JPH04157140A - Ferrous sintered sliding member - Google Patents

Ferrous sintered sliding member

Info

Publication number
JPH04157140A
JPH04157140A JP2280220A JP28022090A JPH04157140A JP H04157140 A JPH04157140 A JP H04157140A JP 2280220 A JP2280220 A JP 2280220A JP 28022090 A JP28022090 A JP 28022090A JP H04157140 A JPH04157140 A JP H04157140A
Authority
JP
Japan
Prior art keywords
magnesium
minerals
inclusions
metasilicate
sliding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2280220A
Other languages
Japanese (ja)
Other versions
JP2680927B2 (en
Inventor
Koichiro Hayashi
幸一郎 林
Hiroshi Ikenoue
池ノ上 寛
Katsunao Chikahata
近畑 克直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP28022090A priority Critical patent/JP2680927B2/en
Priority to US07/773,730 priority patent/US5259860A/en
Priority to AU85808/91A priority patent/AU647186B2/en
Priority to EP91309543A priority patent/EP0481763B1/en
Priority to ES91309543T priority patent/ES2082154T3/en
Priority to DE69116638T priority patent/DE69116638T2/en
Priority to KR1019910018366A priority patent/KR960008727B1/en
Publication of JPH04157140A publication Critical patent/JPH04157140A/en
Application granted granted Critical
Publication of JP2680927B2 publication Critical patent/JP2680927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the machinability, wear resistance and plastic workability of a member by dispersing a prescribed amt. of lubricating substance constituted of Mg metasilicate or the like into a metallic matrix constituted of a pearlite matrix and a steadite phase and executing compacting and sintering. CONSTITUTION:This ferrous sintered sliding member is formed of a compsn. constituted of, by weight, 1.5 to 4% C, 1 to 5% Cu, 0.1 to 2% Sn, 0.1 to O.5% P, 0.5 to 2% intercrystalline inclusions and the balance Fe. Then, its structure is formed of a one in which free graphite and intercrystalline inclusions are dispersed into a metallic matrix having a mixed structure of a pearlite matrix and intercrystalline inclusions. The above intercrystalline inclusions are constituted of an Mg metasilicate series mineral or, together with this, an Mg orthosilicate series mineral or an Mg metasilicate series mineral and/or an Mg orthosilicate series mineral and B nitride and/or Mn sulfide.

Description

【発明の詳細な説明】 〈産業−にの利用分野〉 この発明は、各種軸受等に用いるのに好適な耐摩耗性と
快削性に優れた焼結合金よりなる鉄系焼結摺動部ヰ4に
関するものである。
[Detailed description of the invention] <Industrial field of application> The present invention provides an iron-based sintered sliding part made of a sintered alloy with excellent wear resistance and free machinability, suitable for use in various bearings, etc. This is related to ヰ4.

〈従来の技術〉 従来、鉄系焼結材料に耐摩耗性を付J>するために、固
体潤滑作用のある黒鉛を多量に添加し、その一部を焼結
時に基地中に拡散させて焼結後に遊離した黒鉛として残
留させ、残留黒鉛の潤滑作用を利用した各種用途に適す
る耐摩耗性摺動部ヰ4がある。
<Conventional technology> Conventionally, in order to impart wear resistance to iron-based sintered materials, a large amount of graphite, which has a solid lubricating effect, was added, and a portion of it was diffused into the matrix during sintering. There is a wear-resistant sliding part I4 which is left as free graphite after drying and is suitable for various uses utilizing the lubricating effect of the residual graphite.

しかして、この材料において遊離黒鉛を得るためには、
焼結温度を一般の鉄系材料のそれよりも低くする必要が
あるが、その結果として粒子−間結合が弱くなり、面圧
が高い使用条件下では摩耗しやすい摺動部材となってし
まうという欠点があった。
Therefore, in order to obtain free graphite in this material,
The sintering temperature needs to be lower than that for general iron-based materials, but as a result, the bond between particles becomes weaker, resulting in a sliding member that is more likely to wear under conditions of high surface pressure. There were drawbacks.

そこで、更に所定量の銅、錫及びリンを添加して、温度
980〜1100’Cで液相焼結し、Fe−p−c三元
用品(ステダイト相)が混在したパーライト基地中に遊
離黒鉛が分散した組織とすることで、上述の鉄系焼結摺
動部材にみられる欠点を除去した鉄系焼結合金が、特公
昭54−42335号公報あるいは特公昭55−348
58号公報などによって提案されている。
Therefore, a predetermined amount of copper, tin, and phosphorus were further added, and liquid phase sintering was performed at a temperature of 980 to 1100'C to form free graphite in a pearlite base mixed with Fe-p-c ternary products (steadite phase). An iron-based sintered alloy which eliminates the defects found in the above-mentioned iron-based sintered sliding members by forming a structure in which ions are dispersed is disclosed in Japanese Patent Publication No. 54-42335 or Japanese Patent Publication No. 55-348.
This method has been proposed in Publication No. 58 and the like.

〈発明が解決しようとする課題〉 ところで、上記の如く改良された鉄系焼結摺動部材は、
比較的低い温度で焼結しても従来のように焼結材料の強
度が弱くならずその強度を高くすることができ、高い面
圧下で使用される軸受等の摺動部材として好適なものと
することができるが、快削性が劣るという欠点を有して
いるため切削加工を必要とする部品においては被削性の
改善が望まれていた。
<Problem to be solved by the invention> By the way, the iron-based sintered sliding member improved as described above has the following problems:
Even when sintered at a relatively low temperature, the strength of the sintered material does not weaken as in conventional methods, and its strength can be increased, making it suitable for sliding members such as bearings used under high surface pressure. However, it has the disadvantage of poor machinability, so it has been desired to improve the machinability of parts that require cutting.

この発明は、」1記のような事情に鑑みてなされたもの
であり、その目的とするところは、高い面圧下でも使用
することができるとJ(に、従来の焼結摺動部材に比し
て主に被削性の改善を図り、耐摩耗性、快削性などに優
れた焼結合金よりなる鉄系焼結摺動部材を提供すること
にある。
This invention was made in view of the circumstances mentioned in 1.The purpose of this invention is to be able to use it even under high surface pressure, and to be able to use it even under high surface pressure, compared to conventional sintered sliding members. The object of the present invention is to provide an iron-based sintered sliding member made of a sintered alloy that mainly improves machinability and has excellent wear resistance and free machinability.

〈課題を解決するための手段〉 この発明に係る鉄系焼結摺動部材は、1−記のような目
的を達成するために、全体組成が申母比てC1,5〜4
%、Cu1〜5%、Sn0.1〜2%、Po、1〜0.
5%1粒間介在物0.5〜2%及び残部Feで、パーラ
イト基地とステダrト相の混合組織である金属マトリッ
クス中に遊離黒鉛及び粒間介在物が分散した組織であり
、1;記粒間介在物がメタ珪酸マグネシウム系鉱物、ま
たはメタ珪酸マグネシウム系鉱物とオルト珪酸マグネシ
ウム系鉱物、メタ珪酸マグネシラl、系鉱物もしくはオ
ルト珪酸マグネシラt、系鉱物の少なくとも1種と窒化
硼素もしくは硫化マンガンの少なくとも1種であことを
特徴とする。
<Means for Solving the Problems> In order to achieve the objects mentioned in 1-, the iron-based sintered sliding member according to the present invention has an overall composition of C1.
%, Cu1-5%, Sn0.1-2%, Po, 1-0.
It is a structure in which free graphite and intergranular inclusions are dispersed in a metal matrix, which is a mixed structure of pearlite base and steady phase, with 0.5 to 2% of intergranular inclusions and the balance Fe, 1; The intergranular inclusions are magnesium metasilicate minerals, or magnesium metasilicate minerals and magnesium orthosilicate minerals, magnesilate metasilicate type minerals or magnesila orthosilicate type minerals, at least one of the minerals and boron nitride or manganese sulfide. It is characterized by being at least one of the following.

また、上記メタ珪酸マグネシラt、系鉱物はエンスタタ
イト、クリノエンスタタイト、エンステナイト、,ハイ
パーステンなどの少なくとも1秤てあり、オルト珪酸マ
グネシウム系鉱物はフォルステライト、クリソライトな
どの少なくともIN、であることを特徴とする。
In addition, the above-mentioned magnesila metasilicate mineral is at least one such as enstatite, clinoenstatite, enstenite, hyperstene, etc., and the magnesium orthosilicate mineral is at least IN such as forsterite and chrysolite. It is characterized by

Fe基地中に含まれた0、1〜2%のSnは、黒鉛を遊
離黒鉛として残留させるために必要な低い焼結温度下で
、液相を発生して焼結を促進する働きがあり、材料強度
を向J−させる。
0.1 to 2% Sn contained in the Fe base has the function of generating a liquid phase and promoting sintering at the low sintering temperature required to leave graphite as free graphite. Improves material strength.

その添加量は0.1%以−にで効果が発生するが、過剰
に加えると材質の脆化や製品の寸法不安定性が増すので
2%が」−限である。
The effect is produced when the addition amount is 0.1% or more, but if added in excess, the material becomes brittle and the dimensional instability of the product increases, so the limit is 2%.

Cuは、上記Snと同様に焼結の促進1強度向」tに寄
与するもので、1%以上で効果を示すが5%を越えて添
加しても効果が伴なわない。
Cu, like the Sn mentioned above, contributes to the promotion of sintering and increases the strength, and is effective when added in an amount of 1% or more, but no effect is produced if it is added in an amount exceeding 5%.

Cu及びSnの配合に際しては夫々単味の粉末を用いて
もよいが、液相生成の時期が異なり不均質になりやすい
のでCu−Sn合金粉の形で用いるのが望ましい。
When blending Cu and Sn, single powders may be used, but it is preferable to use them in the form of a Cu-Sn alloy powder because the timing of liquid phase formation is different and the mixture tends to be non-uniform.

Cは天然黒鉛の形で添加され、焼結後に一部は遊離黒鉛
の形で残留し、その他の一部がFe基地に固溶し鉄のパ
ーライト組織と後述するPを件なって硬いFe−P−C
三元)1品(ステダイト用)を析出する。
C is added in the form of natural graphite, and after sintering, part of it remains in the form of free graphite, and the other part is solidly dissolved in the Fe base, forming a hard Fe- P-C
ternary) 1 product (for steadite) is precipitated.

また、黒鉛粉の添加量が1.5%の場合に遊離黒鉛が0
.3%残留し、3%の場合に約1.7%、4%の場合に
約2.7%残留するが、遊離黒鉛が0.3%より少ない
と摺動する相手部ヰ(を摩耗させ易くする。
In addition, when the amount of graphite powder added was 1.5%, free graphite was 0.
.. If the free graphite content is less than 0.3%, it will wear out the sliding mating part. make it easier

一方、黒鉛粉の添加量が4%を越えると基材の強度が低
下するので、炭素示は1.5〜4%の範囲とする。
On the other hand, if the amount of graphite powder added exceeds 4%, the strength of the base material will decrease, so the carbon content should be in the range of 1.5 to 4%.

PはFeと金属間化合物を作り、前述したFe−p−c
三元用品(ステダイト相)を形成して耐摩耗性に寄与す
るが、所望する耐摩耗性の組織を形成するためには0.
196以1−の添加が必要で、1.5%以上に添加する
と基材が脆くなり被削性が低下するので好ましくない。
P forms an intermetallic compound with Fe, and the aforementioned Fe-p-c
It forms a ternary phase (steadite phase) and contributes to wear resistance, but in order to form the desired wear-resistant structure, 0.
It is necessary to add more than 196%, and adding more than 1.5% is not preferable because the base material becomes brittle and machinability decreases.

また、このPは均質な組織を得るために、Fe−2合金
粉の形で添加するのが好ましい。
Further, in order to obtain a homogeneous structure, it is preferable to add this P in the form of Fe-2 alloy powder.

一方、珪酸マグネシウムは固体潤滑剤であり粒間介在物
としての作用を果す。
On the other hand, magnesium silicate is a solid lubricant and acts as an intergranular inclusion.

メタ珪酸マグネシウム(magnesium *eLa
silicate)はMg S t O3て表わされ、
結晶構造が異なる幾つかの種類があるといわれているが
、斜り一品系のエンスタタイト(ensLaLiLe 
、引火輝石)、単斜晶系のクリノエンスタタイト(cl
 1nnensLaLite、斜順欠輝石)が相当する
Magnesium metasilicate (magnesium *eLa
silicate) is expressed as Mg S t O3,
It is said that there are several types of enstatite with different crystal structures, but one type of enstatite (ensLaLiLe) is a diagonal one-piece type.
, pyroxene), monoclinic clinoenstatite (cl
1nnensLaLite, clinopyroxene) corresponds to this.

また、天然の鉱石から精製されたものは、Mgの珪酸塩
とFeの珪酸塩との固溶体、またはこの固容体とMgの
珪酸塩との固溶体の形であることが一般的で、(Mg、
Fe)S io3て表わされ、このような形態のものに
はエンステナイト(ens LeniLe)や,ハイパ
ーステン(hypersLhen、紫蘇輝石)が挙げら
れる。
In addition, those refined from natural ores are generally in the form of a solid solution of Mg silicate and Fe silicate, or a solid solution of this solid and Mg silicate.
It is expressed as Fe)S io3, and examples of this type include enstenite and hyperstenite.

この発明においては、を記のようなメタ珪酸マグネシウ
ム及びそれを含む珪酸塩をメタ珪酸マグネシウム系鉱物
という。
In this invention, magnesium metasilicate and silicates containing the same are referred to as magnesium metasilicate minerals.

一方、オルト珪酸マグネシウム(magneSium 
orLhosllicate )はMg  5i04で
表わされ、産業」二はフォルステライト(f’orsL
eriLe、苦L−11攬石)とよばれる鉱石である。
On the other hand, magnesium orthosilicate (magnesium
orLhosllicate) is represented by Mg 5i04, and industrial '2 is forsterite (f'orsL).
It is an ore called eriLe (Kura L-11 攬石).

また、同様にMgやFeの珪酸塩と固容体の形であるこ
とが一般的で、このような形態のものにはクリソライト
(chrysoliLe、樟攬石)がある。
Similarly, it is generally in the form of a solid body with silicates of Mg or Fe, and examples of such a form include chrysolite.

クリソライトは、」1記のフォルステライト(Mg  
5104)とフエヤライト(1’ayaliLe %F
e  5104)、または更にテラロイL (Lcph
r。
Chrysolite is forsterite (Mg
5104) and 1'ayaliLe%F
e 5104), or even Terraloy L (Lcph
r.

ite、Mn  5in4)を含む固容体で、(Mg。ite, Mn 5in4), (Mg.

Fe)2SiO4または(Mg、Fe、Mn)2SiO
4で表わされる。
Fe)2SiO4 or (Mg, Fe, Mn)2SiO
It is represented by 4.

この発明においては、1−記のようなオルト■1酸マグ
ネシウt、及びそれを含む珪酸塩をオルト■[酸マグネ
シウム系鉱物という。
In this invention, ortho-magnesium 1-acid and silicates containing the same are referred to as ortho-magnesium-acid minerals.

メタ珪酸マグネシウム系鉱物やオルト珪酸マグネシウム
系鉱物は、比重が3.2〜3.9種度で襞間性があるた
め固体潤滑剤として作用し、焼結材料の快削性、摺動特
性、なじみ性、耐摩耗性などを良好にするとともに、親
油性があるため潤滑油等の保持能を向上させる。
Magnesium metasilicate minerals and magnesium orthosilicate minerals have a specific gravity of 3.2 to 3.9 degrees and have interfold properties, so they act as solid lubricants, improving the free machinability, sliding properties, and It not only improves compatibility and wear resistance, but also improves the ability to retain lubricating oil due to its lipophilic properties.

珪酸マグネシウムの添加量は、0.1用量%以上添加す
れば固体潤滑効果が認められ、その添加量を増やすと共
に効果が増大するが、一方2%より多く添加するとその
体積が多くなるため焼結体の強度が低くなり好ましくな
い。     −なお、メタ珪酸マグネシウム系鉱物と
オルト珪酸マグネシウム系鉱物を比較すると、後右の)
jが硬くて襞間しにくい性質を持っているため、メタ珪
酸マグネシウム系鉱物と混合して用いるのが望ましい。
When magnesium silicate is added in an amount of 0.1% or more, a solid lubricating effect is observed, and as the amount added increases, the effect increases, but on the other hand, when more than 2% is added, the volume increases and sintering This is undesirable as it reduces the strength of the body. -Comparing magnesium metasilicate minerals and magnesium orthosilicate minerals, see the diagram on the back right)
Since j is hard and does not easily crease, it is desirable to use it in combination with magnesium metasilicate minerals.

また、焼結摺動部材の被削性及び耐摩耗性をより向1−
させるためには、メタ珪酸マグネシラt・系鉱物または
オルト珪酸マグネシウム系鉱物の−h゛か両方に加え、
窒化硼素または硫化マンガンの少なくとも1種を分散さ
せれば、窒化硼素あるいは硫化マンガンは固体潤滑剤と
して作用する。 窒化硼素と硫化マンガンの雨音を比較
すると、被削性では窒化硼素、耐摩耗性においては硫化
マンガンが優れている。
In addition, the machinability and wear resistance of sintered sliding members are improved.
In order to achieve this, in addition to -h or both of magnesila metasilicate t-based minerals or magnesium orthosilicate minerals,
If at least one of boron nitride or manganese sulfide is dispersed, the boron nitride or manganese sulfide acts as a solid lubricant. Comparing the rain sounds of boron nitride and manganese sulfide, boron nitride is superior in machinability, while manganese sulfide is superior in wear resistance.

また、その添加量は上記した珪酸マグネシウム系鉱物の
潤滑作用の場合と同じ理由で、珪酸マグネシウム系鉱物
と合わせて0.1〜2巾量用量範囲となるようにする。
Further, the amount added is set to be in a range of 0.1 to 2 times in combination with the magnesium silicate mineral for the same reason as the lubricating effect of the magnesium silicate mineral.

珪酸マグネシウム系鉱物と、窒化硼素もしくは硫化マン
ガンの少なくとも一方の組合せ割合は限定しないが、窒
化硼素及び硫化マンガンのコストが珪酸マグネシウム系
鉱物の10〜30倍程度と高価なため、コスト面から考
慮して半分以下にすることが好ましい。
The combination ratio of the magnesium silicate mineral and at least one of boron nitride or manganese sulfide is not limited, but since boron nitride and manganese sulfide are about 10 to 30 times more expensive than the magnesium silicate mineral, it should be taken into consideration from a cost perspective. It is preferable to reduce the amount by half or less.

〈作用〉 この発明によれば、遊離黒鉛を残留させるのに必要な比
較的低い温度で焼結しても、従来のように焼結材料の強
度を低下させずその強度を高くすることができ、かつ快
削性が付与されているので、高い面圧下で使用される軸
受類等として好適な摺動部材とすることができる。
<Function> According to the present invention, even if sintered at a relatively low temperature necessary to leave free graphite, the strength of the sintered material can be increased without decreasing the strength as in the past. , and has free machinability, so it can be used as a sliding member suitable for bearings and the like used under high surface pressure.

また、熱に対して比較的安定であり、さらに焼結中に脱
水分解が行なわれないため、通常の焼結方法で低コスト
に製造することができる。
In addition, it is relatively stable against heat, and furthermore, since dehydration and decomposition do not occur during sintering, it can be manufactured at low cost by a normal sintering method.

〈実施例〉 以下、実施例によりこの発明を説明する。<Example> The present invention will be explained below with reference to Examples.

なお、組成及び配合割合は重量比である。Note that the composition and blending ratio are weight ratios.

この発明による焼結試料(以下、発明材という)と比較
試料(以下、比較材という)の作製例を以下に説明する
とともに、各試料の耐摩耗性及び被削性を表により明ら
かにする。
Examples of preparing a sintered sample according to the present invention (hereinafter referred to as the invention material) and a comparative sample (hereinafter referred to as the comparative material) will be described below, and the wear resistance and machinability of each sample will be clarified in a table.

比較材1は、従来材である天然黒鉛粉2.5%。Comparative material 1 is a conventional material with 2.5% natural graphite powder.

Cu−10%Sn合金粉5%、85%Fe−15%P合
金粉4%、ステアリン酸亜鉛0.596残りアトマイズ
鉄粉の混合粉を、内燃機関のバルブガイドの所定形状に
成形し、非酸化性雰囲気ガス中100θ℃で30分間焼
結したものである。
A mixed powder of 5% Cu-10%Sn alloy powder, 4% 85%Fe-15%P alloy powder, and 0.596 zinc stearate and the remainder atomized iron powder was formed into the specified shape of a valve guide for an internal combustion engine, and then It was sintered at 100θ°C for 30 minutes in an oxidizing atmosphere gas.

また、比較材1で用いた混合粉に、相間介在物を形成す
る粉末すなわち、メタ珪酸マグネシラ1、系鉱物の例と
してエンスタタイト粉、オルト珪酸マグネシウム系鉱物
の例としてフォルステライト粉、比較用として従来より
用いられているメタ珪酸マグネシウム系鉱物であるタル
ク、及び窒化硼素粉と硫化マンガン粉を、下記の表に示
すように所定量添加し、比較材1と同様に成形及び焼結
して比較材2〜4及び発明材1〜8を作製した。
In addition, to the mixed powder used in Comparative Material 1, powder that forms interphase inclusions, that is, magnesila metasilicate 1, enstatite powder as an example of minerals, forsterite powder as an example of magnesium orthosilicate minerals, and forsterite powder as an example of magnesium orthosilicate minerals. Talc, which is a conventionally used magnesium metasilicate mineral, as well as boron nitride powder and manganese sulfide powder, were added in the prescribed amounts as shown in the table below, and then molded and sintered in the same manner as Comparative Material 1 for comparison. Materials 2 to 4 and invention materials 1 to 8 were produced.

被削性については、各試料の6.5mmの内径を、直径
7mmのリーマで荷重3. 2KgをI)えながら回転
数50Orpmで切削して貝通時間を測定し、比較試料
1を100とする指数で表した。
Regarding machinability, the 6.5 mm inner diameter of each sample was cut with a 7 mm diameter reamer under a load of 3. The shellfish passing time was measured by cutting at a rotational speed of 50 rpm while weighing 2 kg, and expressed as an index with Comparative Sample 1 as 100.

また、摩耗試験については、バルブガイドの所定寸法に
加工した各試料をエンジン模擬試験装置に装着し、10
0時間試験後の試料内径及びバルブの摩耗量を測定した
In addition, for the wear test, each sample of the valve guide processed to the specified dimensions was mounted on an engine simulation test device, and
After the 0-hour test, the inner diameter of the sample and the amount of wear on the valve were measured.

この測定結果から、各試料の成形体を金型から抜き出す
最大荷重は、比較材1に比べてタルクを添加した比較材
2及びその他比較材3,4と各発明材はどれも約4%小
さく、成形潤滑剤としての効果が認められた。
From this measurement result, the maximum load for extracting the molded body of each sample from the mold is approximately 4% smaller for Comparative Material 2 containing talc, other Comparative Materials 3 and 4, and each invention material compared to Comparative Material 1. , its effectiveness as a molding lubricant was recognized.

また、表から明らかなように、比較材2のタルク添加材
は被削性は良いが摩耗が大きいことがわかる。
Furthermore, as is clear from the table, Comparative Material 2, a talc-added material, has good machinability but is subject to large wear.

これは、焼結中にタルク(M g 3 S l 40 
t+・H2O)の結晶水が脱水し、焼結炉中ガスを汚染
して、基地のフェライト組織が多くなった結果、被削性
が良くかつ試料の摩耗が大きくなり、またタルクの一部
が二酸化珪素(S i02 )となりバルブを摩耗させ
たものと考えられる。
This is because talc (M g 3 S l 40
The crystal water of t+・H2O) dehydrates and contaminates the gas in the sintering furnace, resulting in an increase in the ferrite structure of the base, resulting in good machinability and large sample wear. It is thought that this turned into silicon dioxide (S i02 ) and caused the valve to wear out.

比較材3,4及び発明材1〜3はエンスタタイト含有量
の効果を示すもので、その添加量0. 5〜2%の範囲
が、被削性及び試料と相手部品であるバルブの耐摩耗性
が共に良好であることがわかる。
Comparative materials 3 and 4 and invention materials 1 to 3 show the effect of enstatite content, and the amount added is 0. It can be seen that in the range of 5 to 2%, both the machinability and the wear resistance of the sample and the valve, which is a mating part, are good.

ただし、比較材4のようにエンスタタイトを3%含む試
料は、被削性は良く相手部品であるバルブを摩耗させな
いが、試料自体の摩耗が大きい。
However, a sample containing 3% enstatite, such as Comparative Material 4, has good machinability and does not wear out the valve, which is a mating part, but the sample itself suffers a large amount of wear.

一方、発明材4はフすルステライトをaむ試料で、エン
スタタイトにはおよばないが、被削性。
On the other hand, invention material 4 is a sample containing fustellite, and its machinability is not as good as enstatite.

耐摩耗性とも良好である。It also has good wear resistance.

また、発明キイ5はエンスタタイトとフォルステライト
の両方を含む試料で、発明+12と4の中間程度の特性
である。
Further, Invention Key 5 is a sample containing both enstatite and forsterite, and has characteristics that are intermediate between Invention +12 and Invention +4.

さらに、発明材6〜8はエンスタタイトまたはフォルス
テライトと、窒化硼素または硫化マンガンが共存する試
料であり、上記の各試料に比べて被削性、耐摩耗性とも
優れていることがわかる。
Furthermore, it can be seen that invention materials 6 to 8 are samples in which enstatite or forsterite and boron nitride or manganese sulfide coexist, and are superior in machinability and wear resistance compared to each of the above-mentioned samples.

〈発明の効果〉 以−1−説明したように、この発明の鉄系焼結摺動部材
は、比較的低い温度で焼結しても従来のように焼結材料
の強度を低下させずその強度を高くしつつ必要量の遊離
黒鉛、及び固体潤滑作用のある珪酸マグネシウム系鉱物
、窒化硼素、硫化マンガン等を合金基地の粒界に介在さ
せたものであるから、高い面圧下での耐q耗性に優れる
と」(に被削性に優れ、従って切削加工を必要とする軸
受類に使用した場合には切削工具の長寿命化が可能とな
り生産性を向]−することができる。
<Effects of the Invention> As explained in 1-1 below, the iron-based sintered sliding member of the present invention does not reduce the strength of the sintered material even when sintered at a relatively low temperature, unlike conventional methods. While increasing strength, the required amount of free graphite, solid lubricating magnesium silicate minerals, boron nitride, manganese sulfide, etc. are interposed in the grain boundaries of the alloy matrix, so it has excellent resistance to q under high surface pressure. If it has excellent wear resistance, it can extend the life of cutting tools and improve productivity when used in bearings that require cutting.

また、特に内燃機関のバルブガイド等のように高血圧用
の軸受類では保油性なども作な−で軸受類自体の長寿命
化をさらに図ることができる。
In addition, especially in bearings for high blood pressure such as valve guides of internal combustion engines, the oil retention property is improved, and the life of the bearings themselves can be further extended.

更に、熱に対して比較的安定であり、かつ焼結中に脱水
分解が行なわれないため、通常の焼結ノJ゛法で製造す
ることができ、コストの低減化を図ることができる等の
効果を有する。
Furthermore, it is relatively stable against heat and does not dehydrate and decompose during sintering, so it can be manufactured using the normal sintering method, reducing costs. It has the effect of

よって、高面圧下て用いられる各種軸受等に好適な耐〒
耗性及び快削性に優れた焼結合金よりなる鉄系焼結摺動
部材を低コストに提fjtすることができる。
Therefore, it has a suitable resistance for various types of bearings used under high surface pressure.
An iron-based sintered sliding member made of a sintered alloy with excellent wear resistance and free machinability can be provided at low cost.

特許出願人  日立粉末冶金株式会社Patent applicant Hitachi Powder Metallurgy Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 1. 全体組成が重量比でC1.5〜4%,Cu1〜5
%,Sn0.1〜2%,P0.1〜0.5%,粒間介在
物0.5〜2%及び残部Feで、パーライト基地とステ
ダイト相の混合組織である金属マトリックス中に遊離黒
鉛及び粒間介在物が分散した組織であり、上記粒間介在
物がメタ珪酸マグネシウム系鉱物、またはメタ珪酸マグ
ネシウム系鉱物とオルト珪酸マグネシウム系鉱物、また
はメタ珪酸マグネシウム系鉱物もしくはオルト珪酸マグ
ネシウム系鉱物の少くとも1種と窒化硼素もしくは硫化
マンガンの少なくとも1種、であることを特徴とする鉄
系焼結摺動部材。
1. The overall composition is C1.5-4%, Cu1-5 by weight.
%, Sn 0.1-2%, P 0.1-0.5%, intergranular inclusions 0.5-2%, and the balance Fe. It has a structure in which intergranular inclusions are dispersed, and the intergranular inclusions are magnesium metasilicate minerals, or magnesium metasilicate minerals and magnesium orthosilicate minerals, or magnesium metasilicate minerals or magnesium orthosilicate minerals. 1. An iron-based sintered sliding member characterized by comprising one of the following: and at least one of boron nitride and manganese sulfide.
2. メタ珪酸マグネシウム系鉱物はエンスタタイト,
クリノエンスタタイト,エンステナイト,ハイパーステ
ンなどの少なくとも1種であり、オルト珪酸マグネシウ
ム系鉱物はフォルステライト,クリソライトなどの少な
くとも1種、であることを特徴とする請求項1の記載の
金属焼結摺動部材。
2. Magnesium metasilicate minerals are enstatite,
The metal sinter according to claim 1, wherein the mineral is at least one of clinoenstatite, enstenite, hyperstene, etc., and the magnesium orthosilicate mineral is at least one of forsterite, chrysolite, etc. Sliding member.
JP28022090A 1990-10-18 1990-10-18 Iron-based sintered sliding member Expired - Lifetime JP2680927B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP28022090A JP2680927B2 (en) 1990-10-18 1990-10-18 Iron-based sintered sliding member
US07/773,730 US5259860A (en) 1990-10-18 1991-10-09 Sintered metal parts and their production method
AU85808/91A AU647186B2 (en) 1990-10-18 1991-10-11 Sintered metal parts and their production method
ES91309543T ES2082154T3 (en) 1990-10-18 1991-10-16 SINTERED METAL PARTS AND METHOD FOR PRODUCTION.
EP91309543A EP0481763B1 (en) 1990-10-18 1991-10-16 Sintered metal parts and their production method
DE69116638T DE69116638T2 (en) 1990-10-18 1991-10-16 Sintered metal parts and process for their manufacture
KR1019910018366A KR960008727B1 (en) 1990-10-18 1991-10-18 Sintered metal parts and their production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28022090A JP2680927B2 (en) 1990-10-18 1990-10-18 Iron-based sintered sliding member

Publications (2)

Publication Number Publication Date
JPH04157140A true JPH04157140A (en) 1992-05-29
JP2680927B2 JP2680927B2 (en) 1997-11-19

Family

ID=17621990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28022090A Expired - Lifetime JP2680927B2 (en) 1990-10-18 1990-10-18 Iron-based sintered sliding member

Country Status (1)

Country Link
JP (1) JP2680927B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055463A1 (en) 2009-12-21 2011-07-07 Hitachi Powdered Metals Co., Ltd., Chiba Sintered valve guide and manufacturing method therefor
EP2778243A1 (en) 2013-03-13 2014-09-17 Hitachi Chemical Company, Ltd. Iron based sintered sliding member and method for producing the same
EP2781283A1 (en) 2013-03-19 2014-09-24 Hitachi Chemical Company, Ltd. Iron base sintered sliding member and method for producing same
JP2018512506A (en) * 2015-03-24 2018-05-17 ディール、メタル、シュティフトゥング、ウント、コンパニー、コマンディトゲゼルシャフトDiehl Metall Stiftung & Co. Kg Copper zinc alloy and its use

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060032328A1 (en) 2004-07-15 2006-02-16 Katsunao Chikahata Sintered valve guide and manufacturing method thereof
JP5208647B2 (en) 2008-09-29 2013-06-12 日立粉末冶金株式会社 Manufacturing method of sintered valve guide
EP2436463B1 (en) 2010-09-30 2013-07-10 Hitachi Powdered Metals Co., Ltd. Sintered materials for valve guides and production methods therefor
US8617288B2 (en) 2010-09-30 2013-12-31 Hitachi Powdered Metals Co., Ltd. Sintered material for valve guides and production method therefor
US8876935B2 (en) 2010-09-30 2014-11-04 Hitachi Powdered Metals Co., Ltd. Sintered material for valve guides and production method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055463A1 (en) 2009-12-21 2011-07-07 Hitachi Powdered Metals Co., Ltd., Chiba Sintered valve guide and manufacturing method therefor
DE102010055463B4 (en) * 2009-12-21 2013-06-27 Hitachi Powdered Metals Co., Ltd. Sintered valve guide and manufacturing method therefor
US9212572B2 (en) 2009-12-21 2015-12-15 Hitachi Powdered Metals Co., Ltd. Sintered valve guide and production method therefor
DE102010055463C5 (en) * 2009-12-21 2018-02-01 Hitachi Powdered Metals Co., Ltd. Sintered valve guide and manufacturing method therefor
EP2778243A1 (en) 2013-03-13 2014-09-17 Hitachi Chemical Company, Ltd. Iron based sintered sliding member and method for producing the same
EP3354760A1 (en) 2013-03-13 2018-08-01 Hitachi Chemical Company, Ltd. Iron based sintered sliding member and method for producing same
US10131972B2 (en) 2013-03-13 2018-11-20 Hitachi Chemical Company, Ltd. Iron based sintered sliding member and method for producing same
EP2781283A1 (en) 2013-03-19 2014-09-24 Hitachi Chemical Company, Ltd. Iron base sintered sliding member and method for producing same
US9744591B2 (en) 2013-03-19 2017-08-29 Hitachi Chemical Company, Ltd. Iron base sintered sliding member and method for producing same
JP2018512506A (en) * 2015-03-24 2018-05-17 ディール、メタル、シュティフトゥング、ウント、コンパニー、コマンディトゲゼルシャフトDiehl Metall Stiftung & Co. Kg Copper zinc alloy and its use

Also Published As

Publication number Publication date
JP2680927B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
KR960008727B1 (en) Sintered metal parts and their production method
JP5858921B2 (en) Ferrous sintered powder metal for wear resistant applications
US10077488B2 (en) High-strength, high-damping-capacity cast iron
CN102933338B (en) Nitrided sintered steels
JP2713658B2 (en) Sintered wear-resistant sliding member
JP7141827B2 (en) Powder metal composition for simple machining
JPH04157140A (en) Ferrous sintered sliding member
JPS59104454A (en) Anti-wear sintered alloy
JP2014181381A (en) Iron-based sintered sliding member and production method thereof
JP2005514519A (en) Nodular cast iron alloy
CN114015942B (en) Nonmagnetic balance block, preparation method thereof and compressor
WO1996005007A1 (en) Iron-based powder containing chromium, molybdenum and manganese
JP4323069B2 (en) Valve guide material
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
JP4323070B2 (en) Valve guide material
JPH0949064A (en) Wear resistant iron base sintered alloy bearing low in counter part attackability
JPH04157139A (en) Sintered metallic parts and their manufacture
JP4323071B2 (en) Valve guide material
US4246028A (en) Powder mixture of iron alloy silicon-carbon
JP2683444B2 (en) Sintered alloy for valve mechanism of internal combustion engine
JP2005200698A (en) Iron-based powder mixture for high-strength sintered component
JP3246213B2 (en) Free graphite-precipitated iron-based sintered material with excellent strength and wear resistance
JPS6140027B2 (en)
SU1632627A1 (en) Charge for producing sintered antifriction iron-based material
JPH08333659A (en) Ferrous sintered alloy excellent in strength and wear resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 14