JPH04157052A - Immersion nozzle for continuous casting and method for preventing nozzle clogging - Google Patents

Immersion nozzle for continuous casting and method for preventing nozzle clogging

Info

Publication number
JPH04157052A
JPH04157052A JP27336490A JP27336490A JPH04157052A JP H04157052 A JPH04157052 A JP H04157052A JP 27336490 A JP27336490 A JP 27336490A JP 27336490 A JP27336490 A JP 27336490A JP H04157052 A JPH04157052 A JP H04157052A
Authority
JP
Japan
Prior art keywords
nozzle
gas
molten steel
plug body
clogging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27336490A
Other languages
Japanese (ja)
Inventor
Nagayasu Bessho
別所 永康
Hisao Yamazaki
久生 山崎
Nobuisa Shiga
信勇 志賀
Tetsuya Fujii
徹也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP27336490A priority Critical patent/JPH04157052A/en
Publication of JPH04157052A publication Critical patent/JPH04157052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To reduce defect in a product by providing a porous plug body for blowing gas on the contact surface of a nozzle refractory with a molten steel at a part below an upper end of discharge hole. CONSTITUTION:The porous plug body 11 for gas blowing is provided on the contact surface of nozzle refractory with the molten steel at the part below the upper end position of discharge hole 4 in the immersion nozzle 3 for continuous casting. The insoluble gas seed of Ar, etc., is blown into molten steel from a porous plug body and successively, the soluble gas seed of N2, etc., is blown into the molten steel from the porous plug body. Clogging of the immersion nozzle is prevented by gas blowing. By this method, this can be largely contributed for reduction of unstationary part in a cast slab.

Description

【発明の詳細な説明】 C産業上の利用分野〕 本発明は、溶鋼の連続鋳造用浸漬ノズルの形状および浸
漬ノズルの詰り防止方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION C. Industrial Application Field The present invention relates to the shape of a submerged nozzle for continuous casting of molten steel and a method for preventing clogging of the submerged nozzle.

f従来の技術〕 従来技術の説明を第3図に従い述べる。f Conventional technology] The prior art will be explained with reference to FIG.

溶鋼の連続鋳造において、タンデイツシュ1より鋳型2
内へ溶鋼を注入するために、浸漬ノズル3が一般に使用
されている。ところでこのような連続鋳造の際、浸漬ノ
ズル3から連続鋳造用鋳型2内に吐出される溶鋼中には
非金属介在物(アルミナ等)が含まれ、ノズル3内でそ
の堆積に由来するノズル詰りか発生する。ノズル3には
従来、こうしたノズル詰り防止のために、アルゴンガス
を吹込みノズル内を流れるアルゴンガスがノズル内壁及
びノズル吐出口部4を洗浄することによりこれらの部分
へのアルミナの付着や溶鋼の凝固付着を防止している。
In continuous casting of molten steel, mold 2 is moved from tandem 1 to mold 2.
A submerged nozzle 3 is generally used to inject the molten steel into the molten steel. By the way, during such continuous casting, the molten steel discharged from the immersion nozzle 3 into the continuous casting mold 2 contains non-metallic inclusions (alumina, etc.), and nozzle clogging due to the accumulation of non-metallic inclusions may occur in the nozzle 3. or occur. Conventionally, in order to prevent such nozzle clogging, argon gas is blown into the nozzle 3. The argon gas flowing inside the nozzle cleans the nozzle inner wall and the nozzle discharge port 4, thereby preventing alumina from adhering to these parts and molten steel from forming. Prevents coagulation and adhesion.

アルゴンガスの吹込み位置は、通常、タンデイツシュ上
ノズル7、スライディングプレート8、あるいは浸漬ノ
ズル内上方位置9であり、このガスはポーラスプラグを
介して溶鋼中に吹込まれる。
The argon gas is normally blown into the tundish upper nozzle 7, the sliding plate 8, or the upper position 9 inside the submerged nozzle, and this gas is blown into the molten steel through a porous plug.

こうした従来技術は、鋳造中のノズル3の閉塞を防止す
るうえで極めて効果的な方法であり、アルミニウムで脱
酸された鋼の連続鋳造を安定して長時間行うのに優れた
技術として、広く工業的に用いられている。
This conventional technique is an extremely effective method for preventing clogging of the nozzle 3 during casting, and is widely used as an excellent technique for stably and long-term continuous casting of aluminum-deoxidized steel. Used industrially.

以上の従来技術ではノズル3内に吹込まれたガスが気泡
5として鋳型2内に流入し、その多(は溶鋼どの比重差
により鋳型内の溶鋼場面(メニスカス)6に向は浮上す
るがその一部は鋳片〕0内部に捕捉される。捕捉された
ガスはその後の冷延鋼板の製造過程において、内部欠陥
であるふくれを生じ、また鋳片表面、表皮下に捕捉され
た場合は冷延鋼板に表面欠陥を生じてしまう。
In the above conventional technology, the gas blown into the nozzle 3 flows into the mold 2 as bubbles 5, and some of them float toward the molten steel scene (meniscus) 6 in the mold due to the difference in specific gravity of the molten steel. The gas is trapped inside the slab]0.The trapped gas causes blisters, which are internal defects, in the subsequent manufacturing process of cold-rolled steel sheets, and if it is trapped on the surface of the slab or under the skin, it will cause damage to the cold-rolled steel sheet. This causes surface defects on the steel plate.

以上の気泡の鋳片への捕捉の度合いは、鋳型への注入流
の流入様式や鋳造速度に大きく影響され、注入流の流動
様式を改善すべくノズル先端部の形状変更等の最適化が
行われている。しかし、生産性の向上を目指して鋳造速
度を増大すると、気泡が鋳片内部に捕捉される量が増大
し、内部欠陥が多発し、問題は完全に解決されていない
The degree of trapping of the above air bubbles into the slab is greatly influenced by the flow pattern of the injection flow into the mold and the casting speed, and optimization such as changing the shape of the nozzle tip is performed to improve the flow pattern of the injection flow. It is being said. However, when the casting speed is increased with the aim of improving productivity, the amount of air bubbles trapped inside the slab increases, resulting in frequent internal defects, and the problem has not been completely resolved.

[発明が解決しようとする課題] 従来の方法によると前述のとおり鋳片の凝固殻に気泡が
捕捉されて製品に内部および表面欠陥が生じ易いという
欠点があったので1本発明はこれらの欠点を克服し、製
品の内部および表面欠陥を防止することができる浸漬ノ
ズル及びノズル詰り防止方法を提供するためになされた
ものである。
[Problems to be Solved by the Invention] As mentioned above, the conventional method has the drawback that air bubbles are trapped in the solidified shell of the slab, which tends to cause internal and surface defects in the product.1 The present invention solves these drawbacks. The present invention has been made in order to provide a submerged nozzle and a method for preventing nozzle clogging, which can overcome this problem and prevent internal and surface defects of products.

[課題を解決するための手段] 本発明は連続鋳造用浸漬ノズルにおいて、吐出口上端位
置より下部のノズル耐火物と溶鋼と接する面にガス吹き
込み用のポーラスプラグ体を設けたことを特徴とする連
続鋳造用浸漬ノズルである。ここに、吐出口上端位置よ
り下部のノズル耐火物と溶鋼と接する面とは、ノズル内
面、ノズル底面、吐出口の内壁面を云い、ノズルの外表
面は除く面を云う。なお上記ノズル耐火物と溶鋼と接す
る面の実質的に全面にポーラスプラグ体を設けると好ま
しい。
[Means for Solving the Problems] The present invention is an immersion nozzle for continuous casting, characterized in that a porous plug body for blowing gas is provided on the surface of the nozzle below the upper end position of the discharge port that contacts the nozzle refractory and molten steel. This is an immersion nozzle for continuous casting. Here, the surface in contact with the nozzle refractory and molten steel below the upper end position of the discharge port refers to the inner surface of the nozzle, the bottom surface of the nozzle, and the inner wall surface of the discharge port, excluding the outer surface of the nozzle. Note that it is preferable that a porous plug body is provided on substantially the entire surface of the nozzle that is in contact with the nozzle refractory and the molten steel.

また、本発明方法は上記浸漬ノズルを使用する方法の発
明であって、上記ポーラスプラグ体よりアルゴン等の溶
鋼に不溶性のガスを吹込むか、またはポーラスプラグ体
よりN2 、 H2、C3H8等の溶鋼に可溶性のガス
を吹込むことを特徴とする浸漬ノズルの詰り防止方法で
ある。
Further, the method of the present invention is a method using the above-mentioned immersion nozzle, in which an insoluble gas such as argon is blown into the molten steel through the porous plug body, or molten steel such as N2, H2, C3H8, etc. is blown into the molten steel through the porous plug body. This is a method for preventing clogging of a submerged nozzle, which is characterized by blowing a soluble gas into the submerged nozzle.

[作用) 本発明者らは、浸漬ノズル詰りに関して多くの実験、検
討を重ねた。
[Function] The present inventors have conducted many experiments and studies regarding immersion nozzle clogging.

ノズル詰りを生ずる部位は、上ノズル部、スライディン
グノズル部、浸漬ノズル吐出口部位で、溶鋼の流れの向
きが変化する場所である。ノズル直胴部すなわち、溶鋼
の流れが直線的な部位にはほとんどノズル詰りは見られ
なかった。
The locations where nozzle clogging occurs are the upper nozzle section, sliding nozzle section, and submerged nozzle discharge port section, where the direction of the flow of molten steel changes. Almost no nozzle clogging was observed in the straight body of the nozzle, that is, in the area where the molten steel flowed in a straight line.

前述したように、ノズル内に吹込まれたガスは、ノズル
壁と溶鋼の界面に、ガス膜を形成し、ノズル壁への介在
物の付着を防止していると推定される。
As mentioned above, it is presumed that the gas blown into the nozzle forms a gas film at the interface between the nozzle wall and the molten steel, thereby preventing inclusions from adhering to the nozzle wall.

しかしながら、従来のガス吹込みでは浸漬ノズルの上方
にガス吹込み位置を設けているため、ノズル吐出口部近
傍では、ガスが溶鋼中に均一に分散しており、吹込んだ
ガスの全てがノズル壁と溶鋼の界面でのガス膜生成に有
効に寄与しているとはいえなかった。上記浸漬ノズル内
でのガス分散挙動は、実機鋳型と同一寸法の水モデルに
て確認した。また、鋳片の気泡起因の表面および内部欠
陥を低減するには、吹込みガス量の減少が必要とされて
いた。
However, in conventional gas blowing, the gas blowing position is set above the immersion nozzle, so the gas is uniformly dispersed in the molten steel near the nozzle discharge port, and all of the blown gas flows through the nozzle. It could not be said that it effectively contributed to the formation of a gas film at the interface between the wall and molten steel. The gas dispersion behavior in the immersion nozzle was confirmed using a water model with the same dimensions as the actual mold. Additionally, in order to reduce surface and internal defects caused by bubbles in the slab, it was necessary to reduce the amount of blown gas.

かかる欠点にかんがみ、本発明は、ノズル詰りの最も激
しい部位、すなわち、ノズル吐出口近傍にガス吹込み部
位を設けることを提案したものである。
In view of these drawbacks, the present invention proposes to provide a gas injection site near the nozzle discharge port, where nozzle clogging is most severe.

本発明のノズル3の実施例を第1図に示す。An embodiment of the nozzle 3 of the present invention is shown in FIG.

このノズル3は、吐出口4の上端部からノズルの底壁に
かけてポーラスプラグ体11を設け、ここから、ガス吹
込み用導入路13を経てガス吹込み用スリット12を介
して導入したガスを吹込もうとするものである。第1図
に示すように(イ)ノズル側壁11、(ロ)ノズル底部
14及び(ハ)吐出口肉厚部15の全てをポーラスプラ
グ体としてもよい。また、ノズル詰りの状況番こ応じて
上記(イ)、(ロ)、(ハ)の3ケ所のうちの1なしル
は2ケ所でも良く、例えば第2図に示すようにノズル側
壁部のみをポーラスプラグ体とすることでもよい。
This nozzle 3 is provided with a porous plug body 11 extending from the upper end of the discharge port 4 to the bottom wall of the nozzle, from which gas introduced through a gas blowing introduction path 13 and a gas blowing slit 12 is blown. It's something I'm trying to do. As shown in FIG. 1, (a) nozzle side wall 11, (b) nozzle bottom 14, and (c) discharge port thick part 15 may all be made of porous plug bodies. Also, depending on the situation of nozzle clogging, one or two of the three locations (a), (b), and (c) above may be used; for example, as shown in Figure 2, only the nozzle side wall may be removed. It may also be a porous plug body.

本発明方法は上記ポーラスプラグ体をノズルの吐出口上
端より下方に設け、このプラグ体からガスを吹込む際に
、Ar等の溶鋼に不溶性のガス又は、N2等の溶鋼に可
溶性のガスを吹込む。これらの場合、従来のガス吹込み
に比し、著しく少量のガス量でノズル詰まりを防止する
ことができる。不溶性のガスは溶鋼中に気泡となって入
るが、その量は従来に比し著しく少なくなる。
In the method of the present invention, the above-mentioned porous plug body is provided below the upper end of the discharge port of the nozzle, and when blowing gas from this plug body, a gas insoluble in molten steel such as Ar or a gas soluble in molten steel such as N2 is blown. It's crowded. In these cases, nozzle clogging can be prevented with a significantly smaller amount of gas than in conventional gas blowing. Insoluble gas enters the molten steel as bubbles, but the amount is significantly smaller than in the past.

可溶性のガスは、N2 、N2 、C3Hs等を単独又
は混合して用いることができ、これらのガスはノズル吐
出口ではノズル詰りに寄与し、鋳型内で溶鋼に吸収され
、溶鋼中の気泡が激減するので製品の欠陥が少ない。
As the soluble gas, N2, N2, C3Hs, etc. can be used alone or in combination.These gases contribute to nozzle clogging at the nozzle discharge port, and are absorbed by the molten steel in the mold, drastically reducing air bubbles in the molten steel. Therefore, there are fewer defects in the product.

〔実施例1 実施例1 次の鋳造条件で、2ストランドのうちのストランド1で
は従来法、ストランド2では第1図に示した本発明の浸
漬ノズルを使用した鋳造を実施した。ストランド2に関
しては、浸漬ノズルからのArガス流量を0〜IONβ
/minまで変更した。
[Example 1 Example 1 Under the following casting conditions, strand 1 of the two strands was cast using the conventional method, and strand 2 was cast using the immersion nozzle of the present invention shown in FIG. Regarding strand 2, the Ar gas flow rate from the immersion nozzle was set to 0 to IONβ.
/min.

連鋳機型式:12mHの湾曲型連鋳機。Continuous casting machine type: 12mH curved continuous casting machine.

2ストランド モールド形状: 240tx 1600mmW鋳造鋼種
:極低炭AI2キルド鋼 (C=20〜30ppm、Ajl!=0.03〜0.0
5%、T ・0=40〜50ppm)スルーブツト:3
.5t/min 浸漬ノズル形状ニア8mmφ×2孔 下向き10” 実験条件は第1表に示す通りである。
2 strand mold shape: 240tx 1600mmW Casting steel type: Ultra low carbon AI2 killed steel (C=20~30ppm, Ajl!=0.03~0.0
5%, T 0 = 40-50 ppm) Throughput: 3
.. 5 t/min Immersion nozzle shape: 8 mm diameter x 2 holes facing downward 10" The experimental conditions are as shown in Table 1.

以上の実験条件下での鋳片の製品結果及びノズル詰りの
状況を比較して第4図に示す。
Figure 4 shows a comparison of the product results of the slabs and the status of nozzle clogging under the above experimental conditions.

第4図において、冷延鋼板の製品欠陥発生指数は、工程
Ar吹込みストランドの冷延鋼板(0,8mmt)の表
面及び内部欠陥発生率の平均値2,6%を1.0として
指数化したものである。また、ノズル詰り指数は同様に
、工程Ar吹きストランドのノズル吐出口の5連後の閉
塞率化したものである。
In Figure 4, the product defect occurrence index of cold-rolled steel sheets is expressed as an index with the average value of the surface and internal defect occurrence rate of 2.6% of the cold-rolled steel sheet (0.8 mmt) of process Ar-blown strand as 1.0. This is what I did. Further, the nozzle clogging index is similarly calculated as the clogging rate of the nozzle discharge port of the process Ar-blown strand after 5 consecutive times.

第4図のストランド2の浸漬ノズルからのAr流量を変
更した場合の各プロットは20〜25ヒート(5ヒート
/1チヤンス)のデータの平均値をプロットしたもので
ある。
Each plot when the Ar flow rate from the immersion nozzle of the strand 2 in FIG. 4 is changed is a plot of the average value of data of 20 to 25 heats (5 heats/1 chance).

第4図より以下のことがわかる。The following can be seen from Figure 4.

(イ)浸漬ノズルからのArガス流量を、従来法のスラ
イディングノズルからのArガス流量より大幅に低減(
1/20)l、でも、従来法のノズル詰りよりも詰りの
程度が軽微になつている。これは吐出口ボーラスプラグ
体で、Arガスが溶鋼と耐火物壁の接触を少量のガス流
量でも有効に妨げているからであると考えられる。
(b) The Ar gas flow rate from the immersion nozzle is significantly reduced compared to the conventional sliding nozzle (
1/20)l, but the degree of nozzle clogging is smaller than that of the conventional method. This is considered to be because the Ar gas in the discharge port bolus plug body effectively prevents contact between the molten steel and the refractory wall even at a small gas flow rate.

(ロ)上記(イ)の効果により、Ar流量を従来法より
も減少することができるため、気泡性の製品欠陥が減少
し、かつノズル詰りか軽微なため詰り物のばくりに起因
する製品欠陥も減少している。
(b) Due to the effect of (a) above, the Ar flow rate can be reduced compared to the conventional method, reducing product defects due to bubbles, and reducing the number of product defects caused by clogging due to nozzle clogging or minor clogging. Defects are also decreasing.

但し、浸漬ノズルからのAr流量が0.5 N I2/
min以下になるとノズル詰りか生じ始め、製品欠陥も
悪化する。
However, the Ar flow rate from the immersion nozzle is 0.5 N I2/
When it becomes less than min, nozzle clogging starts to occur and product defects become worse.

実施例2 実施例1と同じ鋳造条件で実施例1と同様に2ストラン
ドを用いて、第2表に示した実験条件で鋳造を実施した
Example 2 Casting was carried out under the same casting conditions as in Example 1, using two strands in the same manner as in Example 1, and under the experimental conditions shown in Table 2.

ストランド1は従来法で、ストランド2は本発明の浸漬
ノズルを用いて、吹込みガスとしては、溶鋼に可溶性の
N2ガスを用いた。
Strand 1 was produced using the conventional method, Strand 2 was produced using the immersion nozzle of the present invention, and N2 gas soluble in molten steel was used as the blown gas.

以上の実験条件下での鋳片の製品結果及びノズル詰りの
状況を比較して第5図に示す。
Figure 5 shows a comparison of the product results of the slabs and the state of nozzle clogging under the above experimental conditions.

第5図の冷延鋼板の製品欠陥発生指数、ノズル詰り指数
、及び各プロットの定義は第4図と同様である。第5図
より以下のことがわかる。
The definitions of the product defect occurrence index, nozzle clogging index, and each plot of the cold-rolled steel sheet in FIG. 5 are the same as those in FIG. 4. The following can be seen from Figure 5.

(イ)N2を浸漬ノズル吐出口部より吹込んだ場合、実
施例1と同様にノズル詰りは、低流量のN2でも従来法
より軽微となる。
(a) When N2 is blown from the immersion nozzle outlet, the nozzle clogging is less severe than in the conventional method, even at a low flow rate of N2, as in Example 1.

(ロ)N2使用時は、溶鋼に可溶性であるため、ノズル
吐出口部ではノズル詰りにN2ガスが有効に作用するが
、鋳型内で溶鋼に吸収されるため鋳片シェルに捕捉され
る気泡が激減し、実施例1の場合よりも同一のガス流量
(1〜10 N R/ m i nの範囲)においては
、冷延鋼板の製品欠陥指数は減少している。
(b) When N2 gas is used, it is soluble in molten steel, so it effectively acts on clogging the nozzle at the nozzle discharge port, but since it is absorbed by the molten steel in the mold, air bubbles trapped in the slab shell At the same gas flow rate (in the range of 1 to 10 N R/min), the product defect index of the cold-rolled steel sheet is significantly reduced compared to the case of Example 1.

但し、N2ガス流量が極端に低下すると、(N2≦0.
5Nff/m1n)実施例1と同様に、ノズル詰り、製
品欠陥共従来法並になる。
However, if the N2 gas flow rate decreases extremely, (N2≦0.
5Nff/m1n) As in Example 1, nozzle clogging and product defects were comparable to the conventional method.

上記実験結果は、溶鋼に可溶性のガスであればN2に限
らず、N2 、C3Ha単独もしくは、それらの混合ガ
スであっても良い。
The above experimental results show that the gas is not limited to N2, but may be N2, C3Ha alone, or a mixture thereof, as long as it is soluble in molten steel.

(発明の効果〕 このように、連続鋳造用浸漬ノズルの吐出口近傍にポー
ラスプラグ体を設け、当該部より、Arガス等の溶鋼へ
の不溶性ガス又はN2ガス等の溶鋼への可溶性ガスを吹
込むことにより、従来法よりも低流量でノズル詰りを防
止することができ、製品欠陥も低減できることがわかっ
た。
(Effect of the invention) In this way, a porous plug body is provided near the discharge port of the immersion nozzle for continuous casting, and from this part, an insoluble gas such as Ar gas or a soluble gas such as N2 gas is blown into the molten steel. It was found that by incorporating the method, it was possible to prevent nozzle clogging at a lower flow rate than with conventional methods, and it was also possible to reduce product defects.

また1本発明の適用により1本のノズル使用による多連
鋳も可能で、従来法の5連から15達までが可能となり
、鋳片の非定常部の削減にも大きく寄与している。
Furthermore, by applying the present invention, it is possible to carry out multiple continuous casting using one nozzle, and it is possible to perform continuous casting from 5 to 15 in the conventional method, which greatly contributes to reducing the unsteady parts of the slab.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の実施例の浸漬ノズルの縦断面図
、第1図(b)は第1図(a)のA−A矢視図、第2図
(a)は他の実施例の浸漬ノズルの縦断面図、第2図(
b)は第2図(a)のB−B矢視図、第3図は連続鋳造
方法を説明する浸漬ノズル部の模式図、第4図は本発明
ノズル使用時のノズル詰り指数、製品欠陥とAr流量の
関係な示すグラフ、第5図は本発明ノズル使用時のノズ
ル詰り指数、製品欠陥とN2流量の関係を示すグラフで
ある。 1・・・タンデイツシュ 2・・・鋳型 3・・・浸漬ノズル 4・・・ノズル吐出口 5・・・気泡 6・・・メニスカス 7・・・上ノズル 8・・・スライディングプレート 9・・・浸漬ノズルガス吹込み位置 10・・・鋳片 11・・・ポーラスプラグ体 12・・・ガス吹込み用スリット 13・・・ガス導入路 14・・・ノズル底部 15・・・吐出口肉厚部
FIG. 1(a) is a vertical cross-sectional view of a submerged nozzle according to an embodiment of the present invention, FIG. 1(b) is a view taken along the line A-A in FIG. 1(a), and FIG. Vertical cross-sectional view of the immersion nozzle of the example, Fig. 2 (
b) is a view taken along the line B-B in Fig. 2(a), Fig. 3 is a schematic diagram of the immersion nozzle section explaining the continuous casting method, and Fig. 4 shows the nozzle clogging index and product defects when using the nozzle of the present invention. FIG. 5 is a graph showing the relationship between the nozzle clogging index, product defects, and N2 flow rate when the nozzle of the present invention is used. 1... Tundish 2... Mold 3... Immersion nozzle 4... Nozzle discharge port 5... Air bubble 6... Meniscus 7... Upper nozzle 8... Sliding plate 9... Immersion Nozzle gas injection position 10...Slab 11...Porous plug body 12...Gas injection slit 13...Gas introduction path 14...Nozzle bottom 15...Discharge port thick part

Claims (1)

【特許請求の範囲】 1 連続鋳造用浸漬ノズルにおいて、吐出口上端位置よ
り下部のノズル耐火物と溶鋼と接する面にガス吹き込み
用のポーラスプラグ体を設けたことを特徴とする連続鋳
造用浸漬ノズル。 2 連続鋳造用浸漬ノズルにおいて、吐出口上端位置よ
り下部のノズル耐火物と溶鋼と接する面の実質的に全面
にガス吹き込み用のポーラスプラグ体を設けたことを特
徴とする連続鋳造用浸漬ノズル。 3 請求項1または2記載のポーラスプラグ体よりAr
等の溶鋼に不溶性のガス種を吹き込むことを特徴とする
浸漬ノズルの詰り防止方法。 4 請求項1または2記載のポーラスプラグ体よりN_
2ガス等の溶鋼に可溶性のガス種を吹き込むことを特徴
とする浸漬ノズルの詰り防止方法。
[Scope of Claims] 1. An immersed nozzle for continuous casting, characterized in that a porous plug body for blowing gas is provided on the surface of the nozzle lower than the upper end position of the discharge port that contacts the nozzle refractory and molten steel. . 2. An immersed nozzle for continuous casting, characterized in that a porous plug body for blowing gas is provided on substantially the entire surface of the nozzle below the upper end position of the discharge port that contacts the nozzle refractory and molten steel. 3 Ar from the porous plug body according to claim 1 or 2
A method for preventing clogging of an immersion nozzle, which is characterized by blowing an insoluble gas species into molten steel. 4 N_ from the porous plug body according to claim 1 or 2
A method for preventing clogging of an immersion nozzle, characterized by blowing a soluble gas such as 2 gas into molten steel.
JP27336490A 1990-10-15 1990-10-15 Immersion nozzle for continuous casting and method for preventing nozzle clogging Pending JPH04157052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27336490A JPH04157052A (en) 1990-10-15 1990-10-15 Immersion nozzle for continuous casting and method for preventing nozzle clogging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27336490A JPH04157052A (en) 1990-10-15 1990-10-15 Immersion nozzle for continuous casting and method for preventing nozzle clogging

Publications (1)

Publication Number Publication Date
JPH04157052A true JPH04157052A (en) 1992-05-29

Family

ID=17526874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27336490A Pending JPH04157052A (en) 1990-10-15 1990-10-15 Immersion nozzle for continuous casting and method for preventing nozzle clogging

Country Status (1)

Country Link
JP (1) JPH04157052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982088A1 (en) * 1998-07-31 2000-03-01 LTV Steel Company, Inc. Preventing pencil pipe defects in steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982088A1 (en) * 1998-07-31 2000-03-01 LTV Steel Company, Inc. Preventing pencil pipe defects in steel

Similar Documents

Publication Publication Date Title
KR101087318B1 (en) Method for manufacture of ultra-low carbon steel slab
JPH04157052A (en) Immersion nozzle for continuous casting and method for preventing nozzle clogging
JP2001347348A (en) Immersion nozzle for continuous casting
JPH0577007A (en) Method for continuously casting steel slab using static magnetic field
JP6792179B2 (en) Immersion nozzle for continuous casting
JPH04127943A (en) Method for preventing clogging of submerged nozzle for continuous casting
JPH09122861A (en) Method for secondarily cooling continuously cast slab
JPH04238658A (en) Immersion nozzle for continuous casting
JPS62197252A (en) Submerged nozzle for continuous casting
KR0119031Y1 (en) Tundish nozzle
JP2004283850A (en) Continuous casting method
JP4421136B2 (en) Continuous casting method
JPS62292255A (en) Nozzle for pouring molten metal
JPH02207950A (en) Submerged nozzle for continuous casting
JPH0890177A (en) Immersion nozzle for continuous casting
JP2004209512A (en) Continuous casting method and immersion nozzle
JP3093606B2 (en) Nozzle for twin belt type continuous casting machine
JPH04127942A (en) Method for preventing clogging of submerged nozzle for continuous casting
JPH0452056A (en) Method for continuously casting slab for steel strip
JP2901983B2 (en) Immersion nozzle for continuous casting
JP2001087843A (en) Immersion nozzle for continuous casting
JP2000301298A (en) Method for controlling fluid of molten steel in mold
JPH0230122Y2 (en)
JP2002113560A (en) Continuous casting method
JP2925374B2 (en) Continuous casting method of steel slab by static magnetic field