JPH04156245A - Three-phase armature winding - Google Patents

Three-phase armature winding

Info

Publication number
JPH04156245A
JPH04156245A JP2278200A JP27820090A JPH04156245A JP H04156245 A JPH04156245 A JP H04156245A JP 2278200 A JP2278200 A JP 2278200A JP 27820090 A JP27820090 A JP 27820090A JP H04156245 A JPH04156245 A JP H04156245A
Authority
JP
Japan
Prior art keywords
phase
coil
winding
slots
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2278200A
Other languages
Japanese (ja)
Other versions
JPH0757077B2 (en
Inventor
Tsutomu Kawamura
勉 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2278200A priority Critical patent/JPH0757077B2/en
Priority to US07/733,217 priority patent/US5231324A/en
Priority to KR1019910012292A priority patent/KR940001176B1/en
Publication of JPH04156245A publication Critical patent/JPH04156245A/en
Priority to US08/097,516 priority patent/US5376852A/en
Publication of JPH0757077B2 publication Critical patent/JPH0757077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Windings For Motors And Generators (AREA)

Abstract

PURPOSE:To make the automation of coil inserting work easier and to suppress the generation of an unbalanced exciting current by providing double layer windings by simultaneously inserting the windings of three phases as a set into slots by the number of times equal to the number of poles at the intervals of a particular quantity in electrical angle for windings of each phase. CONSTITUTION:Windings U1 to U4, V1 to V4 and W1 to W4 for each phase and each pole comprise q-concentrically-wound coils U11 to W44 or q-continuous coils corresponding to the number of slots of each pole and each phase. Where, q means the number of slots of each pole and each phase. Also, the windings U1 to W4 of each phase are mutually separated by ppi/3 in electrical angle; also, the windings for three-phase are made as a set and simultaneously inserted into slots at the number of times equal to the number of poles thereby being formed into double layer winding. Where, p means the number of poles. In the case shown in the drawings, the number of slots, q, for each pole and each phase is given by q=48/4X3=4. By doing this, automatic coil inserting work becomes possible; and inserting positional relation to the slots of each phase windings U1 to W4 becomes the same for each of U to W of each phase. Thus, winding impedance is balanced between three phases and the generation of unbalanced exciting current can be restricted.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は整数スロット巻の三相電機子巻線に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a three-phase armature winding with integral slot winding.

(従来の技術) 三相電機子巻線の巻装方式として、一般に重ね巻と同心
巻とがある。
(Prior Art) There are generally two types of winding methods for three-phase armature windings: lap winding and concentric winding.

重ね巻は、同一形状で同一のコイルピッチのコイルを順
次重ねてスロットに収納して構成される。
Lap winding is constructed by sequentially stacking coils of the same shape and the same coil pitch and storing them in slots.

これは各コイルの形状が同一であって、各相の巻線抵抗
、漏洩リアクタンスが等しくなるため、各相の電気的特
性が平衡するという利点がある。しかし、全てのスロッ
トに異相のコイルが二層に重ねて収納されるため、コイ
ル挿入作業を自動化することができず、作業者が手作業
でそれを行わなければならないという欠点がある。
This has the advantage that each coil has the same shape and the winding resistance and leakage reactance of each phase are equal, so that the electrical characteristics of each phase are balanced. However, since coils of different phases are stored in two layers in all the slots, the coil insertion work cannot be automated and has to be done manually by an operator.

一方、同心巻は、各相各極の巻線が互いにコイルピッチ
が相違する複数個の同心巻コイルから構成され、これら
が極中心に対して同心状に配置される。これは各巻線を
インサータと称する自動コイル挿入機を使用してコイル
の挿入が可能で、生産性に優れるため広く利用されてい
る。その−例を第13図に示す。例示した巻線は4極の
同rq巻であって、各相のコイルは例えばU、V、W相
の順に相毎にスロット内に収納されている。従って、各
コイルのコイルエンドは外周側からU相、■相、W相の
順に並び、各相の各極コイルは共に回転子を取り囲む環
状領域を4等分した約90度の角度範囲内に順次位置す
るようになっている。図中、U相のコイルは第1極〜第
4極をUl−04と表し、V相及びW相についても同様
にVl〜V4、W1〜W4と表しである。
On the other hand, in the concentric winding, the windings of each phase and each pole are composed of a plurality of concentric winding coils having different coil pitches, and these are arranged concentrically with respect to the pole center. This method allows coils to be inserted into each winding using an automatic coil insertion machine called an inserter, and is widely used because of its excellent productivity. An example thereof is shown in FIG. The illustrated winding is a four-pole, rq-wound wire, and the coils of each phase are housed in slots for each phase, for example, in the order of U, V, and W phases. Therefore, the coil ends of each coil are arranged in the order of U phase, ■ phase, and W phase from the outer circumferential side, and each pole coil of each phase is within an angular range of about 90 degrees that divides the annular area surrounding the rotor into four equal parts. They are located sequentially. In the figure, the first to fourth poles of the U-phase coil are expressed as Ul-04, and the V-phase and W-phase are similarly expressed as Vl to V4 and W1 to W4.

(発明が解決しようとする課題) しかしながら、上記構成では次のような問題がある。(Problem to be solved by the invention) However, the above configuration has the following problems.

(1)1スロツトに1個のコイルが収納される単層巻で
あるから、コイル体積の大きな機種になるとコイルの挿
入性が悪くなり、また、挿入後のコイルエンドの成形が
困難になって軸方向寸法が長くなったりコイル表面を損
傷させたりする。従って、コイルエンドの成形工程に十
分に耐えることができるようにするため、スロット絶縁
物や相間絶縁物を十分に厚くする必要がある。
(1) Since it is a single-layer winding in which one coil is housed in one slot, models with a large coil volume have difficulty inserting the coil, and it also becomes difficult to shape the coil end after insertion. This may increase the axial dimension or damage the coil surface. Therefore, it is necessary to make the slot insulator and the interphase insulator sufficiently thick in order to sufficiently withstand the coil end forming process.

(2)各相のコイルエンドは相毎に径方向に順、  に
配置される形態であるから、コイルエンドの長さ寸法が
各相毎に相違することになる。このため、巻線抵抗及び
漏洩リアクタンスの相違から相毎の巻線インピーダンス
に不平衡が生じ、励磁電流の不平衡等の電気的な種々の
不具合をもたらす。また、同一の鉄心寸法であれば、重
ね巻に比べて電気的諸特性が劣り、更に使用銅量が多く
なる。
(2) Since the coil ends of each phase are arranged in order in the radial direction for each phase, the length dimension of the coil ends is different for each phase. Therefore, the winding impedance of each phase becomes unbalanced due to the difference in winding resistance and leakage reactance, resulting in various electrical problems such as unbalanced excitation current. Furthermore, if the core dimensions are the same, the electrical characteristics are inferior to those of lap winding, and the amount of copper used is also greater.

そこで、本発明の目的は、単層同心巻と同等のコイル挿
入性を発揮して生産性に優れ、しかも二層重ね巻と同等
の優れた電気的諸特性を有する三相電機子巻線を提供す
るにある。
Therefore, an object of the present invention is to provide a three-phase armature winding that exhibits coil insertability equivalent to that of a single-layer concentric winding, has excellent productivity, and has excellent electrical characteristics equivalent to a two-layer overlap winding. It is on offer.

[発明の構成] (課題を解決するための手段) 本発明の三相電機子巻線は、各極各相の巻線を互いにコ
イルピッチが相違するq個の同心巻コイルまたはコイル
ピッチが同一で順次隣接するスロット内に位置するq個
の連続コイルから構成し(qは各極各相のスロット数)
、各相の@線は電気角で互いにpπ/3ずつ隔たり(P
は極数)、且つ、三相分の巻線を一組として極数回数だ
けスロットに同時挿入されて二層重とされているところ
に特徴を有する。
[Structure of the Invention] (Means for Solving the Problems) The three-phase armature winding of the present invention has q concentric winding coils having different coil pitches or having the same coil pitch. Consists of q continuous coils located in sequentially adjacent slots (q is the number of slots for each pole and each phase).
, the @ lines of each phase are separated from each other by pπ/3 in electrical angle (P
is the number of poles), and the windings for three phases are inserted into the slots simultaneously as many times as the number of poles to form a double layer.

(作用) 各極各相の巻線は、各極各相のスロット数に相当するq
個の同心巻コイルまたはq個の連続コイルから構成され
ているから、1スロツトに2個のコイル辺が挿入される
二層重となる。このため1mのコイル当りの断面積は単
層同心巻の半分になり、従って、コイル体積の大きな機
種でもコイルの挿入性を良好に維持することができ、コ
イル挿入後におけるコイルエンドの成形が容易とな7て
コイル表面の絶縁不良が生じにくい。また、三相分のコ
イルを極数回数だけスロットに同時挿入して二層重とす
るから、コイル挿入作業の自動化が可能で、生産性に優
れる。しかも、それでいながら各相巻線のスロットへの
挿入位置関係は、各相毎に同一になるから、巻線インピ
ーダンスが三相間で平衡し、不平衡励磁電流の発生を抑
制して電気的諸特性が向上する。
(Function) The winding of each pole and each phase has q equivalent to the number of slots of each pole and each phase.
Since it is composed of q concentric winding coils or q continuous coils, it becomes a double layered structure in which two coil sides are inserted into one slot. As a result, the cross-sectional area per 1m coil is half that of a single-layer concentric winding, making it possible to maintain good coil insertion even in models with a large coil volume, and making it easy to form the coil end after inserting the coil. Therefore, insulation defects on the coil surface are less likely to occur. In addition, since the three-phase coils are simultaneously inserted into the slots as many times as the number of poles to form a double layer, the coil insertion work can be automated, resulting in excellent productivity. Moreover, since the insertion position of each phase winding into the slot is the same for each phase, the winding impedance is balanced among the three phases, suppressing the generation of unbalanced excitation current, and reducing electrical problems. Characteristics improve.

(実施例) く第1実施例〉 本実施例は4極、48スロツトの二層同心巻としており
、第1図ないし第4図を参照して説明する。
(Embodiments) First Embodiment This embodiment employs a two-layer concentric winding having four poles and 48 slots, and will be described with reference to FIGS. 1 to 4.

番号1〜48はスロット番号、U1〜U4j;LU相の
第1〜第4の各極巻線、Vl〜v4はV相の第1〜第4
の各極巻線、Wl−W4はW相の第1〜第4の各極巻線
を示す。この実施例で各極各相のスロット数qは、q−
48/4x3−4となる。
Numbers 1 to 48 are slot numbers, U1 to U4j; LU phase first to fourth pole windings, Vl to v4 are V phase first to fourth pole windings.
, and Wl-W4 indicate the first to fourth pole windings of the W phase. In this example, the number of slots q for each pole and each phase is q−
It becomes 48/4x3-4.

各相各極の巻線は、第3図に各相の第1極のみを取り出
して示すように、各極各相のスロット数qに等しい夫々
4個の同心巻コイルUll〜U14゜Vll〜V14.
 Wll〜W14から構成されている。いずれの相につ
いても同様な原則に基づき構成されているから、U相第
1極巻線Ulについて詳細に述べると、これは、 #1から#14にわたるコイルピッチ13の第1コイル
Ullと、 #2から#13にわたるコイルピッチ11の第2コイル
U12と、 #3から#12にわたるコイルピッチ9のM3コイルυ
13と、 #4から#11にわたるコイルピッチ7の第4コイルU
14と のコイルピッチが互いに相違するq個(4個)のコイル
から構成されている。なお、記号#は、スロット番号を
表すために付しである。
The winding of each pole of each phase consists of four concentric winding coils Ull~U14°Vll~, which are equal to the number of slots q for each pole, as shown in FIG. 3 with only the first pole of each phase taken out. V14.
It is composed of Wll to W14. Since all phases are constructed based on the same principle, the U phase first pole winding Ul will be described in detail as follows: The first coil Ull has a coil pitch of 13 ranging from #1 to #14, and # A second coil U12 with a coil pitch of 11 ranging from #2 to #13, and an M3 coil υ with a coil pitch of 9 ranging from #3 to #12.
13, and a fourth coil U with a coil pitch of 7 ranging from #4 to #11.
It is composed of q (4) coils having different coil pitches from each other. Note that the symbol # is added to represent the slot number.

各相の第1極巻線U1.V1.W1は電機子鉄心の最外
周に位置するように配置され、互いに電気角でpπ/3
に相当する240”隔てられている。
First pole winding U1 of each phase. V1. W1 is arranged so as to be located at the outermost periphery of the armature core, and is at an electrical angle of pπ/3 with respect to each other.
They are separated by 240”.

また、その内周には各相の*2極巻線U 2.V 2.
W2が配置され、更にその内周には各相の第3極巻線U
3.V3.W3が配置され、最内周には各相の第4極巻
線U4.V4.W4が配置され、各種について各相巻線
は互いに電気角でpπ/3に相当する240°隔てられ
ている。
Also, on its inner circumference, there is a *2-pole winding U2 for each phase. V2.
W2 is arranged, and furthermore, the third pole winding U of each phase is arranged on its inner circumference.
3. V3. W3 is arranged, and the fourth pole winding U4 of each phase is arranged on the innermost circumference. V4. W4 are arranged, and the phase windings of each type are separated from each other by 240°, which corresponds to pπ/3 in electrical angle.

上記各@線を構成するコイル群のスロット内への収納状
態について述べる。第1図において、#1〜#48の各
スロット部分に示した2本の線は、相が異なる2本のコ
イル辺が1つのスロットに収納された二層巻の様子を示
しており、右側に示したコイル辺がスロットのスロット
の底部(電機子鉄心の外周側)に位置し、左側に示した
コイル辺がスロットの上部(電機子鉄心の内周側)に位
置することを意味する。また、全コイルのスロット内に
おける位置関係を示すと次表に示すようになる。次表に
おいて、「底」はコイル辺がスロットの底部に収納され
、「上」はコイル辺がスロットの上部に収納されること
を意味する。従って、「底−底」は当該コイルが両コイ
ル辺がスロットの底部から底部にわたるように配置され
、「底−上」は当該コイルの一方のコイル辺がスロット
の底部に他方のコイル辺がスロットの上部となるように
配置されていることを示す。
The state in which the coil groups constituting each of the above @ wires are housed in the slot will be described. In Figure 1, the two lines shown in each slot #1 to #48 indicate a two-layer winding in which two coil sides with different phases are housed in one slot. This means that the coil side shown on the left side is located at the bottom of the slot (on the outer periphery of the armature core), and the coil side shown on the left side is located at the top of the slot (on the inner periphery of the armature core). The positional relationship of all coils within the slot is shown in the following table. In the following table, "bottom" means that the coil side is stored at the bottom of the slot, and "top" means that the coil side is stored at the top of the slot. Therefore, "bottom-to-bottom" means that the coil is arranged so that both coil sides extend from the bottom of the slot to the bottom, and "bottom-to-top" means that one coil side of the concerned coil is placed at the bottom of the slot and the other coil side is placed in the slot. Indicates that it is placed at the top of the

さて、各コイルの挿入手順について説明するに、まず第
1回目のコイル挿入作業は第1極となる三相巻#U1.
V1.W1を一組として行う。これらの巻線を構成する
各相4個、計12個のコイルは前表からも明らかなよう
に、全てのコイル辺がスロットの底部に収納されるから
、各巻線が電気角で240@の隔たりとなるようにして
図示しないコイル挿入機(インサータフにセットして同
時に挿入することができる。
Now, to explain the procedure for inserting each coil, first, the first coil insertion operation is performed on the three-phase winding #U1, which is the first pole.
V1. Perform W1 as one set. As is clear from the table above, all the coil sides of the 12 coils that make up these windings, 4 for each phase, are housed in the bottom of the slot, so each winding has an electrical angle of 240@. It is possible to insert the coils at the same time by setting them on a coil insertion machine (not shown) so that they are separated from each other.

次に、′s2回目のコイル挿入作業を第2極の三相巻線
U 2.V 2.W2を一組として行う。この場合も、
やはり各巻線が電気角で240@の隔たりとなるように
してコイル挿入機にセットして同時に挿入すればよい。
Next, perform the second coil insertion operation on the second pole three-phase winding U2. V2. Perform W2 as a set. In this case too,
Again, each winding may be set in the coil insertion machine so that they are spaced apart by 240 degrees in electrical angle, and inserted at the same time.

この際、前表がら明らがなように、コイルピッチが13
と11である2つのコイルについては、一方のコイル辺
がスロットの上部に挿入されることになるが、これらは
すでに挿入された同一相の第1極巻線の同一ピッチのコ
イルの上に重ねられるものであるから、単に第1極巻線
に重ねて挿入すれば良い。また、第3回目のコイル挿入
作業は第3極の三相巻線U 3.V 3.W3を一組と
して同様に行う。この場合も、コイル辺が上部に挿入さ
れるべきスロットについては既1千第1極又は第2極の
巻線のコイル辺が挿入されており、やはり単に第1及び
第2極巻線に重ねて挿入すればよい。そして、最後に、
第4極の三相巻線U 4.V 4.W4を一組として上
述したと同様にコイル挿入機にて挿入すれば、当該巻線
の全てのコイル辺はスロットの上部に位置して第1ない
し第3の各巻線に重ねて挿入される。このように本実施
例では、コイル挿入機を利用した4回(極数に等しい)
の挿入作業にて全ての巻線の挿入作業を終えることがで
きる。なお、異相のコイル辺が同一スロット内に収納さ
れる場合には、異相コイル間の絶縁のための中敷絶縁物
を機械的に或いは手作業にて挿入することは勿論である
At this time, as is clear from the previous table, the coil pitch is 13
For the two coils 11 and 11, one coil side will be inserted into the top of the slot, but these will overlap the coils of the same pitch of the first pole winding of the same phase that have already been inserted. Therefore, it is sufficient to simply insert it over the first pole winding. Also, the third coil insertion work is the third pole three-phase winding U3. V3. The same procedure is performed using W3 as one set. In this case as well, the coil side of the 1st or 2nd pole winding has already been inserted into the slot where the coil side should be inserted at the top, and it is simply overlapped with the 1st and 2nd pole winding. Just insert it. And finally,
4th pole three-phase winding U 4. V4. If W4 is inserted as a set using a coil insertion machine in the same manner as described above, all the coil sides of the winding will be positioned above the slot and will be inserted overlapping each of the first to third windings. In this way, in this example, the coil insertion machine was used four times (equal to the number of poles).
The insertion work of all the windings can be completed by the insertion work of . In addition, when the coil sides of different phases are housed in the same slot, it goes without saying that an insole insulator for insulating the different phase coils is inserted mechanically or manually.

上述のようにして挿入された各フィルの配置は第2図に
示すようになり、各相巻線のスロットへの挿入位置関係
は各相毎に同一になって幾何学的及び電気的に平衡する
ことが明らかである。
The arrangement of each fill inserted as described above is shown in Figure 2, and the insertion positional relationship of each phase winding into the slot is the same for each phase, so that it is geometrically and electrically balanced. It is clear that

また、各コイルの接続については、例えば′!s4図(
A)に示す通りに接続すれば4Y接続となり、第4図(
B)に示す通りに接続すれば4Δ接続とすることができ
る。
Also, regarding the connection of each coil, for example, '! s4 diagram (
If you connect as shown in A), it will be a 4Y connection, as shown in Figure 4 (
A 4Δ connection can be achieved by connecting as shown in B).

上記構成の本実施例によれば、自動コイル挿入機を使用
した4回のコイル挿入作業によって全てのコイルの挿入
を完了することができ、コイルの挿入を手作業に頼って
いた二層重ね巻に比べて生産性が著しく高くなる。しか
も、それでいながら第1図に示したように3つの相の各
巻線のコイルエンドは周方向に均等配置されるから、そ
のコイルエンドの長さ寸法は各相で略等しくなる。この
ため、各相コイルのインピーダンスが略等しくなり、イ
ンピーダンス不平衡による励磁電流の不平衡等を防ぐこ
とができ、従来の単層同心巻にありがちな電気的緒特性
の悪化を抑制できる。また、二層同心巻であるから、1
個のコイルは単層同心巻とした従来の導体数の半分の導
体数にて構成されることになる。従って、コイル体積は
従来の半分になり、スロットへの挿入作業が容易となり
、且つ挿入後のコイルエンド整形作業も容易になる。
According to this embodiment with the above-mentioned configuration, all coils can be inserted by four coil insertion operations using an automatic coil insertion machine, and double-layer overlapping winding, which previously relied on manual coil insertion, can be completed. Productivity is significantly higher than that of Moreover, as shown in FIG. 1, the coil ends of the windings of the three phases are arranged evenly in the circumferential direction, so the length dimensions of the coil ends are approximately equal for each phase. Therefore, the impedance of each phase coil becomes substantially equal, and it is possible to prevent unbalance of excitation current due to impedance unbalance, and it is possible to suppress deterioration of electrical characteristics that tends to occur in conventional single-layer concentric winding. Also, since it is a two-layer concentric winding, 1
The coil is constructed with half the number of conductors as the conventional single-layer concentric winding. Therefore, the volume of the coil is reduced to half that of the conventional coil, making it easier to insert the coil into the slot, and to shape the coil end after insertion.

このようにコイルエンド整形作業が容易であることは、
コイルエンドの長さに十分な余裕を与えておかなくとも
整形が可能になることを意味するから、各コイルの軸方
向寸法が短くなって、使用銅量や重量の削減が可能にな
り、コイルエンドと外被構造物との間に十分な絶縁距離
を確保することが可能になる。また、整形圧力が低くて
済むから、コイルの絶縁被覆を損傷することが少なくな
る。
The fact that coil end shaping is easy in this way
This means that it is possible to shape the coil end without giving sufficient margin, so the axial dimension of each coil is shortened, making it possible to reduce the amount of copper used and weight. It becomes possible to secure a sufficient insulation distance between the end and the jacket structure. Furthermore, since the shaping pressure is low, damage to the insulation coating of the coil is reduced.

く第2実施例さ 第5図及び第6図を参照して説明する。48スロツト、
4極の二層同心巻としたところは上記第1実施例と同一
であるが、各コイルのコイルピッチが相違する。
A second embodiment will now be described with reference to FIGS. 5 and 6. 48 slots,
The four-pole two-layer concentric winding is the same as the first embodiment, but the coil pitch of each coil is different.

各極各相のスロット数qは第1実施例と同様に4であり
、各極各相の巻線はやはり互いにコイルピッチが相違す
る4個の同心巻コイルから構成されている。各同心巻コ
イルのコイルピッチは、15.13,11.9である。
The number of slots q for each pole and each phase is 4, as in the first embodiment, and the windings for each pole and each phase are also composed of four concentrically wound coils having different coil pitches. The coil pitches of each concentric coil are 15.13 and 11.9.

その他の点は、第1実施例と同一であるから、同一部分
には同一符号、  を付して説明を省略する。コイル展
開図はwi6図に示したようになり、やはり各相巻線の
スロットへの挿入位置関係は各相毎に同一になって幾何
学的及び電気的に平衡することが明らかである。
Since the other points are the same as those in the first embodiment, the same parts are given the same reference numerals and the explanation thereof will be omitted. The coil development diagram is shown in Figure wi6, and it is clear that the insertion positional relationship of each phase winding into the slot is the same for each phase and is geometrically and electrically balanced.

従って、′!a1実施例と同一の作用・効果を得ること
ができ、しかも例えば#1〜#4のスロットには同一相
のコイルが上下に挿入されることになるため、スロット
内の中敷絶縁物やコイルエンド部の異相間に挿入する相
間絶縁物を簡略化することができ、またコイルピッチを
大きくした分、モータ特性が向上する等の利点がある。
Therefore, ′! The same functions and effects as in the a1 embodiment can be obtained, and since coils of the same phase are inserted above and below the slots #1 to #4, for example, the insole insulators and coils in the slots There are advantages such as the interphase insulator inserted between the different phases at the end can be simplified, and the motor characteristics are improved by increasing the coil pitch.

〈第3実施例〉 第7図及び第8図を参照して説明する。48スロツト、
4極で各極各相のスロット数qが4となる点では前記第
1及び第2実施例と同一であるが、重ね巻方式となって
いる点が相違する。
<Third Example> This will be described with reference to FIGS. 7 and 8. 48 slots,
This embodiment is the same as the first and second embodiments in that it has four poles and the number of slots q for each phase of each pole is four, but is different in that it uses an overlapping winding method.

各極各相の巻線は全てフィルピッチが10である4個の
連続コイルから構成されている。第1極を構成する三相
巻線Ul、Vl、Wlのみを取出して示すと第8図のよ
うになり、各連続コイルは順次隣接するスロット内に位
置されるようになっている。これら三相分の巻線Ul、
Vl、Wlは、−組として自動コイル挿入機によって鉄
心スロット内に挿入される。また、残りの多極を構成す
る三相巻線も同様な構成で、多極の三相分の巻線が一組
とされて極数回数だけスロットに同時挿入される。
The windings of each pole and each phase are composed of four continuous coils with a fill pitch of 10. If only the three-phase windings Ul, Vl, and Wl constituting the first pole are taken out and shown, the result is as shown in FIG. 8, and each continuous coil is positioned in an adjacent slot in sequence. These three phase windings Ul,
Vl and Wl are inserted into the core slot as a pair by an automatic coil insertion machine. Further, the three-phase windings constituting the remaining multi-poles have a similar configuration, and the three-phase windings of the multi-pole are combined into one set and simultaneously inserted into the slots as many times as the number of poles.

なお、コイル配置図は第1実施例のものとして示した第
2図と同じになる。
The coil arrangement diagram is the same as that shown in FIG. 2 for the first embodiment.

この第3実施例によれば、二層重ね巻でありながら、コ
イル挿入作業を自動コイル挿入機を使用して行うことが
でき、生産性が大きく高まる。勿論、各コイルの導体数
は単層同心巻の半分であるから、コイルエンドの成形作
業は簡単に行うことができる。コイルピッチが10であ
ることは、%ピッチが83%であることを意味するから
、高調波歪を軽減してモータ特性の向上を図ることがで
きるようになる。
According to the third embodiment, even though the coil is wound in two layers, the coil insertion work can be performed using an automatic coil insertion machine, and productivity is greatly increased. Of course, since the number of conductors in each coil is half that of the single-layer concentric winding, the coil end forming operation can be easily performed. Since a coil pitch of 10 means a % pitch of 83%, harmonic distortion can be reduced and motor characteristics can be improved.

く第4実施例〉 この実施例のコイル配置を示す第9図から明らかな通り
、36スロツト、4極の例である。本実施例では、各極
各相のスロット数qは3となり、各相各種の巻線はコイ
ルピッチが順に10.8゜6である3個(q個)の同心
巻コイルから構成されている。やはり各相の巻線は電気
角で互いに240°ずつ隔たり、且つ、三相分の巻線を
一組として極数回数だけスロットに同時挿入されて二層
同心巻とされている。スロット数及びコイルピッチが前
記第1実施例と相違するだけであるから、同一部分に同
一符号を付して説明を省略するが、第1実施例と同様な
効果を奏することは勿論である。
Fourth Embodiment> As is clear from FIG. 9 showing the coil arrangement of this embodiment, this is an example of 36 slots and 4 poles. In this embodiment, the number of slots q for each pole and each phase is 3, and the various windings for each phase are composed of three (q) concentrically wound coils with a coil pitch of 10.8°6. . Again, the windings of each phase are separated from each other by 240 degrees in electrical angle, and the windings for three phases are inserted into the slots as many times as the number of poles at the same time to form a two-layer concentric winding. Since the only difference from the first embodiment is the number of slots and the coil pitch, the same parts are given the same reference numerals and explanations are omitted, but it goes without saying that the same effects as in the first embodiment can be achieved.

く第5実施例〉 やはり36スロツト、4極で、二層重ね巻とすることが
できる。この場合、コイルピッチは8(%ピッチは83
%)で、コイル配置は第9図と全く同一となる。
Fifth Embodiment> Again, it has 36 slots and 4 poles, and can be wound in two layers. In this case, the coil pitch is 8 (% pitch is 83
%), the coil arrangement is exactly the same as in FIG.

く第6実施例〉 この実施例のコイル配置図を第10図に示すが、やはり
36スロツト、4極で、二層同心巻とした例で、前記第
4実施例とは同心巻コイルのコイルピッチが異なる。各
相各種巻線を構成する3個の同心巻コイルのコイルピッ
チは、順に11.9゜7で、やはり三相分の巻線を一組
として極数回数だけスロットに同時挿入されて二層重と
されている。
6th Embodiment The coil arrangement diagram of this embodiment is shown in FIG. 10, which is also an example of 36 slots, 4 poles, and two-layer concentric winding, and is different from the fourth embodiment in that the coil is a concentric winding coil. The pitch is different. The coil pitch of the three concentric coils that make up the various windings for each phase is 11.9°7, and the windings for the three phases are inserted into the slots as many times as the poles at the same time as one set, resulting in a two-layer structure. It is considered heavy.

く第7実施例〉 第11図にコイル配置図を示す。60スロツト、4極で
、二層同心巻とした例である。各極各相のスロット数q
はq−60/4X3から5となり、各極各相の巻線は互
いにコイルピッチが相違する5個(q個)の同心巻コイ
ルから構成され、そのコイルピッチは順に14.12.
1.0,8.6である。
Seventh Embodiment> FIG. 11 shows a coil arrangement diagram. This is an example of 60 slots, 4 poles, and two-layer concentric winding. Number of slots for each pole and phase q
becomes 5 from q-60/4X3, and the windings of each pole and each phase are composed of five (q) concentric coils with different coil pitches, and the coil pitches are sequentially 14.12.
1.0, 8.6.

この実施例によっても、上記各実施例と同様な効果を奏
する上、特に第2及び第6実施例と同様に、中敷絶縁物
や相間絶縁物の挿入を簡略化できるという利点がある。
This embodiment also provides the same effects as the above-mentioned embodiments, and has the advantage that insertion of the insole insulator and the interphase insulator can be simplified, as in the second and sixth embodiments.

く第8実施例〉 極数を6極とした例で、72スロツトの場合を第12図
に示す。各極各相のスロット数qは4となり、各極各相
の巻線は4個のコイルから構成されている。
Eighth Embodiment> FIG. 12 shows an example in which the number of poles is 6 and 72 slots. The number of slots q for each pole and each phase is 4, and the windings for each pole and each phase are composed of four coils.

ここで二層同心巻とする場合には各コイルのコイルピッ
チを順に13.11,9.7とすれば良く、二層重ね巻
とする場合にはすべてのコイルのコイルピッチを10と
して各相各種を構成する4個のコイルが順次隣接するス
ロット内に位置するようにすれば良い。いずれの場合も
、三相分の巻線を一組として極数回数だけスロットに同
時挿入して二層重とすれば、前記各実施例と同様な効果
を奏する。
In the case of two-layer concentric winding, the coil pitch of each coil may be set to 13.11 and 9.7 in order, and in the case of two-layer overlap winding, the coil pitch of all coils is set to 10, and each phase The four coils constituting each type may be sequentially located in adjacent slots. In either case, the same effects as in each of the above-described embodiments can be obtained by simultaneously inserting the windings for three phases into the slots as many times as the number of poles to form a double layer.

その他、本発明は上記各実施例に限定されるものではな
く、第4図に示した結線に限らず、IXY s 2 X
 Y −、l xΔ、2XΔ等の結線であっても良いこ
とは勿論であり、また各コイルのコイルピッチは各実施
例に示した例に限定されず、異常トルクを発生させない
範囲内で種々変更できるものである。
In addition, the present invention is not limited to the above embodiments, and is not limited to the connection shown in FIG.
It goes without saying that connections such as Y-, l x Δ, 2 It is possible.

[発明の効果] 以上述べたように、本発明の三相電機子巻線によれば、
二層巻であって1個のコイル当りの断面積は単層同心巻
の半分になるから、コイル体積の大きな機種でもコイル
の挿入性を良好に維持することができ、コイル挿入後に
おけるコイルエンドの成形が容易となってコイル表面の
絶縁不良が生じにくい。また、三相分のコイルを極数回
数だけスロットに同時挿入して二層巻とするから、コイ
ル挿入作業の自動化が容易で、生産性に優れる。
[Effects of the Invention] As described above, according to the three-phase armature winding of the present invention,
Since it is a two-layer winding and the cross-sectional area per coil is half that of a single-layer concentric winding, it is possible to maintain good coil insertion even in models with a large coil volume, and the coil end after the coil is inserted. It is easier to mold the coil, and insulation defects on the coil surface are less likely to occur. In addition, since the coils for three phases are simultaneously inserted into the slots a number of times to form a two-layer winding, the coil insertion work can be easily automated and productivity is excellent.

しかも、それでいながら各相巻線のスロットへの挿入位
置関係は、各相毎に同一になって巻線インピーダンスが
三相間で平衡するから、不平衡励磁電流の発生を抑制し
て電気的諸特性が向上する等の優れた効果を奏するもの
である。
Moreover, since the insertion position of each phase winding into the slot is the same for each phase and the winding impedance is balanced among the three phases, the generation of unbalanced excitation current is suppressed and the electrical This has excellent effects such as improved characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の第1実施例を示し、第1
図はコイル展開図、第2図はコイル配置図、第3図は各
相の第1極のみを示したコイル展開図、第4図は巻線接
続図である。第5図及び第6図は本発明の第2実施例を
示し、第5図はコイル展開図、第6図はコイル配置図で
ある。第7図及び第8vlJは本発明の第3実施例を示
し、第7図はコイル展開図、第8図は各相の第1極のみ
を示したコイル展開図である。 第9図は本発明の第4及び第5の各実施例を示すコイル
配置図、第10図は第6実施例のコイル配置図、第11
図は第7実施例のコイル配置図、第12図は第8実施例
のコイル配置図である。そして、第13図は従来例を示
すコイルエンド側からの側面図である。 図中、UN−04はU相の第1極〜第4極の各巻線、■
1〜V4はV相の第1極〜第4檜の各巻線、W1〜W4
はW相の第1極〜第4極の各巻線である。 代理人  弁理士 佐 藤  強 第 3 図 U端子 U端子 第 8 図 第9 図 第10図 υコ 第13図 手続補正書 平成4年1 月7日 特願平 2−278゜。。3/ 2、発明の名称  三相電機子巻線 3、補正をする者 事件との関係  特許出願人 (307)株式会社東芝 4、代理人 〒460 住所 名古屋市中区栄四丁目 6番15号日産生命館 6、補正の対象 明細書の発明の詳細な説明及び図面の簡単な説明の各欄
並びに図面。 7、補正の内容 (1)明細書第15頁1!87行から第8行にかけて記
載の「第1実施例のものとして示した第2図と同じにな
る。」を「第12図のようになる。」と訂正する。 (2)同第17頁第18行に記載の「く第8実施例〉」
から第18頁第11行に記載の「奏する。 」までを削除する。 (3)同第20頁第7行に記載の「第8実施例の」を「
第3実施例の」と訂正する。 (4)図面の第1図に記載の「W4」及び「W、」を別
紙複写図に朱書して示すように、夫々「z4」及び「2
.」と訂正する。 (5)同第1図に記載の「z3」及び「z2」を別紙複
写図に朱書して示すように、夫々「W、」及び「w2」
と訂正する。 (6)同第1図に記載の「W2」及びrw+」を別紙複
写図に朱書して示すように、夫々「z2」及び「zl」
と訂正する。 (7)同第1図に記載の「zユ」及び「z4」を別紙複
写図に朱書して示すように、夫々「W、」及び「W4」
と訂正する。 (8)同第2図に記載のrW+J及び「2.」を別紙複
写図に朱書して示すように、夫々rz+ J及びrw、
Jと訂正する。 (9)同第3図に記載の「Wl」及びrz、Jを別紙複
写図に朱書して示すように、夫々「2.」及び「W、」
と訂正する。 (10)同第4図の(A)に記載の「V、」及び「v2
」を別紙複写図に朱書して示すように、夫々「y、」及
び「y2」と訂正する。 (11)同第4図の(A)に記載の「v3」及び「v4
」を別紙複写図に朱書して示すように、夫々「y、」及
び「y4」と訂正する。 (12)同第4図の(A)に記載の「yl」及び「y2
」を別紙複写図に朱書して示すよう(こ、夫々「vl」
及び「■2」と訂正する。 (13)同第4図の(A)に記載の「y3」及び「y4
」を別紙複写図に朱書して示すように、夫々「V、」及
び「v4」と訂正する。 (14)同第5図に記載の「W4」及び「W3」を別紙
複写図に朱書して示すように、夫々rz4J及び「z3
」と訂正する。 (15)同第5図に記載の「2.」及び「z2」を別紙
複写図に朱書して示すように、夫々「Wl」及び「W2
」と訂正する。 (16)同第5図に記載の「W2」及び「Wl」を別紙
複写図に朱書して示すように、夫々「z2」及び「2.
」と訂正する。 (17)同第5図に記載の「z4」及び「zl」を別紙
複写図に朱書して示すように、夫々「W4」及び「W、
」と訂正する。 (18)同第6図に記載の「wl」及び「zl」を別紙
複写図に朱書して示すように、夫々「zl」及びrW、
Jと訂正する。 (19)同第8図に記載のrw、J及びrz、Jを別紙
複写図に朱書して示すように、夫々「2.」及び「W、
」と訂正する。 (20)同第9図に記載の「W、」及び「zl」を別紙
複写図に朱書して示すように、夫々「2.」及び「wl
」と訂正する。 (21)同第10図に記載の「Wl」及び「2、」を別
紙複写図に朱書して示すように、夫々「zl」及びrw
、Jと訂正する。 (22)同第11図に記載のrW1コ及び「2、」を別
紙複写図に朱書して示すように、夫々「2.」及び「W
l」と訂正する。 (23)同第12図を別紙の通り訂正する。 ■3x、 第 2 図 第 6 図 ■3×1 第 9 図 第10図
1 to 4 show a first embodiment of the present invention.
2 is a coil deployment diagram, FIG. 2 is a coil layout diagram, FIG. 3 is a coil deployment diagram showing only the first pole of each phase, and FIG. 4 is a winding connection diagram. 5 and 6 show a second embodiment of the present invention, FIG. 5 is a developed view of the coil, and FIG. 6 is a diagram of the coil arrangement. 7 and 8vlJ show a third embodiment of the present invention, FIG. 7 is a developed view of the coil, and FIG. 8 is a developed view of the coil showing only the first pole of each phase. FIG. 9 is a coil layout diagram showing each of the fourth and fifth embodiments of the present invention, FIG. 10 is a coil layout diagram of the sixth embodiment, and FIG.
The figure is a coil layout diagram of the seventh embodiment, and FIG. 12 is a coil layout diagram of the eighth embodiment. FIG. 13 is a side view from the coil end side showing a conventional example. In the figure, UN-04 is each winding of the 1st pole to the 4th pole of the U phase,
1 to V4 are the windings of the first to fourth poles of the V phase, W1 to W4
are the windings of the first to fourth poles of the W phase. Agent Patent Attorney Tsuyoshi Sato No. 3 Figure U terminal U terminal No. 8 Figure 9 Figure 10 Figure 13 Procedural amendment January 7, 1992 Patent application Hei 2-278゜. . 3/ 2. Title of the invention: Three-phase armature winding 3. Relationship to the amended case: Patent applicant (307) Toshiba Corporation 4, Agent: 460 Address: 6-15 Sakae 4-chome, Naka-ku, Nagoya Nissan Life Insurance Company 6, each column of the detailed description of the invention and the brief description of the drawings in the specification subject to amendment, and the drawings. 7. Contents of the amendment (1) From page 15 of the specification, line 1!87 to line 8, the phrase ``This is the same as Figure 2 shown in the first embodiment'' has been changed to ``As shown in Figure 12.'' It will be.'' I corrected myself. (2) “Eighth Example” described on page 17, line 18 of the same
Delete the text from ``Play'' written on page 18, line 11. (3) “In the eighth embodiment” written on page 20, line 7 of the same document is replaced with “
It is corrected as "of the third embodiment." (4) "W4" and "W," written in Figure 1 of the drawings are written in red in red on the attached copy, and are "z4" and "2," respectively.
.. ” he corrected. (5) As shown in red ink in the attached copy of the "z3" and "z2" shown in Figure 1, "W," and "w2" respectively.
I am corrected. (6) "W2" and "rw+" described in Figure 1 are respectively "z2" and "zl" as shown in red in the attached copy.
I am corrected. (7) As shown in red ink in the attached copy of the "zyu" and "z4" shown in Figure 1, "W," and "W4" respectively.
I am corrected. (8) As rW+J and "2." described in FIG. 2 are written in red on the attached copy, rz+J and rw, respectively.
Correct it with J. (9) "Wl", rz, and J shown in FIG.
I am corrected. (10) "V," and "v2" described in (A) of FIG.
" have been corrected to "y," and "y2," respectively, as shown in red ink in the attached copy. (11) "v3" and "v4" described in (A) of Figure 4
" have been corrected to "y," and "y4," respectively, as shown in red ink in the attached copy. (12) "yl" and "y2" described in (A) of Figure 4
'' is shown in red ink on the attached copy (respectively ``vl''
and correct it as “■2”. (13) "y3" and "y4" described in (A) of Figure 4
" have been corrected to "V," and "v4," respectively, as shown in red ink in the attached copy. (14) As "W4" and "W3" described in FIG. 5 are shown in red in the attached copy, rz4J and "z3" respectively.
” he corrected. (15) As "2." and "z2" described in FIG. 5 are written in red in the attached copy, "Wl" and "W2" are respectively
” he corrected. (16) As shown in red ink in the attached copy, "W2" and "Wl" described in FIG. 5 are respectively "z2" and "2.
” he corrected. (17) As "z4" and "zl" shown in FIG. 5 are written in red in the attached copy, they are "W4" and "W," respectively.
” he corrected. (18) As "wl" and "zl" described in FIG. 6 are written in red in the attached copy, "zl" and rW, respectively,
Correct it with J. (19) rw, J and rz, J shown in FIG.
” he corrected. (20) As shown in red ink in the attached copy, "W," and "zl" written in FIG.
” he corrected. (21) As "Wl" and "2," written in FIG. 10 are shown in red in the attached copy, "zl" and rw
, correct it as J. (22) As shown in red ink in the attached copy, rW1co and “2,” described in FIG. 11, “2.” and “W
I am corrected. (23) Figure 12 is corrected as shown in the attached sheet. ■3x, Figure 2 Figure 6 ■3x1 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 1、整数スロット巻の三相電機子巻線において、各極各
相の巻線を互いにコイルピッチが相違するq個の同心巻
コイルから構成し(qは各極各相のスロット数)、各相
の巻線は電気角で互いにpπ/3ずつ隔たり(Pは極数
)、且つ、三相分の巻線を一組として極数回数だけスロ
ットに同時挿入されて二層巻となっていることを特徴と
する三相電機子巻線。2、整数スロット巻の三相電機子
巻線において、各極各相の巻線をコイルピッチが同一で
順次隣接するスロット内に位置するq個の連続コイルか
ら構成し(qは各極各相のスロット数)、各相の巻線は
電気角で互いにpπ/3ずつ隔たり(Pは極数)、且つ
、三相分の巻線を一組として極数回数だけスロットに同
時挿入されて二層巻となっていることを特徴とする三相
電機子巻線。
1. In a three-phase armature winding with integer slot winding, each pole and each phase winding is composed of q concentric winding coils with different coil pitches (q is the number of slots in each pole and each phase). The phase windings are separated from each other by pπ/3 in electrical angle (P is the number of poles), and the windings for three phases are inserted into the slots as many times as the number of poles at the same time to form a two-layer winding. A three-phase armature winding characterized by: 2. In a three-phase armature winding with integer slot winding, the winding for each phase of each pole is composed of q continuous coils with the same coil pitch and located in sequentially adjacent slots (q is the number of coils for each phase of each pole). (number of slots), the windings of each phase are separated from each other by pπ/3 in electrical angle (P is the number of poles), and the windings of each phase are inserted into the slots simultaneously as many times as the number of poles as one set. A three-phase armature winding characterized by layer winding.
JP2278200A 1990-07-19 1990-10-17 Three-phase armature winding Expired - Lifetime JPH0757077B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2278200A JPH0757077B2 (en) 1990-10-17 1990-10-17 Three-phase armature winding
US07/733,217 US5231324A (en) 1990-07-19 1991-07-19 Three-phase armature winding
KR1019910012292A KR940001176B1 (en) 1990-07-19 1991-07-19 Three-phase armature winding
US08/097,516 US5376852A (en) 1990-07-19 1993-07-26 Three-phase armature winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2278200A JPH0757077B2 (en) 1990-10-17 1990-10-17 Three-phase armature winding

Publications (2)

Publication Number Publication Date
JPH04156245A true JPH04156245A (en) 1992-05-28
JPH0757077B2 JPH0757077B2 (en) 1995-06-14

Family

ID=17593996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2278200A Expired - Lifetime JPH0757077B2 (en) 1990-07-19 1990-10-17 Three-phase armature winding

Country Status (1)

Country Link
JP (1) JPH0757077B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533252A (en) * 1994-09-29 1996-07-09 Kabushiki Kaisha Toshiba Slot insulator guide in assembly of dynamoelectric machine and coil inserting apparatus provided therewith
US5657530A (en) * 1994-07-14 1997-08-19 Kabushiki Kaisha Toshiba Method of and apparatus for inserting coins and slot insulators into core of dynamoelectric machine
EP1107425A2 (en) * 1999-12-06 2001-06-13 Mitsubishi Denki Kabushiki Kaisha Vehicular AC generator
JP2011234616A (en) * 2010-04-28 2011-11-17 Siemens Aktiengesellschaft Winding apparatus, armature, wind turbine, and method for using winding apparatus
JP2015061476A (en) * 2013-09-20 2015-03-30 東芝産業機器システム株式会社 Stator of rotary electric machine
JP2016073103A (en) * 2014-09-30 2016-05-09 株式会社東芝 Rotary electric machine, and manufacturing method of rotary electric machine
JP2017200403A (en) * 2016-04-28 2017-11-02 アイシン精機株式会社 Three-phase synchronous machine and manufacturing method thereof
WO2020089994A1 (en) 2018-10-30 2020-05-07 三菱電機株式会社 Stator, electric motor, compressor, air conditioner, and stator manufacturing method
WO2020170422A1 (en) * 2019-02-22 2020-08-27 三菱電機株式会社 Stator, motor, and compressor
CN112165197A (en) * 2020-08-28 2021-01-01 哈尔滨电气动力装备有限公司 Double-layer lap winding structure of single-winding double-speed motor for nuclear power system
CN112737163A (en) * 2020-12-16 2021-04-30 北京汽车股份有限公司 Stator with low-harmonic winding, driving motor and vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128125A (en) * 1974-09-02 1976-03-09 Yokohama Rubber Co Ltd SETSUCHAKUZA ISOSEIBUTSU
JPS5460408A (en) * 1977-10-21 1979-05-15 Yaskawa Denki Seisakusho Kk Method of winding concentric winding coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128125A (en) * 1974-09-02 1976-03-09 Yokohama Rubber Co Ltd SETSUCHAKUZA ISOSEIBUTSU
JPS5460408A (en) * 1977-10-21 1979-05-15 Yaskawa Denki Seisakusho Kk Method of winding concentric winding coil

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657530A (en) * 1994-07-14 1997-08-19 Kabushiki Kaisha Toshiba Method of and apparatus for inserting coins and slot insulators into core of dynamoelectric machine
US5533252A (en) * 1994-09-29 1996-07-09 Kabushiki Kaisha Toshiba Slot insulator guide in assembly of dynamoelectric machine and coil inserting apparatus provided therewith
EP1107425A2 (en) * 1999-12-06 2001-06-13 Mitsubishi Denki Kabushiki Kaisha Vehicular AC generator
EP1107425A3 (en) * 1999-12-06 2003-07-30 Mitsubishi Denki Kabushiki Kaisha Vehicular AC generator
JP2011234616A (en) * 2010-04-28 2011-11-17 Siemens Aktiengesellschaft Winding apparatus, armature, wind turbine, and method for using winding apparatus
JP2015061476A (en) * 2013-09-20 2015-03-30 東芝産業機器システム株式会社 Stator of rotary electric machine
JP2016073103A (en) * 2014-09-30 2016-05-09 株式会社東芝 Rotary electric machine, and manufacturing method of rotary electric machine
JP2017200403A (en) * 2016-04-28 2017-11-02 アイシン精機株式会社 Three-phase synchronous machine and manufacturing method thereof
WO2020089994A1 (en) 2018-10-30 2020-05-07 三菱電機株式会社 Stator, electric motor, compressor, air conditioner, and stator manufacturing method
KR20210046778A (en) 2018-10-30 2021-04-28 미쓰비시덴키 가부시키가이샤 Stator, electric motor, compressor, air conditioner and stator manufacturing method
US11888370B2 (en) 2018-10-30 2024-01-30 Mitsubishi Electric Corporation Stator, motor, compressor, air conditioner, and manufacturing method of stator
WO2020170422A1 (en) * 2019-02-22 2020-08-27 三菱電機株式会社 Stator, motor, and compressor
JPWO2020170422A1 (en) * 2019-02-22 2021-09-30 三菱電機株式会社 Stator, motor and compressor
CN112165197A (en) * 2020-08-28 2021-01-01 哈尔滨电气动力装备有限公司 Double-layer lap winding structure of single-winding double-speed motor for nuclear power system
CN112737163A (en) * 2020-12-16 2021-04-30 北京汽车股份有限公司 Stator with low-harmonic winding, driving motor and vehicle

Also Published As

Publication number Publication date
JPH0757077B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
JP3903922B2 (en) Concentrated winding stator coil of rotating electric machine
US8384258B2 (en) Stator for electric rotating machine
US6140735A (en) Rotary electric machine and method of manufacturing the same
US5231324A (en) Three-phase armature winding
US9136738B2 (en) Electric rotating machine
JP2001320845A (en) Stator for rotating electric machine
US11316415B2 (en) Method of winding a stator of an electric machine
JP7070075B2 (en) Rotating electric machine
JP2011151953A (en) Stator of dynamo-electric machine
JPH04156245A (en) Three-phase armature winding
JP2005312278A (en) Concentrated winding stator coil of rotary electric machine
CN116195172A (en) Stator and motor
JPH10112948A (en) Bipolar armature winding of rotating electric machine and its manufacture
JP2602829B2 (en) Armature winding of rotating electric machine
JP7487639B2 (en) Rotating electric machine, manufacturing method of rotating electric machine, and armature
JP2889361B2 (en) Three-phase armature winding
CN213585304U (en) Motor stator and motor
CN212462917U (en) Motor stator winding, motor stator and motor
JPH04289744A (en) Three-phase six-pole armature winding
CN112467898A (en) Motor stator and motor
JPH05191940A (en) Three-phase twelve-pole armature winding
JPH05161291A (en) Three-phase armature winding
JP3494729B2 (en) Three-phase armature winding
CN218888246U (en) Flat wire motor stator and motor
CN112332576B (en) Stator and motor with same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 16