状計測内視鏡装置の構成図であり
、内視鏡スコープ1の先端面2の中心からやや離れた位
置からレーザ光パターン3が出射されると、被写体であ
る対象物4に線状のパターン光5が投影される。そして
、このパターン光5は撮像部5で検出され、例えば第5
図に示すように対象物4の突起部4 a s及びパター
ン光5が画面6上に映し出される。そして、図示しない
画像処理装置によって突起部5aの形状が計測される。
FIG. 4 is a configuration diagram of such a shape measuring endoscope device. When a laser beam pattern 3 is emitted from a position slightly away from the center of the distal end surface 2 of the endoscope 1, A linear pattern of light 5 is projected onto the object 4. Then, this pattern light 5 is detected by the imaging section 5, and for example, the fifth
As shown in the figure, the protrusion 4 a s of the object 4 and the patterned light 5 are displayed on the screen 6 . Then, the shape of the protrusion 5a is measured by an image processing device (not shown).

このときの計測原理を第6図を基に説明する。The measurement principle at this time will be explained based on FIG. 6.

同図において、レーザ光パターン3の出射角度をθ1、
撮像部7におけるパターン光5の検出角度をθ2、レー
ザ光パターン3の出射位置と撮像部7の中心位置との距
離を視差P、とすると、先端面2からパターン光投影点
までの距離2.は次の(1)式で示される。
In the figure, the emission angle of the laser beam pattern 3 is θ1,
If the detection angle of the patterned light 5 in the imaging section 7 is θ2, and the distance between the emission position of the laser beam pattern 3 and the center position of the imaging section 7 is the parallax P, then the distance from the tip surface 2 to the patterned light projection point is 2. is expressed by the following equation (1).

Ze −P@ / (tanθ、 + tan、 ) 
  ・(1)また、この距離2.を2座標とし、第5図
の紙面に垂直な平面をx−y平面とすると、ツクターン
光投影点のx、y座標x、 、y、は、撮像部7の検出
位置を基準として次の(2) 、(3)式で求められる
Ze −P@ / (tanθ, + tan, )
・(1) Also, this distance 2. are two coordinates, and the plane perpendicular to the plane of the paper in FIG. 5 is the x-y plane. 2) It can be obtained using equation (3).

X、  −Z、  ・tan  θX        
  ・−12)Yp−Z、・tanθY−(3) ただし、θ8、θ7はそれぞれパターン光5が検出され
るX軸方向、y軸方向の角度である。
X, −Z, ・tan θX
-12) Yp-Z, -tanθY-(3) However, θ8 and θ7 are the angles in the X-axis direction and the y-axis direction at which the pattern light 5 is detected, respectively.

こうして、(1)〜(3)式によりパターン光5上の計
測点位置座標(X、、Y、、Z、)が求められ、対象物
4の形状が計測される。
In this way, the measurement point position coordinates (X, , Y, , Z,) on the patterned light 5 are determined by equations (1) to (3), and the shape of the object 4 is measured.

ところが、このような方法では投影するパターン光5が
一本であるため、第5図に示す突起部4aの形状を精度
良く計測することができない。そこで、従来は、第7図
に示すように二本のパターン光5a、5bを十字状に投
影し、各パターン光5a、5b上の計測点で突起部4a
の位置座標を求めることで、精度良く形状を計測してい
る。
However, in such a method, since only one pattern light 5 is projected, the shape of the projection 4a shown in FIG. 5 cannot be accurately measured. Therefore, conventionally, two pattern lights 5a and 5b are projected in a cross shape as shown in FIG.
By determining the position coordinates of the object, the shape can be measured with high precision.

(発明が解決しようとする課題) しかしながら、二本のパターン光5a、5bを同時に投
影すると、この反射光を検出して認識スル際に、とちら
のパターン光による反射光であるかを判断てきないこと
がある。また、両<ターン光5a、5bか交差した部分
の処理かできず、円滑に形状計測ができないという欠点
があった。
(Problem to be Solved by the Invention) However, when the two pattern lights 5a and 5b are projected at the same time, it is difficult to detect the reflected light and determine whether the reflected light is due to one of the pattern lights during recognition. Sometimes there isn't. In addition, it is not possible to process only the portion where the two <turn beams 5a and 5b intersect, and there is a drawback that smooth shape measurement cannot be performed.

この発明はこのような従来の課題を解決するためになさ
れたもので、その目的とするところは、容易、かつ、精
度良く形状を計測することのできる形状計測内視鏡を提
供することにある。
This invention was made in order to solve such conventional problems, and its purpose is to provide a shape measuring endoscope that can easily and accurately measure shapes. .

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するため、本発明は、内視鏡スコープ先
端部からパターン投影光を被写体に投影し、この反射光
を撮像素子て検出して被写体の形状を計測する形状計測
内視鏡装置において、前記パターン投影光は少なくとも
二本の交差する線状であり、各投影光を時分割で照射す
ることが特徴である。
(Means for Solving the Problems) In order to achieve the above object, the present invention projects pattern projection light onto a subject from the tip of an endoscope, detects this reflected light using an image sensor, and detects the shape of the subject. In the shape measuring endoscope device for measuring, the pattern projection light is in the form of at least two intersecting lines, and each projection light is irradiated in a time-division manner.

(作用) 上述のごとく、構成すれば、少なくとも二本の交差する
線状のパターン投影光のうち一本が所定の時間間隔て切
換わりなから被写体に投影される。そして、各パターン
投影光が映し出された画像が時分割で投影され、各画像
に映し出されたパターン投影光上における各計測点の位
置座標が求められる。その後、各パターン投影光が映し
出された画像を合成して被写体の形状を計測している。
(Function) With the configuration as described above, one of the at least two intersecting linear pattern projection lights is projected onto the subject while being switched at a predetermined time interval. Then, images on which each pattern projection light is projected are projected in a time-division manner, and the position coordinates of each measurement point on the pattern projection light projected on each image are determined. After that, the shape of the subject is measured by combining the images projected by each pattern of projected light.

このため、パターン光を誤認識することはなく、精度良
く被写体の形状を計測することができるようになる。
Therefore, the shape of the object can be measured with high accuracy without erroneously recognizing the pattern light.

(実施例) 第1図は本発明が適用された形状計測内視鏡装置の内視
鏡スコープl及びレーザ光源11の外観を示す斜視図で
ある。同図において、レーザ光源11から出射されるレ
ーザ光は、スコープ1内部に配設された光ファイバ(不
図示)を経て先端部12へ導びかれる。
(Example) FIG. 1 is a perspective view showing the appearance of an endoscope l and a laser light source 11 of a shape measuring endoscope apparatus to which the present invention is applied. In the figure, a laser beam emitted from a laser light source 11 is guided to a distal end portion 12 via an optical fiber (not shown) disposed inside a scope 1.

第2図は先端部12に装着される回折格子13の模式図
である。図示のように、該回折格子13はレーザ光を縦
方向に回折する一次元ファイバ回折格子13aと、レー
ザ光を横方向に回折する一次元ファイバ回折格子13b
とが互いに垂直となるように並列に接合されて構成され
ている。そして、各回折格子13a、13bにはレーザ
光源11から出射されたレーザ光14a1及び14b入
射するようになっており、これによって回折格子13に
対して水平に配置されたスクリーン15上(第1図参照
)には、直交する十字状のパターン光5か得られる。
FIG. 2 is a schematic diagram of the diffraction grating 13 attached to the tip portion 12. As shown in the figure, the diffraction grating 13 includes a one-dimensional fiber grating 13a that diffracts the laser beam in the vertical direction, and a one-dimensional fiber grating 13b that diffracts the laser beam in the horizontal direction.
and are connected in parallel so that they are perpendicular to each other. Laser beams 14a1 and 14b emitted from the laser light source 11 are incident on each of the diffraction gratings 13a and 13b. (see), a perpendicular cross-shaped pattern of light 5 is obtained.

本実施例では、各回折格子13a、13bに入射するレ
ーザ光14a、14bを所定時間間隔で交互に遮断し、
各回折格子13a、13bによるパターン光を交互に被
写体に投影する。これは、チョッパ等を用いれば容易に
実現できる。そして、第4図に示した撮像部7において
、レーザ光14a、14bが切換わる周期に同期させて
被写体を撮影する。
In this embodiment, the laser beams 14a and 14b incident on each of the diffraction gratings 13a and 13b are alternately blocked at predetermined time intervals,
Patterned light from each of the diffraction gratings 13a and 13b is alternately projected onto the subject. This can be easily achieved using a chopper or the like. Then, in the imaging section 7 shown in FIG. 4, the subject is photographed in synchronization with the switching cycle of the laser beams 14a and 14b.

これによって、十字状のパターン光5a、5bは分離さ
れ、撮影された画面上には第3図(A)、(B)に示す
ように、被写体上にパターン光5a、5bが投影された
画面か交互に映し出される。そして、各パターン光58
% 5bが映し出された画像毎に、パターン光上の各計
測点における被写体の位置座標を求め、これを合成して
被写体の形状を計測する。こうして、被写体の形状を2
本のパターン光5a、5bを用いて精度良く計測するこ
とかできる。
As a result, the cross-shaped patterned lights 5a and 5b are separated, and a screen in which the patterned lights 5a and 5b are projected onto the subject is displayed on the photographed screen, as shown in FIGS. 3(A) and 3(B). are displayed alternately. And each pattern light 58
For each image in which % 5b is projected, the position coordinates of the subject at each measurement point on the patterned light are determined, and these are combined to measure the shape of the subject. In this way, the shape of the subject is
Accurate measurement can be performed using the book pattern lights 5a and 5b.

このようにして、本実施例では、十字状のパターンをな
す各パターン光5a、5bを所定の時間間隔て交互に切
換えて投影し、撮像部7ではこの時間間隔に同期して被
写体を撮影する。そして、各パターン光5a、5bが映
し出された画像を基に、独立に被写体の位置座標を求め
、これを合成して被写体の形状を計測している。
In this way, in this embodiment, the cross-shaped pattern lights 5a and 5b are alternately switched and projected at predetermined time intervals, and the imaging unit 7 photographs the subject in synchronization with the time intervals. . The positional coordinates of the subject are determined independently based on the images of the patterned lights 5a and 5b, and the shape of the subject is measured by combining the coordinates.

従って、パターン光58% 5bを正確に認識できるよ
うになり、形状計測の精度が向上する。
Therefore, it becomes possible to accurately recognize the pattern light 58% 5b, and the accuracy of shape measurement improves.

なお、本実施例では二本の交差するパターン光を投影す
る例を示したが、本発明はこれに限らず三本以上のパタ
ーン光を投影する場合にも適用できることは言うまでも
ない。
Although this embodiment shows an example in which two intersecting pattern lights are projected, it goes without saying that the present invention is not limited to this and can be applied to a case in which three or more pattern lights are projected.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、少なくとも二本の線
状のパターン投影光を時分割で照射し、各パターン投影
光が独立て照射された被写体を投影する。そして、撮影
された各画像を基に被写体の形状を計測している。従っ
て、パターン投影光を同時に照射したときのように、ど
のパターン投影光かを認識できなかったり、投影光が交
差した部分での処理ができないという不具合は解消され
、容易、かつ、高精度な形状計測が可能になるという効
果が得られる。
As described above, in the present invention, at least two linear pattern projection lights are irradiated in a time-sharing manner, and a subject to which each pattern projection light is independently irradiated is projected. The shape of the subject is then measured based on each captured image. Therefore, problems such as not being able to recognize which pattern projection light is used or not being able to process the part where the projection light intersects when the pattern projection light is irradiated at the same time are eliminated, and it is possible to easily and accurately form shapes. This has the effect of making measurement possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用された内視鏡スコープ、及びレー
ザ光源の外観を示す斜視図、第2図は回折格子の構成を
示す模式図、第3図は本発明の処理によって映し出され
た画面の例を示す図、第4図、第6図は形状計測の原理
を示す説明図、第5図は一本のパターン光を投影したと
きの撮影画像を示す図、第7図は二本の交差するパター
ン光を投影したときの撮影画像を示す図である。 1・・・内視鏡スコープ  5・・・パターン光7・・
・撮像部      11・・・レーザ光源13・・・
回折格子 14a、14b−・・レーザ光
Fig. 1 is a perspective view showing the appearance of an endoscope and a laser light source to which the present invention is applied, Fig. 2 is a schematic diagram showing the configuration of a diffraction grating, and Fig. 3 is an image projected by the processing of the present invention. A diagram showing an example of a screen, Figures 4 and 6 are explanatory diagrams showing the principle of shape measurement, Figure 5 is a diagram showing a photographed image when one pattern light is projected, and Figure 7 is a diagram showing two patterns. FIG. 3 is a diagram showing a photographed image obtained by projecting intersecting pattern light. 1... Endoscope scope 5... Pattern light 7...
・Imaging unit 11...Laser light source 13...
Diffraction gratings 14a, 14b--laser light

Claims (1)

【特許請求の範囲】 内視鏡スコープ先端部からパターン投影光を被写体に投
影し、この反射光を撮像素子で検出して被写体の形状を
計測する形状計測内視鏡装置において、 前記パターン投影光は少なくとも二本の交差する線状で
あり、各投影光を時分割で照射することを特徴とする形
状計測内視鏡装置。
[Scope of Claims] A shape measuring endoscope device that projects pattern projection light onto a subject from a distal end of an endoscope scope, and measures the shape of the subject by detecting the reflected light with an image sensor, comprising: is at least two intersecting lines, and each projection light beam is emitted in a time-sharing manner.
JP2283338A 1990-10-23 1990-10-23 Endoscope device for measuring shape Pending JPH04158205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2283338A JPH04158205A (en) 1990-10-23 1990-10-23 Endoscope device for measuring shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2283338A JPH04158205A (en) 1990-10-23 1990-10-23 Endoscope device for measuring shape

Publications (1)

Publication Number Publication Date
JPH04158205A true JPH04158205A (en) 1992-06-01

Family

ID=17664189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2283338A Pending JPH04158205A (en) 1990-10-23 1990-10-23 Endoscope device for measuring shape

Country Status (1)

Country Link
JP (1) JPH04158205A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087761A (en) * 2016-11-29 2018-06-07 ヘキサゴン・メトロジー株式会社 Three-dimensional shape measurement device
CN111526775A (en) * 2017-12-27 2020-08-11 爱惜康有限责任公司 Hyperspectral imaging with tool tracking in low light environments
JP2022129355A (en) * 2021-02-24 2022-09-05 株式会社Rist Surface shape inspection device and surface shape inspection method
US11674848B2 (en) 2019-06-20 2023-06-13 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for hyperspectral imaging
US11686847B2 (en) 2019-06-20 2023-06-27 Cilag Gmbh International Pulsed illumination in a fluorescence imaging system
US11716543B2 (en) 2019-06-20 2023-08-01 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US11793399B2 (en) 2019-06-20 2023-10-24 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed hyperspectral imaging system
US11877065B2 (en) 2019-06-20 2024-01-16 Cilag Gmbh International Image rotation in an endoscopic hyperspectral imaging system
US11924535B2 (en) 2019-06-20 2024-03-05 Cila GmbH International Controlling integral energy of a laser pulse in a laser mapping imaging system
US11925328B2 (en) 2019-06-20 2024-03-12 Cilag Gmbh International Noise aware edge enhancement in a pulsed hyperspectral imaging system
US11931009B2 (en) 2019-06-20 2024-03-19 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral imaging system
US11940615B2 (en) 2019-06-20 2024-03-26 Cilag Gmbh International Driving light emissions according to a jitter specification in a multispectral, fluorescence, and laser mapping imaging system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087761A (en) * 2016-11-29 2018-06-07 ヘキサゴン・メトロジー株式会社 Three-dimensional shape measurement device
US11823403B2 (en) 2017-12-27 2023-11-21 Cilag Gmbh International Fluorescence imaging in a light deficient environment
CN111526775A (en) * 2017-12-27 2020-08-11 爱惜康有限责任公司 Hyperspectral imaging with tool tracking in low light environments
JP2021509337A (en) * 2017-12-27 2021-03-25 エシコン エルエルシーEthicon LLC Hyperspectral imaging with tool tracking in a light-deficient environment
US11900623B2 (en) 2017-12-27 2024-02-13 Cilag Gmbh International Hyperspectral imaging with tool tracking in a light deficient environment
US11674848B2 (en) 2019-06-20 2023-06-13 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for hyperspectral imaging
US11716543B2 (en) 2019-06-20 2023-08-01 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US11793399B2 (en) 2019-06-20 2023-10-24 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed hyperspectral imaging system
US11686847B2 (en) 2019-06-20 2023-06-27 Cilag Gmbh International Pulsed illumination in a fluorescence imaging system
US11877065B2 (en) 2019-06-20 2024-01-16 Cilag Gmbh International Image rotation in an endoscopic hyperspectral imaging system
US11924535B2 (en) 2019-06-20 2024-03-05 Cila GmbH International Controlling integral energy of a laser pulse in a laser mapping imaging system
US11925328B2 (en) 2019-06-20 2024-03-12 Cilag Gmbh International Noise aware edge enhancement in a pulsed hyperspectral imaging system
US11931009B2 (en) 2019-06-20 2024-03-19 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral imaging system
US11940615B2 (en) 2019-06-20 2024-03-26 Cilag Gmbh International Driving light emissions according to a jitter specification in a multispectral, fluorescence, and laser mapping imaging system
US11949974B2 (en) 2019-06-20 2024-04-02 Cilag Gmbh International Controlling integral energy of a laser pulse in a fluorescence imaging system
JP2022129355A (en) * 2021-02-24 2022-09-05 株式会社Rist Surface shape inspection device and surface shape inspection method

Similar Documents

Publication Publication Date Title
JP4298155B2 (en) Distance measuring device and distance measuring method
JP5936357B2 (en) Attitude detector, contact probe, and multi-sensing probe
JP2002139304A (en) Distance measuring device and distance measuring method
US9861279B2 (en) Method and device for determining the eye position
JPH04158205A (en) Endoscope device for measuring shape
JP2007093412A (en) Three-dimensional shape measuring device
JP2010014505A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measurement method
JPH06207812A (en) Measurement point indicator for three-dimensional measurement
KR20040071531A (en) Three-dimensional image measuring apparatus and method thereof
EP1202074B1 (en) Distance measuring apparatus and distance measuring method
KR101304948B1 (en) Sensor System and Position Recognition System
JP4545580B2 (en) In-plane displacement meter
JP7332417B2 (en) Measuring device and measuring method
JP2678127B2 (en) Optical measuring device
JPH04283608A (en) Optical apparatus for measuring surface shape
JP2504944B2 (en) Three-dimensional information processing method
JPS62291512A (en) Distance measuring apparatus
JP2003065738A (en) Three-dimensional measurement system and calibration method of the same
JPH0789058B2 (en) Distance measuring device
JPH03128409A (en) Three-dimensional shape sensor
JPH0789057B2 (en) Distance measuring device
JPS63196806A (en) Inclination measuring device
JPH03205503A (en) Image position detecting method for sheet light
JPS6262252A (en) Pin position detector
JPS6228402B2 (en)