JPH04155871A - Optoelectronic integrated circuit - Google Patents
Optoelectronic integrated circuitInfo
- Publication number
- JPH04155871A JPH04155871A JP2280632A JP28063290A JPH04155871A JP H04155871 A JPH04155871 A JP H04155871A JP 2280632 A JP2280632 A JP 2280632A JP 28063290 A JP28063290 A JP 28063290A JP H04155871 A JPH04155871 A JP H04155871A
- Authority
- JP
- Japan
- Prior art keywords
- light
- semiconductor material
- absorbing layer
- substrate
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 6
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 239000004065 semiconductor Substances 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 15
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 7
- 230000031700 light absorption Effects 0.000 claims description 18
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 claims 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 20
- 238000005468 ion implantation Methods 0.000 abstract description 3
- 238000005530 etching Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract 2
- 239000013078 crystal Substances 0.000 abstract 1
- 239000000969 carrier Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 101150114751 SEM1 gene Proteins 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光電子集積回路(OE I C)に係り、特に
M S M (Metal Sem1conducto
r Metal)構造のホトダイオードと、FET (
電界効果トランジスタ)などの回路素子を集積化したも
のに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to optoelectronic integrated circuits (OE ICs), and particularly to MSM (Metal Sem1 conductor).
r Metal) structure photodiode and FET (
It relates to integrated circuit elements such as field effect transistors.
従来、このような分野の技術として、例えば第3図の0
EICが知られている。これは、下記の文献
“IEEE ELECTRON DEVICE LET
TEI’lS、VOL、EDL−5,NO。Conventionally, as a technology in this field, for example, the 0
EIC is known. This is explained in the following document “IEEE ELECTRON DEVICE LET
TEI'lS, VOL, EDL-5, NO.
12、DECEMBER1984”
において発表されたrMSMホトダイオードおよびGa
Asプリアンプのモノリシック集積」と題する論文中
に示されている。図示の通り、半絶縁性のGa As基
板31の上面にはGa Asバッファ層32が形成され
、左側のMSMホトダイオード(PD)領域はエツチン
グで掘り下げられている。そして、右側のGa Asバ
ッファ層32のじょうめんには、FET用の活性層33
が形成されている。なお、電極34A、35BはMSM
ホトダイオードの信号取出電極であり、電極35S。12, rMSM photodiode and Ga announced at DECEMBER 1984”
Monolithic Integration of As Preamplifiers''. As shown, a GaAs buffer layer 32 is formed on the upper surface of a semi-insulating GaAs substrate 31, and the MSM photodiode (PD) region on the left side is etched. Then, on the side of the GaAs buffer layer 32 on the right side, there is an active layer 33 for FET.
is formed. Note that the electrodes 34A and 35B are MSM
The electrode 35S is a signal extraction electrode of the photodiode.
35G、35DはFETのソース、ゲートおよびドレイ
ン電極である。35G and 35D are the source, gate and drain electrodes of the FET.
上記の構造によれば、入射光により生成されたキャリア
を、MSMホトダイオードの電極24BからFETのゲ
ート電極35Gに与えることができる。しかし、この0
EICでは、G a A sの禁制帯幅よりも大きなエ
ネルギーの光信号しか受信できない。そこで、光通信用
に用いられる長波長の光(例えば赤外光)を受信可能と
するために、光吸収層にIn Ga Asのような禁制
帯幅の小さい半導体を用いることが試みられている。こ
の場合には、格子整合の点から基板としてInPが用い
られ、同一基板上にホトダイオードとFET等の回路素
子が集積化される。According to the above structure, carriers generated by incident light can be provided from the electrode 24B of the MSM photodiode to the gate electrode 35G of the FET. However, this 0
EIC can only receive optical signals with energy greater than the GaAs forbidden band width. Therefore, in order to make it possible to receive long-wavelength light (for example, infrared light) used for optical communication, attempts have been made to use a semiconductor with a small forbidden band width, such as InGaAs, for the light absorption layer. . In this case, InP is used as the substrate from the viewpoint of lattice matching, and circuit elements such as photodiodes and FETs are integrated on the same substrate.
しかし、光吸収層に禁制帯幅の小さい半導体材料を用い
ると、基板リーク電流の制御が困難で、高性能の0EI
Cを実現できない。また、禁制帯幅の小さい半導体材料
は迷光によってキャリアを生成させるので、受光部以外
に光シールド膜を設けることか必要になる。However, if a semiconductor material with a small forbidden band width is used for the light absorption layer, it is difficult to control the substrate leakage current, and high-performance 0EI
C cannot be realized. Furthermore, since semiconductor materials with a small forbidden band width generate carriers due to stray light, it is necessary to provide a light shielding film in areas other than the light receiving portion.
本発明はかかる従来技術の欠点を解決することを課題と
している。The present invention aims to solve the drawbacks of such prior art.
本発明は、単一の半導体基板の一方の面側に、光吸収層
およびこれに接続された電極を有する受光素子が形成さ
れ、かつ受光素子の出力信号を処理する回路素子が形成
された光電子集積回路において、光吸収層は禁制帯幅が
Q、 8eV以上の半導体材料で形成され、かつ希土類
元素がドーピングされていることを特徴とする。また、
光吸収層は、半導体基板に形成された溝部に半導体材料
を埋込み成長して形成してもよい。The present invention provides a photoelectronic device in which a light-receiving element having a light-absorbing layer and an electrode connected thereto is formed on one side of a single semiconductor substrate, and a circuit element for processing an output signal of the light-receiving element is formed. In the integrated circuit, the light absorption layer is formed of a semiconductor material having a forbidden band width Q of 8 eV or more, and is doped with a rare earth element. Also,
The light absorption layer may be formed by filling and growing a semiconductor material in a groove formed in a semiconductor substrate.
本発明の構成によれば、ドーピングされた希土類元素が
長波長光によってキャリアを生成させる。According to the configuration of the present invention, the doped rare earth element generates carriers using long wavelength light.
また、光吸収層をなす半導体材料の禁制帯幅は0.8e
V以上であるので、半導体材料自身によってキャリアが
光生成することはなくなり、しかもリーク電流を低減さ
せ得る。Furthermore, the forbidden band width of the semiconductor material forming the light absorption layer is 0.8e.
Since the voltage is V or higher, carriers are not photo-generated by the semiconductor material itself, and leakage current can be reduced.
以下、添付図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
第1図は実施例に係る0EICの断面図であり、同図(
a)〜(f)はそれぞれ異なる態様を示している。同図
(a)に示す通り、半絶縁性のGaAs基板11の受光
部形成領域(図の左側)では、エツチングによって形成
された溝部に、ErをドープしたGa Asが結晶成長
されて光吸収層12が埋め込み形成されている。そして
、光吸収層12の上面には、信号取出用の一対の電極1
3A。FIG. 1 is a cross-sectional view of the 0EIC according to the example, and the same figure (
a) to (f) each show a different aspect. As shown in the figure (a), in the light-receiving part formation region (left side of the figure) of the semi-insulating GaAs substrate 11, Er-doped GaAs is crystal-grown in the groove formed by etching to form a light-absorbing layer. 12 is embedded. A pair of electrodes 1 for signal extraction are provided on the upper surface of the light absorption layer 12.
3A.
13Bが形成されている。一方、Ga As基板11の
信号処理回路形成領域には、イオン注入等によりコンタ
クト領域14および活性層15が形成され、これらの上
に電極165.16G。13B is formed. On the other hand, in the signal processing circuit formation region of the GaAs substrate 11, a contact region 14 and an active layer 15 are formed by ion implantation or the like, and electrodes 165.16G are formed on these.
16Dが設けられている。ここで、電極16S。16D is provided. Here, the electrode 16S.
16G、16Dはそれぞれソース、ゲートおよびドレイ
ン電極をなし、信号処理用の回路素子としてのFETを
構成している。そして、電極13Bと電極16Gは、例
えばアルミニウムなどの配線(図示せず)で接続される
。16G and 16D constitute source, gate, and drain electrodes, respectively, and constitute an FET as a signal processing circuit element. Then, the electrode 13B and the electrode 16G are connected by a wiring (not shown) made of aluminum or the like, for example.
上記実施例の0EICにおいて、受光部に赤外光のよう
な長波長の光が入射すると、光吸収層12にドープされ
たErによりキャリアか発生する。このとき、光吸収層
12を構成するGa Asは禁制帯幅か大きいので、こ
れ自体によってキャリアか生成することはない。また、
光吸収層12以外のGa As基板11において、たと
え赤外光が入射してもキャリアは生成しないので、特に
光シールドなどを設ける必要がない。光吸収層12で生
成したキャリアは、電極13A、13Bの間のバイアス
電圧による電界で加速され、電極13Bから配線(図示
せず)を介してFETのゲート電極16Gに与えられる
。ここで、光吸収層12は禁制帯幅の大きいGa As
で形成されているので、暗電流を抑えて高い感度を実現
できる。特に、電極13A、13Bがショットキ電極の
ときは、Ga Asのショットキ障壁は高いので、特に
暗電流を低減できる。In the 0EIC of the above embodiment, when long wavelength light such as infrared light is incident on the light receiving section, carriers are generated by Er doped in the light absorption layer 12. At this time, since GaAs constituting the light absorption layer 12 has a large forbidden band width, carriers are not generated by itself. Also,
In the GaAs substrate 11 other than the light absorption layer 12, carriers are not generated even if infrared light is incident, so there is no need to provide a light shield or the like. Carriers generated in the light absorption layer 12 are accelerated by an electric field caused by a bias voltage between the electrodes 13A and 13B, and are applied from the electrode 13B to the gate electrode 16G of the FET via a wiring (not shown). Here, the light absorption layer 12 is made of GaAs with a large forbidden band width.
, it is possible to suppress dark current and achieve high sensitivity. In particular, when the electrodes 13A and 13B are Schottky electrodes, the Schottky barrier of GaAs is high, so dark current can be particularly reduced.
第1図(a)に示す実施例では、光吸収層12はGa
As基板11の溝部にEr トープのGaAsを埋込み
成長させて形成し、回路素子はGaAS基板11の表面
にイオン注入などで形成しているため、表面の平坦化か
優れている。また、−連の製造プロセスで作製できる利
点もある。なお、ドーパントとしてはTr (ツリウ
ム)なとの他の稀土類元素を用いていもよい。In the embodiment shown in FIG. 1(a), the light absorption layer 12 is made of Ga.
Since Er-topped GaAs is grown and buried in the groove of the As substrate 11, and the circuit elements are formed on the surface of the GaAS substrate 11 by ion implantation, the surface is excellently flattened. It also has the advantage that it can be manufactured using a series of manufacturing processes. Note that other rare earth elements such as Tr (thulium) may be used as the dopant.
本発明はこの構造に限定されず、第1図(b)〜(f)
のようにすることもてきる。The present invention is not limited to this structure, and FIGS. 1(b) to (f)
You can also do something like this.
第1図(b)は、Ga As基板11に直接FETを形
成せずに、Ga As基板11上にメサ形状のGa A
sエピタキシャル層18を設け、ここにFETを形成し
た点て同図(a)と異なっている。In FIG. 1(b), a mesa-shaped Ga A is formed on the Ga As substrate 11 without directly forming an FET on the Ga As substrate 11.
This is different from FIG. 3A in that an s epitaxial layer 18 is provided and an FET is formed there.
また、同図(c)は光吸収層12をメサ構造とした点で
、同図(b)の実施例と異なっている。これらの場合、
平坦化についてはやや劣るか、FETの特性向上は可能
になる。同図(d)、(e)は共に光吸収層12をメサ
構造としたものであり、Ga As基板11上の全面に
Ga Asエピタキシャル層18を形成したか否かの点
て、互いに異なっている。同図(f)はGa As基板
11の全面にGa Asエピタキシャル層18を形成し
た後、受光部に溝を形成して光吸収層12を埋込んでい
る。この場合には、平坦化に優れ、かつFETの特性も
良好にできる。Further, the embodiment shown in FIG. 1C differs from the embodiment shown in FIG. 1B in that the light absorption layer 12 has a mesa structure. In these cases,
Although flattening is slightly inferior, it is possible to improve the characteristics of the FET. In both figures (d) and (e), the light absorption layer 12 has a mesa structure, and they differ from each other in terms of whether or not the GaAs epitaxial layer 18 is formed on the entire surface of the GaAs substrate 11. There is. In FIG. 3(f), a GaAs epitaxial layer 18 is formed on the entire surface of a GaAs substrate 11, and then a groove is formed in the light-receiving portion and a light-absorbing layer 12 is embedded therein. In this case, excellent planarization and FET characteristics can be achieved.
第2図は本発明の実施例を具体化した0EICの一例の
回路図である。同図において、MSM構造の受光素子2
1A、21Bは単一の基板20に形成され、入力段のF
ET22、出力段のFET23および能動抵抗としての
FET24,25も基板20に形成され、半導体抵抗2
6も同一の基板20に形成される。FIG. 2 is a circuit diagram of an example of an 0EIC embodying an embodiment of the present invention. In the figure, a light receiving element 2 with an MSM structure is shown.
1A and 21B are formed on a single substrate 20, and F of the input stage.
ET 22, output stage FET 23, and FETs 24 and 25 as active resistors are also formed on the substrate 20, and the semiconductor resistor 2
6 is also formed on the same substrate 20.
以上、詳細に説明した通り本発明では、ドーピングされ
た希土類元素か長波長光によるキャリアを生成させるの
で、禁制帯幅の大きな半導体材料を用いなから、長波長
の光の受信か可能になる。As described above in detail, in the present invention, carriers are generated by doped rare earth elements or long wavelength light, so long wavelength light can be received without using a semiconductor material with a large forbidden band width.
また、半導体基板の材料にも禁制帯幅の大きいものを用
い得るため、迷光(長波長光)によって受光部以外でキ
ャリアか生成することはないので、光シールドなとを施
す必要かない。さらに、光吸収層をなす半導体材料の禁
制帯幅は0,8eV以上であるので、受光部での暗電流
を低減させ得る効果かある。Further, since a material with a large forbidden band width can be used for the semiconductor substrate, carriers are not generated outside the light receiving part due to stray light (long wavelength light), so there is no need to provide a light shield. Furthermore, since the forbidden band width of the semiconductor material forming the light absorption layer is 0.8 eV or more, it has the effect of reducing dark current in the light receiving section.
第1図は本発明の実施例に係る光電子集積回路のいくつ
かの態様を示す断面図、第2図は実施例を具体化した0
EICの回路図、第3図は従来例の断面図である。
11・・・Ga As基板、12・・・光吸収層、18
・・・Ga Asエピタキシャル層。
代理人弁理士 長谷用 芳 樹実施例の構造(
iFi半)
第1図(1)
実施91]の構造(後事)
第1図(2)
具体的な0EICf7)回路
第2図FIG. 1 is a sectional view showing some aspects of an optoelectronic integrated circuit according to an embodiment of the present invention, and FIG.
The EIC circuit diagram, FIG. 3, is a sectional view of a conventional example. 11...GaAs substrate, 12...light absorption layer, 18
...GaAs epitaxial layer. The structure of the representative patent attorney Yoshiki Hase’s example (
iFi half) Figure 1 (1) Implementation 91] structure (result) Figure 1 (2) Specific 0EICf7) circuit diagram 2
Claims (1)
これに接続された電極を有する受光素子が形成され、か
つ前記受光素子の出力信号を処理する回路素子が形成さ
れた光電子集積回路において、 前記光吸収層は禁制帯幅が0.8eV以上の半導体材料
で形成され、かつ希土類元素がドーピングされているこ
とを特徴とする光電子集積回路。 2、前記光吸収層は、前記半導体基板に形成された溝部
に前記半導体材料を埋込み成長して形成されている請求
項1記載の光電子集積回路。[Claims] 1. A light receiving element having a light absorption layer and an electrode connected thereto is formed on one side of a single semiconductor substrate, and a circuit element for processing an output signal of the light receiving element. An opto-electronic integrated circuit in which the optical absorption layer is formed of a semiconductor material having a forbidden band width of 0.8 eV or more, and is doped with a rare earth element. 2. The optoelectronic integrated circuit according to claim 1, wherein the light absorption layer is formed by filling and growing the semiconductor material in a groove formed in the semiconductor substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2280632A JPH04155871A (en) | 1990-10-19 | 1990-10-19 | Optoelectronic integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2280632A JPH04155871A (en) | 1990-10-19 | 1990-10-19 | Optoelectronic integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04155871A true JPH04155871A (en) | 1992-05-28 |
Family
ID=17627759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2280632A Pending JPH04155871A (en) | 1990-10-19 | 1990-10-19 | Optoelectronic integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04155871A (en) |
-
1990
- 1990-10-19 JP JP2280632A patent/JPH04155871A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7453131B2 (en) | Photodiode detector and associated readout circuitry | |
US5281542A (en) | Planar quantum well photodetector | |
US4814847A (en) | Ingaas semiconductor structures | |
US5063426A (en) | InP/InGaAs monolithic integrated photodetector and heterojunction bipolar transistor | |
Kasahara et al. | Monolithically integrated In 0.53 Ga 0.47 As-PIN/InP-MISFET photoreceiver | |
US5494833A (en) | Backside illuminated MSM device method | |
US5027177A (en) | Floating base lateral bipolar phototransistor with field effect gate voltage control | |
EP0540233A1 (en) | Planar FET-SEED integrated circuits | |
US5185272A (en) | Method of producing semiconductor device having light receiving element with capacitance | |
EP0452801B1 (en) | Semiconductor device having light receiving element and method of producing the same | |
Weiss et al. | Strain effects in Hg1− x Cd x Te (x∼ 0.2) photovoltaic arrays | |
JPH06224463A (en) | Semiconductor light-receiving device | |
US5343054A (en) | Semiconductor light-detection device with recombination rates | |
US5391910A (en) | Light receiving device | |
US4729963A (en) | Fabrication method for modified planar semiconductor structures | |
JPH04155871A (en) | Optoelectronic integrated circuit | |
JPH11330536A (en) | Semiconductor light receiving element | |
TWI686961B (en) | Sudden collapse type photodiode and manufacturing method thereof | |
EP0387416A2 (en) | Integrated light-receiving semiconductor device | |
JP2670553B2 (en) | Semiconductor light receiving / amplifying device | |
Akahori et al. | A 622 Mb/s monolithically integrated InGaAs-InP high-sensitivity transimpedance photoreceiver and a multichannel receiver array | |
JPH04155872A (en) | Semiconductor photodetective element | |
JP2848345B2 (en) | Infrared detector | |
JPS63237484A (en) | Semiconductor device | |
JPH0529642A (en) | Semiconductor photodetector |