JPH04155989A - Manufacture of laminate plated with metallic foil - Google Patents

Manufacture of laminate plated with metallic foil

Info

Publication number
JPH04155989A
JPH04155989A JP28276990A JP28276990A JPH04155989A JP H04155989 A JPH04155989 A JP H04155989A JP 28276990 A JP28276990 A JP 28276990A JP 28276990 A JP28276990 A JP 28276990A JP H04155989 A JPH04155989 A JP H04155989A
Authority
JP
Japan
Prior art keywords
laminate
pressurization
depressurization
mold plate
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28276990A
Other languages
Japanese (ja)
Inventor
Teruhiko Iwata
輝彦 岩田
Mitsuhiro Inoue
光弘 井上
Katsuhiro Onose
勝博 小野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP28276990A priority Critical patent/JPH04155989A/en
Publication of JPH04155989A publication Critical patent/JPH04155989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To reduce the residual strain of a laminate after press formation by putting the thermal expansion coefficient of a mold plate to specified times the laminate, and repeating depressurization and pressurization just before cooling a press hot platen, and again, repeating the depressurization and pressurization with the laminate temperature in specified range. CONSTITUTION:The residual strain is reduced positively making use of the thermal coefficient difference between a laminate and a mold plate. That is, since the residual strain is tensile strain, the thermal expansion coefficient of the mold plate is made larger than that (toward inside of the surface) of the laminate, whereby compressive stress is given toward inside of the surface to remove the residual stress. It is to be desired that the thermal expansion coefficient of the mold plate at this time should be one and a half times to three times that of the laminate. Moreover, depressurization and pressurization are repeated just before the cooling process to make the tensile strength arising in the heating process zero. Furthermore, the depressurization and the pressurization are repeated between 110 deg.C-140 deg.C. It is to make the compressive stress, which has arisen in the laminate by the thermal expansion coefficient between the mold plate and the laminate, zero again while it leads to 11O deg.C-140 deg.C after start of cooling.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、プリント印刷配線板に用いられる金属箔張積
層板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a metal foil-clad laminate used for printed wiring boards.

〈従来の技術〉 プリント配線板に用いられる金属箔張積層板は、加熱、
加圧プレス工程や繰返し加熱加湿処理を受ける配線板製
造工程において、基板に反りや寸法変化が発生し、回路
製造作業または部品組立作業の際しばしば支障をきたす
<Conventional technology> Metal foil-clad laminates used for printed wiring boards are heated,
In the circuit board manufacturing process, which involves pressure pressing and repeated heating and humidification, warping and dimensional changes occur in the board, often causing problems during circuit manufacturing work or component assembly work.

一方、近年は、基板の大型化、回路の高密度化、加工工
程の自動化に伴い、基板の反り、寸法変化の防止に対す
る要求がますます厳しくなっている。
On the other hand, in recent years, as boards have become larger, circuits have become more dense, and processing processes have become more automated, requirements for preventing board warpage and dimensional changes have become increasingly strict.

この反り、寸法変化が発生する原因は、加熱加圧プレス
工程に起因していることが多い。すなわち、基材に含浸
させている樹脂の流動、樹脂の未硬化、硬化収縮、金属
箔と積層板との熱膨張率の差、ステンレス綱金型プレー
トとの熱膨張率の差などにより積層板内部の面内方向に
残留ひずみがたまり、プレスから脱型したときや配線板
製造工程で熱履歴を受けたときに、反りや寸法変化が発
生するものである。
The cause of this warping and dimensional change is often caused by the heating and pressing process. In other words, the laminate is affected by the flow of the resin impregnated into the base material, uncured resin, curing shrinkage, difference in thermal expansion coefficient between the metal foil and the laminate, and difference in thermal expansion coefficient between the stainless steel mold plate and other factors. Residual strain accumulates in the internal in-plane direction, causing warping and dimensional changes when removed from the press or subjected to thermal history during the wiring board manufacturing process.

そこで、従来では、プレス工程における残留ひずみを低
く押さえる方法として、加熱過程から冷却過程に移る際
に脱圧する脱圧成形法を用いている。
Therefore, conventionally, as a method for keeping the residual strain low in the pressing process, a depressurizing molding method is used in which the pressure is removed when moving from the heating process to the cooling process.

これによって、脱圧せずに加圧したまま冷却する方法で
は、プレス成形後の積層板の残留ひずみが2〜5X10
−’であるのに対し、脱圧成形法ではlXl0−’程度
と低減する。これは、上記残留ひずみが脱圧することに
よって解放されるからである。
As a result, in the method of cooling while pressurized without releasing the pressure, the residual strain of the laminate after press forming is 2 to 5 x 10
-', whereas in the decompression molding method, it is reduced to about lXl0-'. This is because the residual strain is released by releasing the pressure.

〈発明が解決しようとする課題〉 しかしながら、上記の如き従来の脱圧成形方法では、残
留ひずみが完全に消滅はせず多少残る。
<Problems to be Solved by the Invention> However, in the conventional decompression molding method as described above, residual strain does not completely disappear and remains to some extent.

これは、脱圧状態で熱盤を完全に開けるわけでなく、冷
却時に積層板から熱をうばいやすいように、多少圧力を
かけて積層板と熱盤を接触させているためで、積層板に
拘束力が生じているからである。
This is because the heating plate is not completely opened in a depressurized state, but some pressure is applied to bring the laminate into contact with the heating plate so that heat can be easily removed from the laminate during cooling. This is because there is a binding force.

ところで、反り、寸法変化防止への要求は厳しく、近年
の要求値は、寸法変化率で0.01%以下であるのに対
し、上記脱圧成形法では残留ひずみが約lXl0−’(
百分串換算で0.01%)であり、寸法変化率は0.0
1%発生する可能性がある。これは、要求値ぎりぎりで
ある。
By the way, there are strict requirements to prevent warpage and dimensional changes, and the recent required value is 0.01% or less in terms of dimensional change rate, whereas the above decompression molding method has a residual strain of about 1X10-' (
0.01%), and the dimensional change rate is 0.0
1% chance of occurrence. This is just below the required value.

この発明は、上記の如き従来の課題に鑑みてなされたも
ので、その目的とするところは、プレス成形後の積層板
の残留ひずみを更に低減して、反り及び寸法変化の小さ
い金属箔張積層板の製造方法を提供することにある。
This invention was made in view of the above-mentioned conventional problems, and its purpose is to further reduce the residual strain of the laminate after press forming, and to produce metal foil-clad laminates with small warpage and dimensional changes. The object of the present invention is to provide a method for manufacturing a board.

く課題を解決するための手段〉 この発明は、上記目的を達成するために、熱硬化性樹脂
を基材に含浸させて半硬化状態にしたプリプレグを所定
枚数重ねるとともに、その片面もしくは両面に金属箔を
設け、金型プレートに挾んでプレスで加熱加圧する金属
箔張積層板の製造方法において、上記金型プレートの熱
膨張率を金属箔張積層板の1.5〜3倍とし、かつ、プ
レス熱盤を冷却させる直前に脱圧、加圧を繰返し、積層
板温度が110℃〜140℃の間で再び脱圧、加圧を繰
返すことを特徴とする。
Means for Solving the Problems> In order to achieve the above object, the present invention stacks a predetermined number of semi-cured prepregs made by impregnating a base material with a thermosetting resin, and also coats one or both surfaces with metal. A method for manufacturing a metal foil-clad laminate in which a foil is provided, sandwiched between mold plates, and heated and pressed with a press, wherein the mold plate has a thermal expansion coefficient of 1.5 to 3 times that of the metal foil-clad laminate, and It is characterized by repeating depressurization and pressurization immediately before cooling the press hot platen, and repeating depressurization and pressurization again when the laminated plate temperature is between 110°C and 140°C.

く作用〉 プレス成形によって発生する面内方向の残留ひずみは引
張ひすみで、従来の脱圧成形法では冷却開始時に脱圧す
ることによって残留ひずみを自然消滅させていたが、本
発明では、積層板と金型プレートとの熱膨張率差を利用
して残留ひずみを積極的に消滅させるようにしている。
Effect> Residual strain in the in-plane direction generated by press forming is tensile strain, and in the conventional decompression forming method, the residual strain was naturally eliminated by decompressing at the start of cooling, but in the present invention, the residual strain in the laminate is The residual strain is actively eliminated by utilizing the difference in thermal expansion coefficient between the mold plate and the mold plate.

すなわち、残留ひずみは引張ひすみであるから、金型プ
レートの熱膨張率を積層板の熱膨張率(面内方向)より
大きくし、積層板面内方向に圧縮応力を与え、残留ひず
みをなくすようにした。
In other words, since residual strain is tensile strain, the coefficient of thermal expansion of the mold plate is made larger than the coefficient of thermal expansion of the laminate (in the in-plane direction), compressive stress is applied in the in-plane direction of the laminate, and the residual strain is eliminated. I did it like that.

このときの金型プレートの熱膨張率は積層板のそれの1
.5倍〜3倍にするのが好ましい。金型プレートの材質
は上記範囲に入るものであればよいが、例えば、アルミ
合金が適当である。
The coefficient of thermal expansion of the mold plate at this time is 1 that of the laminate plate.
.. It is preferable to increase the amount by 5 to 3 times. The material of the mold plate may be any material within the above range, and for example, aluminum alloy is suitable.

また、冷却過程直前に脱圧、加圧を繰返すのは、加熱過
程で金型プレートと積層板の熱膨張率差により積層板に
発生した引張応力を0にするためである。
Further, the reason why the depressurization and pressurization are repeated immediately before the cooling process is to zero out the tensile stress generated in the laminate due to the difference in thermal expansion coefficient between the mold plate and the laminate during the heating process.

脱圧、加圧の繰返し数は任意であるが、1回だけで行う
のが作業性の面から最も好ましい。
Although the number of repetitions of depressurization and pressurization is arbitrary, it is most preferable to perform the depressurization and pressurization only once from the viewpoint of workability.

更に、110℃〜140℃間で脱圧、加圧を繰返すのは
、冷却開始から110℃〜140℃に至るまでの間に、
金型プレートと積層板の熱膨張率差により、積層板に発
生した圧縮応力を再び0にするためである。冷却過程の
最後まで加圧を続けると積層板に発生する圧縮応力が大
きくなりすぎるために、−度応力を解放する必要がある
。脱圧、加圧の繰返し数は任意であるが、作業性の面か
ら1回だけ行うのが最も好ましい。
Furthermore, depressurization and pressurization are repeated between 110°C and 140°C from the start of cooling until the temperature reaches 110°C to 140°C.
This is to reduce the compressive stress generated in the laminate to zero again due to the difference in thermal expansion coefficient between the mold plate and the laminate. If pressurization is continued until the end of the cooling process, the compressive stress generated in the laminate becomes too large, so it is necessary to release the -degree stress. The number of repetitions of depressurization and pressurization is arbitrary, but from the viewpoint of workability, it is most preferable to repeat the depressurization and pressurization only once.

加熱過程においては、昇温開始から50・−100℃間
までに加える圧力を50〜100℃以降に加える圧力よ
り高くすることが望ましい。これは、プリプレグにおけ
る半硬化状態の樹脂が流動開始するまでは、プリプレグ
どおしは積み重なっているだけで接芒しておらず、でき
るだけ高い圧力をかけておいた方がプレプレグ間の接触
面積が大きくなり、熱抵抗が下がるため昇温速度は速く
なるからである。
In the heating process, it is desirable that the pressure applied between 50 and -100°C after the start of temperature rise be higher than the pressure applied after 50 to 100°C. This is because until the semi-hardened resin in the prepregs starts to flow, the prepregs are only stacked on top of each other and are not in contact with each other, so it is better to apply as high a pressure as possible to increase the contact area between the prepregs. This is because the temperature increases as the temperature increases and the thermal resistance decreases.

また、本発明では、冷却過程においても加圧しているた
め、脱圧成形法に比べて冷却速度が速く、プレスサイク
ルが短い。
Further, in the present invention, since pressure is applied even during the cooling process, the cooling rate is faster and the press cycle is shorter than that in the decompression molding method.

〈実施例〉 以下、この発明の詳細な説明する。<Example> The present invention will be explained in detail below.

基材にはガラス布、熱硬化性樹脂にはエポキシ樹脂、金
属箔には銅箔を用いた。プリプレグは8枚積層とし、そ
の両面に銅箔を配設した。
Glass cloth was used as the base material, epoxy resin was used as the thermosetting resin, and copper foil was used as the metal foil. Eight sheets of prepreg were laminated, and copper foil was placed on both sides.

金型プレートには熱膨張率は2.4X10−5/℃のア
ルミ合金を用いた(なお、銅箔なしの積層板の熱膨張率
は1. 2 X 10−5/”Cである)。
An aluminum alloy with a thermal expansion coefficient of 2.4 x 10-5/"C was used for the mold plate (the thermal expansion coefficient of a laminate without copper foil is 1.2 x 10-5/"C).

図面に、本実施例におけるプレス成形時の圧力、温度に
関する時間スケジュールを示す。
The drawings show a time schedule regarding pressure and temperature during press molding in this example.

図面に示す如く、積層板温度Tが60℃に達するまでは
圧力Pは60 k g f 7cm”であり、以後は4
0kgf/cm2とした。
As shown in the drawing, the pressure P is 60 kg f 7 cm'' until the laminate temperature T reaches 60°C, and thereafter it is 4 cm.
It was set to 0 kgf/cm2.

また、冷却開始時Q1の直前と冷却過程における積層板
温度が120℃に達する点Q2で脱圧、加圧を1回行っ
た(図面においてAとBで示す)。
In addition, depressurization and pressurization were performed once immediately before cooling start Q1 and at point Q2 when the laminate temperature reached 120° C. during the cooling process (indicated by A and B in the drawing).

なお、比較例として金型プレートにステンレス鋼を用い
、圧力をプレス成形中40kgf/cm2に一定とした
連続成形法と、冷却開始時に3 k gf/cm2に脱
圧した脱圧成形法を行った。
As a comparative example, stainless steel was used for the mold plate, and a continuous molding method in which the pressure was kept constant at 40 kgf/cm2 during press molding, and a decompression molding method in which the pressure was released to 3 kgf/cm2 at the start of cooling were performed. .

その結果、プレス成形後の積層板面内方向の残留ひずみ
は、本発明による製造法では、0.5×10−4であっ
たのに対し、連続成形法では3×10−4、脱圧成形法
てはlXl0−’であった。
As a result, the residual strain in the in-plane direction of the laminate after press forming was 0.5 x 10-4 in the manufacturing method according to the present invention, whereas it was 3 x 10-4 in the continuous forming method, and The molding method was 1X10-'.

〈発明の効果〉 以上説明したように、この発明では、プレス成形後の積
層板の残留ひずみを小さくすることができ、反り特性及
び寸法安定性に優れた金属箔張積層板を得ることができ
るという効果を有する。
<Effects of the Invention> As explained above, according to the present invention, the residual strain of the laminate after press forming can be reduced, and a metal foil-clad laminate with excellent warpage characteristics and dimensional stability can be obtained. It has this effect.

【図面の簡単な説明】[Brief explanation of drawings]

図面はプレス成形時の圧力、温度に関する時間スケジュ
ールの説明図である。 T・・・・・・積層板温度 P・・・・・・圧ソj
The drawing is an explanatory diagram of a time schedule regarding pressure and temperature during press molding. T... Laminate temperature P... Pressure saw j

Claims (5)

【特許請求の範囲】[Claims] 1.熱硬化性樹脂を基材Aに含浸させて半硬化状態にし
たプリプレグを所定枚数重ねるとともに、その片面もし
くは両面に金属箔を設け、金型プレートに挾んでプレス
で加熱加圧する金属箔張積層板の製造方法において、上
記金型プレートの熱膨張率を金属箔張積層板の1.5〜
3倍とし、かつ、プレス熱盤を冷却させる直前に脱圧、
加圧を繰返し、積層板温度が110℃〜140℃の間で
再び脱圧、加圧を繰返すことを特徴とする金属箔張積層
板の製造方法。
1. A metal foil-clad laminate in which a predetermined number of prepregs made by impregnating base material A with thermosetting resin to a semi-cured state are stacked, metal foil is provided on one or both sides of the prepreg, and the prepregs are sandwiched between mold plates and heated and pressed using a press. In the manufacturing method of
3 times the pressure, and immediately before cooling the press platen, remove the pressure.
A method for manufacturing a metal foil-clad laminate, which comprises repeating pressurization, and repeating depressurization and pressurization again when the laminate temperature is between 110°C and 140°C.
2.金型プレートをアルミ合金としたことを特徴とする
請求項1記載の金属箔張積層板の製造方法。
2. 2. The method for manufacturing a metal foil-clad laminate according to claim 1, wherein the mold plate is made of an aluminum alloy.
3.プレスで加熱、加圧時に、昇温開始から50〜10
0℃間までに加える圧力を50〜100℃以降に加える
圧力より高くすることを特徴とする請求項1記載の金属
箔張積層板の製造方法。
3. 50 to 10 from the start of temperature rise when heating and pressurizing with a press
2. The method for manufacturing a metal foil-clad laminate according to claim 1, wherein the pressure applied before 0°C is higher than the pressure applied after 50 to 100°C.
4.プレス熱盤を冷却させる直前の脱圧、加圧回数を1
回としたことを特徴とする請求項1記載の金属箔張積層
板の製造方法。
4. The number of times of depressurization and pressurization immediately before cooling the press hot plate is 1.
2. The method for manufacturing a metal foil-clad laminate according to claim 1, wherein the method comprises:
5.積層板温度が110℃〜140℃間での脱圧、加圧
回数を1回としたことを特徴とする請求項1記載の金属
箔張積層板の製造方法。
5. 2. The method of manufacturing a metal foil-clad laminate according to claim 1, wherein the number of times of depressurization and pressurization is one time when the laminate temperature is between 110 DEG C. and 140 DEG C.
JP28276990A 1990-10-19 1990-10-19 Manufacture of laminate plated with metallic foil Pending JPH04155989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28276990A JPH04155989A (en) 1990-10-19 1990-10-19 Manufacture of laminate plated with metallic foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28276990A JPH04155989A (en) 1990-10-19 1990-10-19 Manufacture of laminate plated with metallic foil

Publications (1)

Publication Number Publication Date
JPH04155989A true JPH04155989A (en) 1992-05-28

Family

ID=17656836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28276990A Pending JPH04155989A (en) 1990-10-19 1990-10-19 Manufacture of laminate plated with metallic foil

Country Status (1)

Country Link
JP (1) JPH04155989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000094622A (en) * 1998-09-25 2000-04-04 Matsushita Electric Works Ltd Manufacture of laminate
JP2018157115A (en) * 2017-03-17 2018-10-04 三菱マテリアル株式会社 Manufacturing method of insulation circuit board, and manufacturing method of insulation circuit board with heat sink

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000094622A (en) * 1998-09-25 2000-04-04 Matsushita Electric Works Ltd Manufacture of laminate
JP2018157115A (en) * 2017-03-17 2018-10-04 三菱マテリアル株式会社 Manufacturing method of insulation circuit board, and manufacturing method of insulation circuit board with heat sink

Similar Documents

Publication Publication Date Title
US3969177A (en) Laminating method
JP2000263577A5 (en)
JPH04155989A (en) Manufacture of laminate plated with metallic foil
JP3277195B2 (en) Multilayer printed wiring board and method of manufacturing the same
JPH0343061B2 (en)
JPH0381122A (en) Manufacture of thermosetting resin laminated sheet plated with metallic foil
JPH04168038A (en) Manufacture of laminated sheet
JPS6363369B2 (en)
JP2002264157A (en) Method for producing laminated plate
JPH04119836A (en) Metal foil clad laminated sheet and preparation thereof
JP5080892B2 (en) Laminate production method
JP2010056176A (en) Method of manufacturing multilayer printed wiring board
JPH0825385A (en) Production of laminated sheet
JPS6154580B2 (en)
JPH08228076A (en) Manufacture of multilayer printed wiring board
JPH05293904A (en) Heat treatment of laminated sheet
TWI605931B (en) Mold and thermoforming process using the same
JP4582403B2 (en) Method for manufacturing printed wiring board substrate
JPH03221417A (en) Production of laminated sheet lined with metallic foil
JPS63233810A (en) Manufacture of laminated sheet
JPH04223394A (en) Manufacture of metal plated laminate board
JPH0469066B2 (en)
JP2586629B2 (en) Method for producing composite laminate
JPH0489254A (en) Manufacture of laminated plate
JPS63145006A (en) Manufacture of laminated board