JPH04155866A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04155866A
JPH04155866A JP2279003A JP27900390A JPH04155866A JP H04155866 A JPH04155866 A JP H04155866A JP 2279003 A JP2279003 A JP 2279003A JP 27900390 A JP27900390 A JP 27900390A JP H04155866 A JPH04155866 A JP H04155866A
Authority
JP
Japan
Prior art keywords
electrodes
photodiode
oeic
protrudent
recessed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2279003A
Other languages
Japanese (ja)
Inventor
Toshihiro Ono
智弘 大野
Takaro Kuroda
崇郎 黒田
Takao Miyazaki
隆雄 宮崎
Tadao Kaneko
金子 忠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2279003A priority Critical patent/JPH04155866A/en
Publication of JPH04155866A publication Critical patent/JPH04155866A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To enable flip chips to be bonded together in a self-aligned manner by a method wherein the electrodes of an OEIC and a photodiode are formed protrudent or recessed through a gold plating method, and these diodes are made to engage with each other to constitute a semiconductor device. CONSTITUTION:The electrodes 2 of an OEIC 5 are formed recessed (or protrudent), the electrodes 1 of a photodiode 4 are formed protrudent (or recessed), Sn solder 3 is evaporated on either the electrodes 2 or the electrode 1, and the OEIC 5 and the photodiode 4 are bonded together through a normal flip chip bonding method as usual by a double-sided aligner. At this point, the OEIC 5 and the photodiode 6 can be easily and accurately aligned with each other by engaging the protrudent and the recessed gold plated electrodes with each other, and when these chips are bonded together by thermocompression, the Sn solder 3 forms an AuSn eutectic alloy together with a gold plating layer formed on both the electrodes 1 and 2 to enable the OEIC 5 and the photodiode 6 to be firmly bonded together. At this point, an excellent electrical contact point small in contact resistance can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はハイブリッド型半導体装置の組立て方法に関す
るものである。特に、Si、GaAs。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for assembling a hybrid semiconductor device. In particular, Si, GaAs.

InP等のICまたは0EICの上に単体ホトダイオー
ドや半導体レーザをフリップチップボンディングする場
合の位置決めと電気的接続法に関する。
This article relates to positioning and electrical connection methods when flip-chip bonding a single photodiode or semiconductor laser onto an InP or other IC or 0EIC.

〔従来の技術〕[Conventional technology]

ICとホトダイオードや半導体レーザチップをフリップ
チップボンディングするためには、これらを逆さまにし
てSnなどのハンダ材を用いて熱圧着しなければならな
い。チップを逆さまにするため電気接点が接触する様子
が見えない。
In order to perform flip-chip bonding between an IC, a photodiode, or a semiconductor laser chip, these must be turned upside down and thermocompressed using a solder material such as Sn. Because the chip is upside down, you cannot see the electrical contacts making contact.

従来のフリップチップボンディング法は第2図の様に○
EIC5の上に形成された電極用金メッキ2の上にSn
ハンダ3を乗せておき、その上にホトダイオード4に形
成された電極用金メッキ1を乗せ、加熱圧着する。この
際の0EICの電極とホトダイオードの電極との位置合
わせは第3図の様な位置合わせマーク7を用いてだいた
いの位置を決めておき、ハーフミラ−を用いた両面アラ
イナ−を利用して正確な位置決めを行う。しかし、この
方法では作業者の目視によるので高精度の位置合わせが
困難である。そこで、○EIC電極とホトダイオード電
極とが自己整合的に位置決めできる方法を用いる必要が
ある。
The conventional flip chip bonding method is as shown in Figure 2.
Sn is applied on the electrode gold plating 2 formed on the EIC5.
The solder 3 is placed on top of the solder 3, and the electrode gold plating 1 formed on the photodiode 4 is placed on top of the solder 3, and the solder 3 is heated and pressed. At this time, to align the electrodes of the 0EIC and the photodiode, use the alignment marks 7 as shown in Figure 3 to determine the approximate position, and then use a double-sided aligner using a half mirror to accurately align the electrodes. Perform positioning. However, this method requires visual inspection by the operator, making it difficult to achieve highly accurate positioning. Therefore, it is necessary to use a method that allows the EIC electrode and the photodiode electrode to be positioned in a self-aligned manner.

第4図、第S図はPb5nハンダを用いた従来よく知ら
れているセルフアライメント方式の一例である。このハ
ンダを用いると第4図の様に位置がずれていても加熱す
るとハンダの表面張力で第5図の様に正しい位置に修正
される。
FIG. 4 and FIG. S are examples of a conventionally well-known self-alignment method using Pb5n solder. If this solder is used, even if the position is shifted as shown in Fig. 4, when heated, the surface tension of the solder will correct it to the correct position as shown in Fig. 5.

なお、この種の半導体装置として関連するものには例え
ばアプライド・ワイズイッス・レター(Appl、Ph
ys、Lett、)第40巻第7号、1982年4月1
日、P568〜570等が挙げられる。
Note that related semiconductor devices of this type include, for example, Applied Wisdom Letters (Appl, Ph.
Lett, Vol. 40, No. 7, April 1, 1982
day, P568-570, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のセルフアライメント方式では、Pb5nハンダの
体積が充分大きくないと表面張力の効果が得られない。
In the conventional self-alignment method, the effect of surface tension cannot be obtained unless the volume of Pb5n solder is sufficiently large.

一方、超高速光通信用のホトダイオードでは電極の径が
30μm以下と小さいためこの方法は用いることができ
ない。
On the other hand, this method cannot be used in photodiodes for ultrahigh-speed optical communication because the diameter of the electrode is as small as 30 μm or less.

本発明の目的は超高速光通信用ホトダイオードやレーザ
の様な小型のものをセルフアライメント的に0EIC等
にフリップチップボンディングできる方法を提供するも
のである。
An object of the present invention is to provide a method for flip-chip bonding small-sized devices such as photodiodes and lasers for ultra-high-speed optical communication to 0EICs and the like in a self-alignment manner.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明では金メッキ電極を用
いて○EICの電極を凸型(または凹型)ホトダイオー
ドの電極を凹型(または凸型)に形成し、これらをはめ
合う構造にしたものである(第1図参照)。
In order to achieve the above object, the present invention uses gold-plated electrodes to form the EIC electrode in a convex (or concave) shape, and the photodiode electrode in a concave (or convex shape), and has a structure in which these are fitted. (See Figure 1).

〔作用〕[Effect]

第1図の様に0EICの電極を凹形(または凸型)、ホ
トダイオードの電極を凸形(または凹型)に形成し、一
方にSnハンダを蒸着しておき、通常のフリップチップ
ボンディングと同様に両面合わせアライナを用いてフリ
ップチップボンディングする。このとき凸型、凹型の金
メッキ電極がはめ合いにより容易に高精度な位置合わせ
ができ、加熱圧着するとSnハンダが両者の金メッキ層
とAuSn共品合金品合金してしっかりと結合する。
As shown in Figure 1, the 0EIC electrode is formed in a concave (or convex) shape, the photodiode electrode is formed in a convex (or concave) shape, Sn solder is vapor-deposited on one side, and the same process as normal flip chip bonding is carried out. Flip chip bonding is performed using double-sided aligners. At this time, the convex and concave gold-plated electrodes fit together to easily achieve highly accurate positioning, and when they are heated and pressed together, the Sn solder forms an AuSn alloy with the gold-plated layers of both, and the two are firmly bonded.

また、電気的にも接触抵抗の小さい良好な電気接点が得
られる。
Further, good electrical contacts with low contact resistance can also be obtained.

〔実施例〕〔Example〕

以下、第1図の実施例の工程を説明する。 The steps of the embodiment shown in FIG. 1 will be explained below.

第6図から第8図は凹型の金メッキを作製する工程であ
る。第6図の様に0EIC5上に下地電極6 (A u
 G e / N i / A uなど)を2000人
程蒸形成6゜次に、ポジレジスト11で金メンキパター
ンを作る。次に、Auメッキの下地電極となるTl /
 A u膜10を200o人程全面に蒸着する。この上
にネガレジスト9を形成するのだが、このネガレジスト
の形成のし方で凹型ができるかが決まる。すなわち、第
6図の様にポジレジスト11の側壁にT i / A 
u膜1oが露出する様にネガレジスト9を形成すると、
T i / A uの底面と側面の両側から金メッキが
行われるので凹型が得られる。一方、第9図の様に側壁
のT i / A u膜を覆う様にしてネガレジストを
形成すると、底面だけから金メッキが行われるので凸型
が得られる。
FIGS. 6 to 8 show the steps for producing concave gold plating. As shown in Fig. 6, a base electrode 6 (A u
Ge/Ni/Au, etc.) were evaporated for about 2,000 degrees at 6°.Next, a gold coating pattern was made with positive resist 11. Next, Tl/
An Au film 10 of about 200 degrees is deposited over the entire surface. A negative resist 9 is formed on this, and the manner in which this negative resist is formed determines whether a concave shape will be formed. That is, as shown in FIG.
When the negative resist 9 is formed so that the u film 1o is exposed,
Since gold plating is performed from both the bottom and side surfaces of T i / A u, a concave shape is obtained. On the other hand, if a negative resist is formed to cover the Ti/Au film on the sidewall as shown in FIG. 9, gold plating is performed only from the bottom surface, resulting in a convex shape.

この後、S−502A等のレジスト剥離液中で煮沸して
やり、レジストを除去すると第8図、第11図の様な金
メッキ電極が得られる。
Thereafter, the resist is removed by boiling in a resist stripping solution such as S-502A, and gold-plated electrodes as shown in FIGS. 8 and 11 are obtained.

第12図は第2の実施例である。ドーム形PINホトダ
イオード14に凸型電極を形成し、OE工C5側に凹型
電極を形成した例である。
FIG. 12 shows a second embodiment. This is an example in which a convex electrode is formed on the dome-shaped PIN photodiode 14, and a concave electrode is formed on the OE C5 side.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により、超高速光通用ホトダイオードの様
に電極の径が30μm以下とノ」)さいものでも自己整
合的に高精度な位置合わせてフリップチップボンディン
グできる。
By the method of the present invention, flip-chip bonding can be performed with highly accurate positioning in a self-aligned manner even for small electrodes such as ultra-high-speed optical photodiodes with a diameter of 30 μm or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す図、第2図は従来
のフリップチップボンディング法の一例を示す図、第3
図から第5図はセルフアライメント方式を用いたフリッ
プチップボンディング法の一例を示す図、第6図から第
8図は凹型の電極を作製する工程を示す図、第9図がら
第11図は凸形の電極を作製する工程図、第12図は第
2の実施例を示す図である。 1・・・ホトダイオードの電極用金メッキ、2・・・0
EICの電極用金メッキ、3・・・Snハンダ、4・・
・ホトダイオード、5−OEIC56・・・下地電極、
7・・・位置合わせマーク、8・・・Pb5nハンダ、
9・・・ネガレジスト、10・・・T i / A u
金メッキ下地層、11・・ポジレジスト、12・・・金
メッキ電極(凹型)、13・金メッキ電極(凸型)、1
4・・ドーム型箔Δ 図 第3図 系l1図 〜、。梧い、                   
ト象 第 12回
FIG. 1 is a diagram showing a first embodiment of the present invention, FIG. 2 is a diagram showing an example of a conventional flip chip bonding method, and FIG.
Figures 5 to 5 are diagrams showing an example of the flip chip bonding method using the self-alignment method, Figures 6 to 8 are diagrams showing the process of producing a concave electrode, and Figures 9 to 11 are convex. FIG. 12 is a process diagram for producing a shaped electrode, and is a diagram showing a second example. 1...Gold plating for photodiode electrodes, 2...0
EIC electrode gold plating, 3...Sn solder, 4...
・Photodiode, 5-OEIC56... base electrode,
7... Positioning mark, 8... Pb5n solder,
9...Negative resist, 10...T i / A u
Gold plating base layer, 11...Positive resist, 12...Gold plating electrode (concave type), 13.Gold plating electrode (convex type), 1
4...Dome-shaped foil Δ Figure 3, Figure 11~,. Great,
Elephant No. 12

Claims (1)

【特許請求の範囲】[Claims] 1、Si、GaAs、InP等の基板上に作製したIC
、LSI、OEICウェハあるいはチップの上に半導体
レーザ、ホトダイオード等をフリップチップボンディン
グしてハイブリッドICを作製する場合に、金メッキを
利用して凹型と凸型の電気接点と位置決めマークを形成
することにより高精度にかつ、自己整合的に接続できる
電気接点を作製することを特徴とする半導体装置。
1. IC fabricated on a substrate such as Si, GaAs, InP, etc.
When manufacturing hybrid ICs by flip-chip bonding semiconductor lasers, photodiodes, etc. onto LSI, OEIC wafers or chips, high performance can be achieved by forming concave and convex electrical contacts and positioning marks using gold plating. A semiconductor device characterized by manufacturing electrical contacts that can be connected accurately and in a self-aligned manner.
JP2279003A 1990-10-19 1990-10-19 Semiconductor device Pending JPH04155866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2279003A JPH04155866A (en) 1990-10-19 1990-10-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2279003A JPH04155866A (en) 1990-10-19 1990-10-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04155866A true JPH04155866A (en) 1992-05-28

Family

ID=17605049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2279003A Pending JPH04155866A (en) 1990-10-19 1990-10-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04155866A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405809A (en) * 1992-10-02 1995-04-11 Matsushita Electric Industrial Co., Ltd. Semiconductor device, an image sensor device, and methods for producing the same
US6281445B1 (en) 1998-07-13 2001-08-28 Nec Corporation Device and method for connecting two electronic components
US11916047B2 (en) 2018-11-06 2024-02-27 Samsung Electronics Co., Ltd. Display apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405809A (en) * 1992-10-02 1995-04-11 Matsushita Electric Industrial Co., Ltd. Semiconductor device, an image sensor device, and methods for producing the same
US5408121A (en) * 1992-10-02 1995-04-18 Matsushita Electric Industrial Co., Ltd. Semiconductor device, an image sensor device, and methods for producing the same
US6281445B1 (en) 1998-07-13 2001-08-28 Nec Corporation Device and method for connecting two electronic components
US11916047B2 (en) 2018-11-06 2024-02-27 Samsung Electronics Co., Ltd. Display apparatus

Similar Documents

Publication Publication Date Title
US7151426B2 (en) Latching micro magnetic relay packages and methods of packaging
US6172417B1 (en) Integrated semiconductor devices
US5275970A (en) Method of forming bonding bumps by punching a metal ribbon
KR20060129526A (en) Flip-chip light emitting diode device without sub-mount
TW200425444A (en) Semiconductor package with build-up layers formed on chip and fabrication method of the semiconductor package
CN103178031A (en) Chip connection method
US20050140027A1 (en) Method and device for manufacturing bonding pads for chip scale packaging
US5406122A (en) Microelectronic circuit structure including conductor bridges encapsulated in inorganic dielectric passivation layer
CN110310895A (en) A kind of three-dimensionally integrated packaging method of embedment TSV switching chip silicon substrate fan-out-type and structure
TW200836331A (en) Sensor-type semiconductor device and manufacturing method thereof
JPH04155866A (en) Semiconductor device
US6763585B2 (en) Method for producing micro bump
TW200947652A (en) Semiconductor chip package structure for achieving positive face electrical connection without using substrates and a wire-bonding process
JPH0410635A (en) Flip chip package mounting
JPH04199524A (en) Semiconductor device
JPH06188458A (en) Optical element module
JP4140140B2 (en) Metal bump manufacturing method
KR0138843B1 (en) Method for interconnection of optical device
JPH10209164A (en) Manufacture of semiconductor device
JP2002368274A (en) Light-emitting module and semiconductor light-emitting device
JPH0366130A (en) Formation of bump
WO2024037893A1 (en) Improved light source integration
JPS6223185A (en) Hybrid optical integrated circuit device
JPS60111433A (en) Manufacture of semiconductor device
KR20010035832A (en) Method for manufacturing a silicon optical bench