JPH04155862A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH04155862A
JPH04155862A JP2281485A JP28148590A JPH04155862A JP H04155862 A JPH04155862 A JP H04155862A JP 2281485 A JP2281485 A JP 2281485A JP 28148590 A JP28148590 A JP 28148590A JP H04155862 A JPH04155862 A JP H04155862A
Authority
JP
Japan
Prior art keywords
region
well region
semiconductor
type
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2281485A
Other languages
Japanese (ja)
Inventor
Masaya Muranaka
雅也 村中
Haruo Ii
晴雄 井伊
Yukie Suzuki
鈴木 幸英
Nobumi Matsuura
松浦 展巳
Kazue Yoshikawa
吉川 和枝
Junichi Abe
淳一 阿部
Yoshihisa Koyama
小山 芳久
Koji Arai
公司 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP2281485A priority Critical patent/JPH04155862A/en
Publication of JPH04155862A publication Critical patent/JPH04155862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To enhance a semiconductor integrated circuit device provided with a complementary MISFET in electrostatic breakdown strength when a high voltage is applied to a well region by a method wherein a third semiconductor region which is of the same conductivity type with a first well region or a first semiconductor region and higher than the first well region in impurity concentration is provided to the primary surface of a semiconductor substrate. CONSTITUTION:An N-type well region 2 and a P-type well region 3 are provided onto the different regions of the primary surface of a P<->-type semiconductor substrate 1 respectively. The P<->-type semiconductor substrate 1 is set as low in impurity concentration as 1X10<15>[atoms/cm<2>] or so. The N-type well region 2 is made to serve primarily as a region where a P channel MISFET Qp of a complementary MISFET is arranged and set as intermediate in impurity concentration as 2X10<16>[atoms/cm<2>] or so. The P-type well region 3 is made to serve as a region where a N channel MISFET Qn of the complementary MISFET is arranged and set as intermediate in impurity concentration as 5X10<15>[atoms/cm<2>] or so higher than that of the P<->-type semiconductor substrate 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路装置に関し、特に、相補型M
ISFETを有する半導体集積回路装置に適用して有効
な技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device, and particularly to a complementary M circuit device.
The present invention relates to a technique that is effective when applied to a semiconductor integrated circuit device having an ISFET.

〔従来の技術〕[Conventional technology]

本発明者が開発中のp RA M (D ynamic
凡and。
pRAM (Dynamic
Ordinary and.

va Access Memory)はメモリセル選択
用MO8FETと情報蓄積用容量素子との直列回路で1
 [bitlの情報を記憶するメモリセルが構成される
。このメモリセルは行列状に配置され、メモリセルアレ
イを構成する。前記DRAMは、メモリセルアレイの周
囲に、ドライバ回路、デコーダ回路等の直接周辺回路、
制御系回路、バッファ系回路、冗長回路等の間接周辺回
路を配置する。
va Access Memory) is a series circuit of MO8FET for memory cell selection and capacitive element for information storage.
[A memory cell for storing bitl information is configured. The memory cells are arranged in rows and columns to form a memory cell array. The DRAM includes direct peripheral circuits such as a driver circuit and a decoder circuit around the memory cell array,
Arrange indirect peripheral circuits such as control system circuits, buffer system circuits, and redundant circuits.

前記直接周辺回路、間接周辺回路の夫々は高集積化及び
低消費電力化を図る目的で相補型MO5FET(0MO
8)を有する。DRAMは単結晶珪素からなるP型半導
体基板を主体に構成され、このp型半導体基板の主面の
夫々異なる領域にn型ウェル領域、n型ウェル領域の夫
々が構成される。
Each of the direct peripheral circuit and indirect peripheral circuit is a complementary MO5FET (0MO
8). A DRAM is mainly composed of a P-type semiconductor substrate made of single-crystal silicon, and an n-type well region and an n-type well region are respectively formed in different regions of the main surface of the p-type semiconductor substrate.

つまり、本発明者が開発中のDRAMは、この構造に限
定されないが、ツインウェル構造を採用する。n型ウェ
ル領域は、p型半導体基板に比べて高い不純物濃度を有
し、nチャネルMO3FETを配置する。n型ウェル領
域はPチャネルMO3FETを配置する。DRAMは、
メモリセルアレイが占有面積の大半を占め、このメモリ
セルアレイはn型ウェル領域内に配置される。この結果
、DRAMは、周辺回路の領域のn型ウェル領域と併せ
て、P型ウェル領域の占有面積がn型ウェル領域のそれ
に比べて大きい。
In other words, the DRAM currently being developed by the present inventor employs a twin-well structure, although it is not limited to this structure. The n-type well region has a higher impurity concentration than the p-type semiconductor substrate, and an n-channel MO3FET is arranged therein. A P-channel MO3FET is arranged in the n-type well region. DRAM is
A memory cell array occupies most of the occupied area and is located within the n-type well region. As a result, in the DRAM, the area occupied by the P-type well region is larger than that of the n-type well region, together with the n-type well region in the peripheral circuit area.

前記DRAMは、動作状態において、p型半導体基板に
負極性の基板電位(例えば−2,5〜−3゜5[V])
が供給される。p型半導体基板、P型ウェル領域の夫々
は電気的に導通状態にあるので、前記基板電位の供給は
nチャネルMO5FETのソース領域及びドレイン領域
(n型半導体領域)とn型ウェル領域とのpn接合部に
付加される寄生容量を低減できる。前記nチャネルMO
8FETのソース領域、ドレイン領域の夫々は、信号伝
達速度を速めるため、n型ウェル領域に比べて高い不純
物濃度で構成される。
In the operating state, the DRAM applies a negative substrate potential (for example, -2.5 to -3°5 [V]) to the p-type semiconductor substrate.
is supplied. Since the p-type semiconductor substrate and the P-type well region are each in an electrically conductive state, the substrate potential is supplied to the pn between the source region and drain region (n-type semiconductor region) of the n-channel MO5FET and the n-type well region. Parasitic capacitance added to the junction can be reduced. The n-channel MO
The source region and drain region of the 8FET each have a higher impurity concentration than the n-type well region in order to increase the signal transmission speed.

相補型MO8FETを利用し、例えばインバータ回路を
構成する場合、nチャネルMO3FETのソース領域に
相当するn型半導体領域は回路の接地電位例えば0[v
]が供給される。この接地電位は相補型MO8FETの
上層に配置される基準電源配線(例えばアルミニウム合
金配線)を通して供給される。
When complementary MO8FETs are used to configure, for example, an inverter circuit, the n-type semiconductor region corresponding to the source region of the n-channel MO3FET is connected to the ground potential of the circuit, for example 0[v].
] is supplied. This ground potential is supplied through a reference power supply wiring (for example, an aluminum alloy wiring) arranged above the complementary MO8FET.

前記インバータ回路のpチャネルMO8FETのソース
領域に相当するn型半導体領域は回路の動作電位例えば
5[v]が供給される。この動作電位は動作電源配線を
通して供給される。前記n型半導体領域は、nチャネル
MO8FETのn型半導体領域と同様に、n型ウェル領
域に比べて高い不純物濃度で構成される。このpチャネ
ルMO8FETが配置されるn型ウェル領域は、p型半
導体基板、n型ウェル領域の夫々に対して逆バイアス電
位となる動作電位が供給される。動作電位は、接続領域
での抵抗値を低減するため、動作電源配線からn型半導
体領域を介在しn型ウェル領域に供給される。このn型
半導体領域は、nチャネルMO8FETのソース領域、
ドレイン領域の夫々と製造プロセス上同一製造工程で形
成され、n型ウェル領域に比べて高い不純物濃度を有す
る。
The n-type semiconductor region corresponding to the source region of the p-channel MO8FET of the inverter circuit is supplied with a circuit operating potential of, for example, 5 [V]. This operating potential is supplied through the operating power supply wiring. The n-type semiconductor region, like the n-type semiconductor region of the n-channel MO8FET, has a higher impurity concentration than the n-type well region. The n-type well region in which this p-channel MO8FET is arranged is supplied with an operating potential that serves as a reverse bias potential to each of the p-type semiconductor substrate and the n-type well region. The operating potential is supplied from the operating power supply wiring to the n-type well region via the n-type semiconductor region in order to reduce the resistance value in the connection region. This n-type semiconductor region is a source region of an n-channel MO8FET,
It is formed in the same manufacturing process as each of the drain regions, and has a higher impurity concentration than the n-type well region.

この種の相補型MO8FETを有するDRAMについて
は、例えば特願平1−65848号に記載される。
A DRAM having this type of complementary MO8FET is described, for example, in Japanese Patent Application No. 1-65848.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者は、前述のDRAMの電源端子に高電圧を印加
する静電気破壊強度試験を行った結果、次の問題点を見
出した。
The inventor of the present invention conducted an electrostatic breakdown strength test in which a high voltage was applied to the power supply terminal of the DRAM described above, and found the following problem.

基準電源端子に正極性の高電圧が印加された場合、逆方
向降伏電流として、nチャネルMO8FETのソース領
域に相当するn型半導体領域とn型ウェル領域とのpn
接合部に過大電流が流れ、この過大電流はn型ウェル領
域、p型半導体基板の夫々に吸収される。前記pn接合
部は、高い不鈍物濃度のn型半導体領域、中程度の不純
物濃度のp型ウェル領域の夫々で構成され、約15[V
]の低い接合耐圧に設定される。このpn接合部の接合
耐圧は、p型ウェル領域とp型半導体基板とが電気的に
導通状態にあるので、不純物濃度が高いp型ウェル領域
に律則される。この場合、nチャネルMO8FETのゲ
ート絶縁膜の絶縁破壊強度に比べて低い電圧で過大電流
を吸収できるので、静電気破壊は生じない。
When a positive high voltage is applied to the reference power supply terminal, a reverse breakdown current occurs due to the pn of the n-type semiconductor region corresponding to the source region of the n-channel MO8FET and the n-type well region.
An excessive current flows through the junction, and this excessive current is absorbed by the n-type well region and the p-type semiconductor substrate, respectively. The pn junction is composed of an n-type semiconductor region with a high impurity concentration and a p-type well region with a medium impurity concentration, and has a voltage of about 15[V].
] is set to a low junction breakdown voltage. Since the p-type well region and the p-type semiconductor substrate are electrically connected, the junction breakdown voltage of the p-n junction is determined by the p-type well region having a high impurity concentration. In this case, electrostatic breakdown does not occur because excessive current can be absorbed at a voltage lower than the dielectric breakdown strength of the gate insulating film of the n-channel MO8FET.

一方、動作電源端子に正極性の高電圧が印加された場合
、逆方向降伏電流として、n型ウェル領域とp型ウェル
領域とのpn接合部に過大電流が流れ、この過大電流は
P型ウェル領域、p型半導体基板の夫々に吸収されると
予測できる。しかしながら、このpn接合部は、中程度
の不純物濃度のn型ウェル領域、中程度の不純物濃度の
p型ウェル領域の夫々で構成され、測定の結果、約70
[v]の高い接合耐圧に設定される。このpn接合部の
接合耐圧は、p型ウェル領域とp型半導体基板とが電気
的に導通状態にあるので、不純物濃度が高いp型ウェル
領域に律則される。このため、動作電源端子に高電圧が
印加された場合、n型ウェル領域とp型ウェル領域との
pn接合部に過大電流が流れる前に、pチャネルMO8
FETのソース領域とゲート電極間に高電圧が印加され
、ゲート絶縁膜が破壊される、所謂静電気破壊を生じる
。あるいは、pチャネルMO8FETのトレイン領域と
n型ウェル領域とのpn接合部に先に逆方向降伏電流が
流れ、インバータ回路の場合、配線を通してnチャネル
MO5FETのドレイン領域とゲート電極との間に高電
圧が印加されるので、ゲート絶縁膜が破壊される。
On the other hand, when a positive high voltage is applied to the operating power supply terminal, an excessive current flows through the pn junction between the n-type well region and the p-type well region as a reverse breakdown current. It can be predicted that the particles are absorbed in each of the p-type semiconductor substrate and the p-type semiconductor substrate. However, this pn junction is composed of an n-type well region with an intermediate impurity concentration and a p-type well region with an intermediate impurity concentration, and as a result of measurement, approximately 70%
[v] is set to a high junction breakdown voltage. Since the p-type well region and the p-type semiconductor substrate are electrically connected, the junction breakdown voltage of the p-n junction is determined by the p-type well region having a high impurity concentration. Therefore, when a high voltage is applied to the operating power supply terminal, the p-channel MO8
A high voltage is applied between the source region and the gate electrode of the FET, causing so-called electrostatic breakdown, which destroys the gate insulating film. Alternatively, a reverse breakdown current flows first through the pn junction between the train region of the p-channel MO8FET and the n-type well region, and in the case of an inverter circuit, a high voltage is applied between the drain region of the n-channel MO5FET and the gate electrode through wiring. is applied, the gate insulating film is destroyed.

本発明の目的は、相補型MISFETを有する半導体集
積回路装置において、ウェル領域に高電圧が印加された
際の静電気破壊強度を向上することが可能な技術を提供
することにある。
An object of the present invention is to provide a technique that can improve electrostatic breakdown strength when a high voltage is applied to a well region in a semiconductor integrated circuit device having complementary MISFETs.

本発明の他の目的は、前記目的を達成すると共に、前記
半導体集積回路装置の集積度を向上することが可能な技
術を提供することにある。
Another object of the present invention is to provide a technique that can achieve the above object and improve the degree of integration of the semiconductor integrated circuit device.

本発明の他の目的は、前記半導体集積回路装置の製造プ
ロセスを低減することが可能な技術を提供することにあ
る。
Another object of the present invention is to provide a technique that can reduce the manufacturing process of the semiconductor integrated circuit device.

本発明の他の目的は、前記半導体集積回路装置の動作速
度の高速化を図ることが可能な技術を提供することにあ
る。
Another object of the present invention is to provide a technique capable of increasing the operating speed of the semiconductor integrated circuit device.

本発明の他の目的は、前記半導体集積回路装置のラッチ
アップ耐圧を向上することが可能な技術を提供すること
にある。
Another object of the present invention is to provide a technique that can improve the latch-up withstand voltage of the semiconductor integrated circuit device.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述及び添付図面によって明らかになるであろ
う。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔課題を解決するための手段〕[Means to solve the problem]

本願において開示される発明のうち、代表的なものの概
要を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

(1)半導体基板の主面の一領域に形成される前記半導
体基板と反対導電型の第1ウエル領域の主面に、この第
1ウエル領域と同一導電型でかつそれに比べて高い不純
物濃度を有する第1半導体領域が構成され、この第1半
導体領域を介在し第1ウエル領域に電源が供給される、
相補型MISFETを有する半導体集積回路装置におい
て、前記半導体基板の主面の他領域に、又はこの他領域
に形成される、前記半導体基板と同一導電型でかつそれ
に比べて高い不純物濃度を有する第2半導体領域の主面
に、前記第1ウエル領域或いは第1半導体領域と同一導
電型でかつ前記第1ウエル領域に比べて高い不純物濃度
を有する第3半導体領域を構成し、この第3半導体領域
に前記第1ウエル領域、第1半導体領域の夫々に供給さ
れる電源と同一電源が供給される。
(1) An impurity concentration of the same conductivity type as the first well region and higher than that of the first well region is formed on the main surface of a first well region formed in a region of the main surface of the semiconductor substrate and having a conductivity type opposite to that of the semiconductor substrate. A first semiconductor region is configured, and power is supplied to the first well region through the first semiconductor region.
In a semiconductor integrated circuit device having a complementary MISFET, a second impurity having the same conductivity type as the semiconductor substrate and having a higher impurity concentration than the semiconductor substrate, which is formed in another region of the main surface of the semiconductor substrate or in another region. a third semiconductor region having the same conductivity type as the first well region or the first semiconductor region and having a higher impurity concentration than the first well region; The same power is supplied to each of the first well region and the first semiconductor region.

(2)前記手段(1)の半導体基板又は第2半導体領域
の主面の第3半導体領域は、前記第1ウエル領域の第1
半導体領域と一体に構成される。
(2) The third semiconductor region on the main surface of the semiconductor substrate or second semiconductor region of the means (1) is the first semiconductor region of the first well region.
Constructed integrally with the semiconductor region.

(3)前記手段(1)又は(2)の半導体基板又は第2
半導体領域の主面の第3半導体領域は、前記第1ウエル
領域の第1半導体領域と同一製造工程で構成される。
(3) The semiconductor substrate of the means (1) or (2) or the second
The third semiconductor region on the main surface of the semiconductor region is formed in the same manufacturing process as the first semiconductor region of the first well region.

(4)前記手段(1)乃至(3)のいずれかの半導体基
板又は第2半導体領域の主面の第3半導体領域は、前記
相補型MISFETのnチャネルMISFET、nチャ
ネルMISFETの夫々の間に配置される。
(4) The third semiconductor region on the main surface of the semiconductor substrate or second semiconductor region of any one of the means (1) to (3) is arranged between each of the n-channel MISFET and the n-channel MISFET of the complementary MISFET. Placed.

(5)前記手段(1)乃至(3)のいずれかの半導体基
板又は第2半導体領域の主面の第3半導体領域は、前記
相補型MISFETを介在したその周囲に配置される。
(5) The third semiconductor region on the main surface of the semiconductor substrate or second semiconductor region of any one of the means (1) to (3) is arranged around the complementary MISFET with the intervening one.

〔作  用〕[For production]

上述した手段(1)によれば、前記半導体基板と第1ウ
エル領域とのpn接合耐圧に比べて、前記半導体基板又
は第2半導体領域と第3半導体領域とのpn接合耐圧を
低く設定し、第1ウエル領域(第1ウエル領域に接続さ
れる電源配線)に過大電流(静電気)が印加された場合
、前記半導体基板又は第2半導体領域と第3半導体領域
とのpn接合部を通して、前記半導体基板と第1ウエル
領域とのpn接合部に比べて低い耐圧で過大電流を吸収
できるので、第1ウエル領域の主面に配置されるMIS
FETの静電気破壊を低減し、半導体集積回路装置の静
電気破壊強度を向上できる。
According to the above-mentioned means (1), the pn junction breakdown voltage between the semiconductor substrate or the second semiconductor region and the third semiconductor region is set lower than the pn junction breakdown voltage between the semiconductor substrate and the first well region, When excessive current (static electricity) is applied to the first well region (power supply wiring connected to the first well region), the semiconductor The MIS placed on the main surface of the first well region can absorb excessive current with a lower withstand voltage than the pn junction between the substrate and the first well region.
It is possible to reduce electrostatic breakdown of FETs and improve electrostatic breakdown strength of semiconductor integrated circuit devices.

上述した手段(2)によれば、前記第3半導体領域、第
1半導体領域の夫々の間の素子分離面積及び配線接続面
積を廃止できるので、この廃止された面積に相当する分
、半導体集積回路装置の集積度を向上できる。
According to the above-mentioned means (2), since the element isolation area and wiring connection area between the third semiconductor region and the first semiconductor region can be eliminated, the semiconductor integrated circuit can be reduced by an amount corresponding to the eliminated area. The degree of device integration can be improved.

上述した手段(3)によれば、前記第1半導体領域を形
成する工程を利用し、第3半導体領域を形成できるので
、第3半導体領域を形成する工程に相当する分、半導体
集積回路装置の製造プロセスを低減できる。
According to the above-mentioned means (3), since the third semiconductor region can be formed using the step of forming the first semiconductor region, the amount of time required for forming the semiconductor integrated circuit device is equivalent to the step of forming the third semiconductor region. Manufacturing process can be reduced.

上述した手段(4)によれば、前記第3半導体領域と前
記半導体基板又は第2半導体領域に電源を供給する領域
との間の距離を近接し、前記半導体基板又は第2半導体
領域の寄生抵抗値を低減できるので、第3半導体領域、
半導体基板又は第2半導体領域、前記電源を供給する領
域の夫々を介在する電源間の過大電流経路を短縮し、よ
り静電気破壊強度を向上できる。また、前記電源間の過
大電流経路を短縮し、寄生サイリスタのベース電位の変
動を低減できるので、半導体集積回路装置のラッチアッ
プ耐圧を向上できる。
According to the above-mentioned means (4), the distance between the third semiconductor region and the semiconductor substrate or the region that supplies power to the second semiconductor region is made close to reduce the parasitic resistance of the semiconductor substrate or the second semiconductor region. Since the value can be reduced, the third semiconductor region,
It is possible to shorten the excessive current path between the power supplies intervening in the semiconductor substrate or the second semiconductor region and the power supply region, thereby further improving the electrostatic breakdown strength. Further, since the excessive current path between the power supplies can be shortened and fluctuations in the base potential of the parasitic thyristor can be reduced, the latch-up withstand voltage of the semiconductor integrated circuit device can be improved.

上述した手段(5)によれば、前記相補型MISFET
のnチャネルMISFET、nチャネルMISFETの
夫々の配置位置を近接させ、両者間の配線の接続距離を
短縮できるので、信号伝達速度を速め、半導体集積回路
装置の動作速度の高速化を図れる。
According to the above-mentioned means (5), the complementary MISFET
Since the n-channel MISFET and the n-channel MISFET can be arranged close to each other and the wiring connection distance between them can be shortened, the signal transmission speed can be increased and the operation speed of the semiconductor integrated circuit device can be increased.

以下、本発明の構成について、相補型MISFETを有
するDRAMに本発明を適用した一実施例とともに説明
する。
The configuration of the present invention will be described below along with an embodiment in which the present invention is applied to a DRAM having complementary MISFETs.

なお、実施例を説明するための全回において、同一機能
を有するものは同一符号を付け、その繰り返しの説明は
省略する。
Note that throughout the description of the embodiments, parts having the same functions are given the same reference numerals, and repeated explanations thereof will be omitted.

〔発明の実施例〕[Embodiments of the invention]

(実施例I) 本発明の実施例■であるDRAMの周辺回路に配置され
る相補型MISFET(CMO8)の構成を第2図(要
部平面図)及び第1図(第2図の!−■切断線で切った
断面図)で示す。
(Embodiment I) The configuration of a complementary MISFET (CMO8) arranged in the peripheral circuit of a DRAM, which is Embodiment 2 of the present invention, is shown in Fig. 2 (main part plan view) and Fig. 1 (!- of Fig. 2). ■Cross-sectional view taken along the cutting line).

第1図及び第2図に示すように、DRAMは単結晶珪素
からなるp−型半導体基板工を主体に構成される。この
p−型半導体基板1の主面の夫々異なる領域にはn型ウ
ェル領域2、p型ウェル領域3の夫々が構成される。p
−型半導体基板1は例えば1×101s[atoms/
aJ]程度の低い不純物濃度で構成される。n型ウェル
領域2は、主に相補型MISFETのpチャネルM I
 S F E T Q pが配置される領域として使用
され、例えば2 X 1016[at。
As shown in FIGS. 1 and 2, a DRAM is mainly constructed from a p-type semiconductor substrate made of single crystal silicon. An n-type well region 2 and a p-type well region 3 are formed in different regions of the main surface of the p-type semiconductor substrate 1, respectively. p
- type semiconductor substrate 1 has, for example, 1×101s [atoms/
The impurity concentration is as low as [aJ]. The n-type well region 2 is mainly used for p-channel MISFET of complementary MISFET.
It is used as the area where S F E T Q p is placed, for example 2 x 1016 [at.

as/a&1程度の中程度の不純物濃度で構成される。It is composed of a medium impurity concentration of about as/a&1.

P型ウェル領域3は、相補型MISFETのnチャネル
M I S F E T Q nが配置される領域とし
て使用され、例えば5 X 10 ”[atoms/a
&]程度のp−型半導体基板1に比べて高い中程度の不
純物濃度で構成される。
The P-type well region 3 is used as a region where an n-channel MISFET Qn of a complementary MISFET is arranged, and has a size of, for example, 5×10” [atoms/a
The p-type semiconductor substrate 1 has a medium impurity concentration that is higher than that of the p-type semiconductor substrate 1, which has an impurity concentration of about &].

DRAMの直接周辺回路、間接周辺回路の夫々を構成す
る相補型MISFETは、nチャネルMISFETQn
及びpチャネルMISFETQPで構成される。直接周
辺回路は、メモリセルアレイに配置されるメモリセルを
直接制御し、例えばドライバ回路、デコーダ回路、セン
スアンプ回路等を有する。間接周辺回路は、前記直接周
辺回路を制御し、例えば入出力回路、クロック系制御回
路、バッファ回路、基板電位発生回路(VBBジェネレ
ータ)、冗長回路等を有する。
Complementary MISFETs constituting each of the direct peripheral circuit and indirect peripheral circuit of DRAM are n-channel MISFETQn
and p-channel MISFETQP. The direct peripheral circuit directly controls the memory cells arranged in the memory cell array, and includes, for example, a driver circuit, a decoder circuit, a sense amplifier circuit, and the like. The indirect peripheral circuit controls the direct peripheral circuit, and includes, for example, an input/output circuit, a clock system control circuit, a buffer circuit, a substrate potential generation circuit (VBB generator), a redundant circuit, and the like.

前記相補型MISFETのnチャネルMISFETQn
は、素子分離絶縁膜(フィールド絶縁膜)4及びp型チ
ャネルストッパ領域5で周囲を囲まれた領域内において
、n型ウェル領域3の主面に構成される。つまり、nチ
ャネルMISFETQnは、P型ウェル領域(チャネル
形成領域)3、ゲート絶縁膜6、ゲート電極7、ソース
領域及びドレイン領域である一対のn型半導体領域8及
び−対のn°型半導体領域9で構成される。
n-channel MISFETQn of the complementary MISFETs
is formed on the main surface of the n-type well region 3 in a region surrounded by the element isolation insulating film (field insulating film) 4 and the p-type channel stopper region 5 . In other words, the n-channel MISFET Qn includes a P-type well region (channel formation region) 3, a gate insulating film 6, a gate electrode 7, a pair of n-type semiconductor regions 8 which are a source region and a drain region, and a pair of n°-type semiconductor regions. Consists of 9.

前記nチャネルMISFETQnのゲート絶縁膜6は例
えば熱酸化法で形成された酸化珪素膜で構成される。ゲ
ート絶縁膜6は1例えば15〜20 [n m]程度の
膜厚で形成され、絶縁破壊耐圧としては約15〜20[
V]径程度設定される。ゲート電極7は、例えば多結晶
珪素膜若しくは高融点金属珪化膜の単層、又はそれらの
積層膜で構成される。ソース領域、ドレイン領域の夫々
のn型半導体領域8はL D D (Lightly 
Doped Drain)構造を構成する。n型半導体
領域8は、n゛型半導体領域9に比べて低い不純物濃度
を有し、かつn型ウェル領域2に比へて高い不純物濃度
を有し、例えば2 X 10 ”ratoms/al?
コ程度の不純物濃度で構成される。n°型半導体領域9
は、比抵抗値を低減し、かつ配線(14)との接続領域
での抵抗値(接触抵抗値)を低減する目的で、2 X 
I O” [atows/d]程度の高い不純物濃度で
構成される。
The gate insulating film 6 of the n-channel MISFETQn is composed of, for example, a silicon oxide film formed by a thermal oxidation method. The gate insulating film 6 is formed to have a thickness of about 15 to 20 [nm], for example, and has a dielectric breakdown voltage of about 15 to 20 [nm].
V] diameter is set. The gate electrode 7 is composed of, for example, a single layer of a polycrystalline silicon film or a refractory metal silicide film, or a laminated film thereof. The n-type semiconductor regions 8 of the source region and the drain region each have an LDD (Lightly
(Doped Drain) structure. The n-type semiconductor region 8 has a lower impurity concentration than the n-type semiconductor region 9 and a higher impurity concentration than the n-type well region 2, for example, 2 x 10''ratoms/al?
It is composed of an impurity concentration of approximately . n° type semiconductor region 9
is 2
It is composed of a high impurity concentration of about I O” [atows/d].

前記素子分離絶縁膜4はp−型半導体基板1の非活性領
域の主面を酸化して形成した酸化珪素膜で構成される。
The element isolation insulating film 4 is composed of a silicon oxide film formed by oxidizing the main surface of the non-active region of the p-type semiconductor substrate 1.

p型チャネルストッパ領域5は、素子分離絶縁膜4と接
するn型ウェル領域3の表面がn型反転し易く、寄生M
O5FETが形成され易いので、この寄生MO8FET
の形成を防止する目的で構成される。p型チャネルスト
ッパ領域5はP型ウェル領域3に比べて高い不純物濃度
で構成される。
In the p-type channel stopper region 5, the surface of the n-type well region 3 in contact with the element isolation insulating film 4 is likely to be inverted to n-type, and the parasitic M
Since O5FET is easy to form, this parasitic MO8FET
Constructed for the purpose of preventing the formation of P-type channel stopper region 5 has a higher impurity concentration than P-type well region 3.

前記nチャネルMISFETQnのソース領域に相当す
るn゛型半導体領域9には配線14を介して基準電源配
線(Vss)17が接続される。配線14は層間絶縁膜
12に形成された接続孔13を通してn″型半導体領域
9に接続される。配線14は製造プロセスにおける第1
層目の配線形成工程で形成される。
A reference power supply wiring (Vss) 17 is connected via a wiring 14 to the n' type semiconductor region 9 corresponding to the source region of the n-channel MISFETQn. The wiring 14 is connected to the n'' type semiconductor region 9 through the connection hole 13 formed in the interlayer insulating film 12.
It is formed in the wiring formation process of the second layer.

配線14は例えばアルミニウムと高融点金属珪化膜又は
高融点金属膜との積層構造で構成される。基準電源配線
17は眉間絶縁膜15に形成された接続孔16を通して
配線14に接続される。基準電源配線17は製造プロセ
スにおける第2層目の配線形成工程で形成される。基準
電源配線17は例えばアルミニウムと高融点金属珪化膜
又は高融点金属膜との積層構造で構成される。基準電源
配線17は基準電源用外部端子(ポンディングパッド)
から内部回路に回路の基準電位例えば0[v〕を供給す
る。
The wiring 14 has a laminated structure of, for example, aluminum and a high melting point metal silicide film or a high melting point metal film. The reference power supply wiring 17 is connected to the wiring 14 through a connection hole 16 formed in the glabella insulating film 15. The reference power supply wiring 17 is formed in the second layer wiring formation step in the manufacturing process. The reference power supply wiring 17 has a laminated structure of, for example, aluminum and a high melting point metal silicide film or a high melting point metal film. Reference power supply wiring 17 is an external terminal for reference power supply (ponding pad)
A circuit reference potential, for example 0 [V], is supplied from the internal circuit to the internal circuit.

前記相補型MISFETのpチャネルMISFETQp
は、素子分離絶縁膜4で周囲を囲まれた領域内において
、n型ウェル領域2の主面に構成される。つまり、pチ
ャネルMISFETQpは、n型ウェル領域(チャネル
形成領域)2、ゲート絶縁膜“6、ゲート電極7、ソー
ス領域及びドレイン領域である一対のp型半導体領域l
O及び一対のp゛型半導体領域!!で構成される。
p-channel MISFETQp of the complementary MISFET
is formed on the main surface of the n-type well region 2 in a region surrounded by the element isolation insulating film 4 . In other words, the p-channel MISFET Qp consists of an n-type well region (channel formation region) 2, a gate insulating film 6, a gate electrode 7, and a pair of p-type semiconductor regions l serving as a source region and a drain region.
O and a pair of p type semiconductor regions! ! Consists of.

前記PチャネルMISFETQPのソース領域、ドレイ
ン領域の夫々のp型半導体領域10は、nチャネルM 
I S F E T Q nと同様に、LDD構造を構
成する。P型半導体領域10は例えば6X10”[at
oms/al?]程度の不純物濃度で構成される。p・
型半導体領域11は例えば6 X 10 ” [ato
ms/aJ ]程度の高い不純物濃度で構成される。
Each p-type semiconductor region 10 of the source region and drain region of the P-channel MISFET QP is an n-channel MISFET QP.
Construct an LDD structure similarly to I S F E T Q n. The P-type semiconductor region 10 is, for example, 6×10” [at
oms/al? ] Consisting of an impurity concentration of approximately . p・
The type semiconductor region 11 is, for example, 6×10” [ato
ms/aJ] with a high impurity concentration.

前記PチャネルMISFETQpのソース領域に相当す
るp°型半導体領域11には配線14を介して動作電源
配線(Vcc)17が接続される。動作電源配線17は
動作電源用外部端子(ポンディングパッド)から内部回
路に回路の動作電位例えば5[v〕を供給する。
An operating power supply wiring (Vcc) 17 is connected via a wiring 14 to the p° type semiconductor region 11 corresponding to the source region of the P-channel MISFET Qp. The operating power supply wiring 17 supplies a circuit operating potential of, for example, 5 [V] to the internal circuit from an external terminal for operating power supply (ponding pad).

第1図、第2図の夫々には具体的に示していないが、D
RAMのメモリセルはメモリセル選択用MISFETと
情報蓄積用容量素子との直列回路で構成される。メモリ
セル選択用MISFETは前記nチャネルMISFET
Qnと実質的に同様の構造で構成される。情報蓄積用容
量素子は、この構造に限定されないが、下層電極(多結
晶珪素膜)、誘電体膜、上層電極(多結晶珪素膜)の夫
々を順次p−型半導体基板lの主面上に積層したスタッ
クド構造で構成される。
Although not specifically shown in Figures 1 and 2, D
A memory cell of a RAM is constituted by a series circuit of a memory cell selection MISFET and an information storage capacitive element. The memory cell selection MISFET is the n-channel MISFET.
It has substantially the same structure as Qn. Although the information storage capacitive element is not limited to this structure, a lower electrode (polycrystalline silicon film), a dielectric film, and an upper electrode (polycrystalline silicon film) are sequentially formed on the main surface of a p-type semiconductor substrate l. Consists of a stacked structure.

前述の周辺回路を構成する相補型MI 5FETのnチ
ャネルMISFETQnの近傍においては、第1図及び
第2図に示すように、P−型半導体基板1と基準電源配
線(Vss)17どの間に、ダイオード素子D2が配置
される。このダイオード素子D2は、P°型半導体基板
工と電気的に導通状態にあるn型ウェル領域3をアノー
ド領域とし、その主面部に構成される、基準電源配線1
7に配線14を介して接続されたn゛型半導体領域9を
カソード領域として構成される。ダイオード素子D2は
、DRAMの非動作時、基準電源用外部端子に印加され
る高電圧が基準電源配線17、配線14の夫々を通して
カソード領域に相当するn゛型半導体領域9に供給され
た場合、順方向電流若しくは逆方向降伏電流として、p
−型半導体基板lに吸収できる。p−型半導体基板工、
それと電気的に導通状態にあるP型ウェル領域3の夫々
は、DRAMの動作時は基板電位発生回路で生成された
基板電位V B B例えば−2,5〜−3,5[V]が
供給され、非動作時はフローティング電位となる。
In the vicinity of the complementary MI 5FET n-channel MISFET Qn constituting the aforementioned peripheral circuit, as shown in FIGS. 1 and 2, there is a A diode element D2 is arranged. This diode element D2 has an anode region that is an n-type well region 3 that is electrically connected to a P°-type semiconductor substrate, and a reference power supply wiring 1 that is configured on its main surface.
The n-type semiconductor region 9 connected to the electrode 7 via the wiring 14 is configured as a cathode region. In the diode element D2, when the DRAM is not in operation, when a high voltage applied to the reference power external terminal is supplied to the n゛-type semiconductor region 9 corresponding to the cathode region through the reference power supply wiring 17 and the wiring 14, As forward current or reverse breakdown current, p
- type semiconductor substrate l can absorb it. p-type semiconductor substrate engineering,
Each of the P-type well regions 3 that are electrically connected thereto is supplied with a substrate potential V B B generated by a substrate potential generation circuit, for example, -2,5 to -3,5 [V] during operation of the DRAM. When not in operation, it is at a floating potential.

前記ダイオード素子D2は高い不純物濃度のゴ型半導体
領域9と中程度の不純物濃度のn型ウェル領域3とのp
n接合(実際にはn°型半導体領域9とP型チャネルス
トッパ領域5とのpn接合も含む)で構成される。つま
り、このダイオード素子D2のpn接合部での逆方向降
伏電圧(接合耐圧)は、例えば約15[V]程度と低く
設定でき、前述のゲート絶縁膜6の絶縁破壊耐圧に比べ
て低くできる。ダイオード素子D2は、例えばnチャネ
ルM I S F E T Q nの占有面積に加えて
大きな平面々積から構成され、結果的にpn接合面積及
び周縁長が大きく構成される。本実施例のダイオード素
子D2においては、実質的にn゛型半導体領域9とp型
チャネルストッパ領域5とのpn接合部で接合耐圧が律
則されるので、占有面積の増加は活性領域の周縁長の増
加と前記pn接合面積の増加とになる。このダイオード
素子D2のpn接合面積及び周縁長の増加は、pn接合
部の単位面積当りに流れる過大電流量を小さくできるの
で。
The diode element D2 has a p-type semiconductor region 9 with a high impurity concentration and an n-type well region 3 with a medium impurity concentration.
It is constituted by an n junction (actually also includes a pn junction between the n° type semiconductor region 9 and the P type channel stopper region 5). In other words, the reverse breakdown voltage (junction breakdown voltage) at the pn junction of the diode element D2 can be set as low as, for example, about 15 [V], which is lower than the dielectric breakdown voltage of the gate insulating film 6 described above. For example, the diode element D2 has a large planar area in addition to the area occupied by the n-channel MISFET Qn, and as a result, the pn junction area and the peripheral length are large. In the diode element D2 of this embodiment, since the junction breakdown voltage is substantially determined by the pn junction between the n-type semiconductor region 9 and the p-type channel stopper region 5, the increase in the occupied area is due to the periphery of the active region. This results in an increase in length and an increase in the pn junction area. This increase in the pn junction area and peripheral length of the diode element D2 can reduce the amount of excessive current flowing per unit area of the pn junction.

pn接合部での熱破壊を低減できる。Thermal damage at the pn junction can be reduced.

一方、前述の相補型MISFETのpチャネルMISF
ETQPの近傍において、n型ウェル領域2は動作電源
配線(Vcc)17から配線14、n°型半導体領域9
の夫々を通して動作電位が供給される。
On the other hand, the p-channel MISF of the complementary MISFET mentioned above
In the vicinity of the ETQP, the n-type well region 2 is connected from the operating power supply wiring (Vcc) 17 to the wiring 14 and the n°-type semiconductor region 9.
An operating potential is supplied through each of them.

つまり、n型ウェル領域2は表面側からの給電が行われ
る(ウェル給電)。n型ウェル領域2、配線14の夫々
の間に介在されるn゛型半導体領域9は両者間の接続抵
抗値を低減する目的で構成される。
In other words, power is supplied to the n-type well region 2 from the surface side (well power supply). The n'-type semiconductor region 9 interposed between the n-type well region 2 and the wiring 14 is configured for the purpose of reducing the connection resistance value between the two.

前記PチャネルMISFETQpの近傍においては、p
−型半導体基板1と動作電源配線(Vcc)17どの間
に、ダイオード素子DIが配置される。ダイオード素子
D1は、前記ダイオード素子D2と実質的に同様に、p
°型半導体基板1と電気的に導通状態にあるn型ウェル
領域3をアノード領域とし、その主面部に構成される。
In the vicinity of the P-channel MISFET Qp, p
A diode element DI is arranged between the - type semiconductor substrate 1 and the operating power supply wiring (Vcc) 17. Diode element D1 has p
The n-type well region 3 electrically connected to the °-type semiconductor substrate 1 is used as an anode region, and is formed on the main surface thereof.

動作電源配線17に配線工4を介して接続されたn゛型
半導体領域9をカソード領域として構成される。ダイオ
ード素子D1は、DRAMの非動作時、動作電源用外部
端子に印加される高電圧が動作電源配線17、配線14
の夫々を通してカソード領域に相当するn°型半導体領
域9に供給された場合、順方向電流若しくは逆方向降伏
電流として、p゛型半導体基板1に吸収できる。
The n-type semiconductor region 9 connected to the operating power supply wiring 17 via the wiring member 4 is configured as a cathode region. The diode element D1 has a high voltage applied to an external terminal for an operating power supply when the DRAM is not operating.
If the current is supplied to the n° type semiconductor region 9 corresponding to the cathode region through each of these, it can be absorbed into the p type semiconductor substrate 1 as a forward current or a reverse breakdown current.

前記ダイオード素子D1はダイオード素子D2と同様に
高い不純物濃度のn°型半導体領域9と中程度の不純物
濃度のP型ウェル領域3とのpn接合で構成される。つ
まり、このダイオード素子D1はpn接合部での接合耐
圧をダイオード素子D2と実質的に同程度に低く設定で
きる。換言すれば、p゛型半導体基板1側からダイオー
ド素子D1、D2の夫々の接合耐圧を見た場合、両者は
実質的に等しくなる。n型ウェル領域2とn型ウェル領
域3(又はp−型半導体基板1)とのpn接合耐圧は例
えば約70[V]であるのに対して、ダイオード素子D
1は約15[V]の低い接合耐圧に設定される。
The diode element D1, like the diode element D2, is composed of a pn junction between an n° type semiconductor region 9 with a high impurity concentration and a P type well region 3 with a medium impurity concentration. That is, this diode element D1 can set the junction breakdown voltage at the pn junction portion to be substantially as low as that of the diode element D2. In other words, when looking at the junction breakdown voltages of the diode elements D1 and D2 from the p'-type semiconductor substrate 1 side, they are substantially equal. The pn junction breakdown voltage between the n-type well region 2 and the n-type well region 3 (or the p-type semiconductor substrate 1) is, for example, about 70 [V], whereas the diode element D
1 is set to a low junction breakdown voltage of about 15 [V].

前記n型ウェル領域2に動作電位を供給する目的で構成
されるn°型半導体領域9、ダイオード素子D1のカソ
ード領域に相当するn°型半導体領域9の夫々は、製造
プロセスにおいて、nチャネルM I S F E T
 Q nのソース領域、ドレイン領域の夫々であるn°
型半導体領域9と同一製造工程で形成される。また、n
型ウェル領域2の主面のn°型半導体領域9.ダイオー
ド素子D1のn゛型半導体領域9の夫々は一体に構成さ
れる。換言すれば、ダイオード素子D1のn°型半導体
領域9は、n型ウェル領域2の主面からn型ウェル領域
3の主面まで引き伸して構成される。
In the manufacturing process, each of the n° type semiconductor region 9 configured for the purpose of supplying an operating potential to the n type well region 2 and the n° type semiconductor region 9 corresponding to the cathode region of the diode element D1 is I S F E T
n°, each of the source region and drain region of Q n
It is formed in the same manufacturing process as the type semiconductor region 9. Also, n
n° type semiconductor region 9 on the main surface of type well region 2. Each of the n' type semiconductor regions 9 of the diode element D1 is integrally constructed. In other words, the n° type semiconductor region 9 of the diode element D1 extends from the main surface of the n-type well region 2 to the main surface of the n-type well region 3.

前述のダイオード素子D1、D2の夫々は、第3図(概
略レイアウト図)に示すように、複数個のPチャネルM
ISFETQpの配列領域20と複数個のnチャネルM
 I S F E T Q nの配列領域21との間に
配置される。このダイオード素子D1、D2の夫々のレ
イアウトは両者を相互に近接できる。
As shown in FIG. 3 (schematic layout diagram), each of the aforementioned diode elements D1 and D2 has a plurality of P-channel M
Arrangement region 20 of ISFETQp and plural n-channel M
It is arranged between the array region 21 of I S F E T Q n. The respective layouts of the diode elements D1 and D2 allow them to be close to each other.

また、ダイオード素子D1、D2の夫々の上層には例え
ば配線14(例えばアドレス信号線、クロック系制御信
号線等)を延在できる。
Further, for example, wiring 14 (for example, an address signal line, a clock system control signal line, etc.) can be extended in the upper layer of each of the diode elements D1 and D2.

また、nチャネルM I S F E T Q nは、
移動度の物理的な差異に基づき、pチャネルMISFE
TQpに比へて、ゲート幅寸法を約3分の1に設定でき
、占有面積を小さくできる。したがって、ダイオード素
子D1は配列領域20.21間に配置するとともに、ダ
イオード素子D2は配列領域21の所定数毎のnチャネ
ルM I S F E T Q n間に配置できる。
In addition, the n-channel M I S F E T Q n is
Based on physical differences in mobility, p-channel MISFE
Compared to TQp, the gate width can be set to about one-third, and the occupied area can be reduced. Therefore, the diode element D1 can be arranged between the array regions 20, 21, and the diode element D2 can be arranged between every predetermined number of n-channel MISFETQn in the array region 21.

このように、p−型半導体基板1の主面の一領域に形成
されるn型ウェル領域2の主面に、このn型ウェル領域
2と同一導電型でかつそれに比へて高い不純物濃度を有
するn゛型半導体領域9が構成され、このn゛型半導体
領域9を介在しn型ウェル領域2に動作電位Vccが供
給される、相補型MISFETを有するDRAMにおい
て、前記p−型半導体基板1の主面の他領域に、前記p
−型半導体基板1と同一導電型でかつそれに比にで高い
不純物濃度を有するp型ウェル領域(ダイオード素子D
D1のアノード領域)3の主面に、前記n型ウェル領域
2或いはその主面に形成されたn°型半導体領域9と同
一導電型でかつ前記n型ウェル領域2に比べて高い不純
物濃度を有するn°型半導体領域(ダイオード素子D1
のカソード領域)9を構成し、このn゛型半導体領域9
に前記n型ウェル領域2、その主面のn°型半導体領域
9の夫々に供給される動作電位Vccと同一動作電位V
ccが供給される。
In this way, the main surface of the n-type well region 2 formed in one region of the main surface of the p-type semiconductor substrate 1 is doped with an impurity having the same conductivity type as the n-type well region 2 and having a higher concentration than that of the n-type well region 2. In a DRAM having a complementary MISFET, in which an n-type semiconductor region 9 is formed, and an operating potential Vcc is supplied to the n-type well region 2 through the n-type semiconductor region 9, the p-type semiconductor substrate 1 In other areas of the main surface of the p
- type semiconductor substrate 1 and a p-type well region (diode element D
An impurity concentration of the same conductivity type as the n-type well region 2 or the n°-type semiconductor region 9 formed on the main surface thereof and higher than that of the n-type well region 2 is applied to the main surface of the anode region) 3 of D1. n° type semiconductor region (diode element D1
(cathode region) 9, and this n-type semiconductor region 9
is the same operating potential Vcc as the operating potential Vcc supplied to each of the n-type well region 2 and the n°-type semiconductor region 9 on its main surface.
cc is supplied.

この構成により、前記n型ウェル領域2とn型ウェル領
域3(又はP°型半導体基板1)とのpn接合耐圧に比
べて、ダイオード素子D1のアノード領域であるn型ウ
ェル領域3(又はp−型半導体基板1)とカソード領域
であるn°型半導体領域9とのpn接合耐圧を低く設定
し、n型ウェル領域2に過大電流(静電気)が印加され
た場合、前記ダイオード素子D1のn型ウェル領域3と
n゛型半導体領域9とのpn接合部を通して、前記n型
ウェル領域2とn型ウェル領域3とのpn接合部に比べ
て低い接合耐圧で過大電流を吸収できるので、n型ウェ
ル領域2に配置されるpチャネルMISFETQp若し
くはnチャネルM I S F E T Q nの静電
気破壊を防止できる。前記ダイオード素子D1を介在し
、n型ウェル領域3(又はp−型半導体基板1)に吸収
された過大電流は、順方向電流又は逆方向降伏電流とし
て、ダイオード素子D2を介在し、即座に基準電位Vs
s側に放出される。この結果、pチャネルMISFET
Qp、nチャネルM I S F E T Q nの夫
々の静電気破壊を低減できるので、DRAMの静電気破
壊強度を向上できる。
With this configuration, compared to the pn junction breakdown voltage between the n-type well region 2 and the n-type well region 3 (or the P°-type semiconductor substrate 1), the If the pn junction breakdown voltage between the − type semiconductor substrate 1) and the n° type semiconductor region 9, which is the cathode region, is set low and an excessive current (static electricity) is applied to the n type well region 2, the n° Through the pn junction between the n-type well region 3 and the n-type semiconductor region 9, excessive current can be absorbed with a lower junction breakdown voltage than the pn junction between the n-type well region 2 and the n-type well region 3. Electrostatic damage to the p-channel MISFET Qp or n-channel MISFET Qn disposed in the type well region 2 can be prevented. The excessive current absorbed in the n-type well region 3 (or the p-type semiconductor substrate 1) through the diode element D1 is transferred through the diode element D2 as a forward current or reverse breakdown current, and immediately becomes a reference current. Potential Vs
It is released to the s side. As a result, p-channel MISFET
Since the electrostatic breakdown of each of Qp and n-channel MISFET Qn can be reduced, the electrostatic breakdown strength of the DRAM can be improved.

また、前記ダイオード素子D1のカソード領域に相当す
るn゛型半導体領域9は、n型ウェル領域2に動作電位
Vccを供給するn°型半導体領域9と一体に構成され
る。この構成により、前記ダイオード素子D1のn゛型
半導体領域9、n型ウェル領域2の主面のn°型半導体
領域9の夫々の間の素子分離面積(素子分離絶縁膜4の
占有面積)及び配線接続面積(配線14、接続孔13及
びその余裕の面積)を廃止できるので、この廃止された
面積に相当する分、DRAMの集積度を向上できる。
Further, the n' type semiconductor region 9 corresponding to the cathode region of the diode element D1 is formed integrally with the n' type semiconductor region 9 which supplies the operating potential Vcc to the n type well region 2. With this configuration, the element isolation area (the area occupied by the element isolation insulating film 4) between the n-type semiconductor region 9 of the diode element D1 and the n-type semiconductor region 9 on the main surface of the n-type well region 2, and Since the wiring connection area (the area of the wiring 14, the connection hole 13, and their margins) can be eliminated, the degree of integration of the DRAM can be improved by an amount corresponding to this eliminated area.

また、前記ダイオード素子D1のカソード領域に相当す
るn゛型半導体領域9は、n型ウェル領域2に動作電位
Vccを供給するn゛型半導体領域9と同一製造工程で
構成される。この構成により、前記n型ウェル領域2の
主面のn°型半導体領域9を形成する工程を利用し、ダ
イオード素子D1のn゛型半導体領域9を形成できるの
で、この後者のn゛型半導体領域9を形成する工程に相
当する分、DRAMの製造プロセスを低減できる。
Further, the n'-type semiconductor region 9 corresponding to the cathode region of the diode element D1 is formed in the same manufacturing process as the n'-type semiconductor region 9 that supplies the operating potential Vcc to the n-type well region 2. With this configuration, the n° type semiconductor region 9 of the diode element D1 can be formed using the process of forming the n° type semiconductor region 9 on the main surface of the n type well region 2. The DRAM manufacturing process can be reduced by the amount corresponding to the step of forming region 9.

また、前記ダイオード素子D1及びD2のカソード領域
に相当するn゛型半導体領域9は、前記相補型MISF
ETのnチャネルMISFETQn、PチャネルMIS
FETQPの夫々の間に配置される。この構成により、
前記ダイオード素子D1の動作電位vccが供給される
n°型半導体領域9、ダイオード素子D2の基準電位V
ssが供給されるn°型半導体領域9の夫々の間(動作
電位Vcc−基準電位Vss間)の距離を近接し、両者
間のP型ウェル領域3(又はp−型半導体基板l)の寄
生抵抗値を低減できるので、両者間のn゛型半導体領域
9−p型ウェル領域3−n°型半導体領域9の夫々の過
大電流経路を短縮し、より静電気破壊強度を向上できる
。また、前記過大電流経路を短縮したので、DRAMの
動作時、寄生サイリスタのベース電位の変動を即座に低
減でき、DRAMのラッチアップ耐圧を向上できる。
Further, the n-type semiconductor region 9 corresponding to the cathode regions of the diode elements D1 and D2 is connected to the complementary MISF
ET's n-channel MISFETQn, P-channel MIS
placed between each of the FETQPs. With this configuration,
The n° type semiconductor region 9 to which the operating potential vcc of the diode element D1 is supplied, and the reference potential V of the diode element D2.
The distance between each of the n° type semiconductor regions 9 to which ss is supplied (between the operating potential Vcc and the reference potential Vss) is made close to reduce the parasitic nature of the P type well region 3 (or the p- type semiconductor substrate l) between the two. Since the resistance value can be reduced, it is possible to shorten the excessive current paths between the n-type semiconductor region 9, the p-type well region 3, and the n-type semiconductor region 9, thereby further improving the electrostatic breakdown strength. Further, since the excessive current path is shortened, fluctuations in the base potential of the parasitic thyristor can be immediately reduced during operation of the DRAM, and the latch-up withstand voltage of the DRAM can be improved.

(実施例■) 本実施例■は、前記実施例Iのダイオード素子を相補型
MISFETの周囲に配置した、本発明の第2実施例で
ある。
(Example 2) Example 2 is a second example of the present invention in which the diode element of Example I is arranged around a complementary MISFET.

本発明の実施例■であるDRAMの相補型MISFET
及びダイオード素子の構成を第4図(概略レイアウト図
)で示す。
Complementary MISFET of DRAM which is Embodiment ① of the present invention
The structure of the diode element is shown in FIG. 4 (schematic layout diagram).

本実施例■のDRAMは、第4図に示すように、nチャ
ネルMISFETQnの配列領域21及びpチャネルM
ISFETQPの配列領域20の周囲にダイオード素子
D1、D2の夫々を配置する。この結果、相補型MIS
FETのnチャネルMISFETQn、pチャネルMI
SFETQpの夫々の配置位置は相互に近接でき、例え
ばインバータ回路を構成する場合、配線14の配線長を
短縮できる。
As shown in FIG. 4, the DRAM of this embodiment
Diode elements D1 and D2 are arranged around the array region 20 of ISFETQP, respectively. As a result, complementary MIS
FET n-channel MISFETQn, p-channel MI
The SFETQp can be arranged close to each other, and the length of the wiring 14 can be shortened, for example, when configuring an inverter circuit.

このように構成されるDRAMは前記実施例Iと実質的
に同様の効果を奏することができる。
The DRAM configured in this manner can produce substantially the same effects as those of the embodiment I described above.

また、前記ダイオード素子D1、D2の夫々は前記相補
型MISFET(配列領域20及び21)を介在したそ
の周囲に配置される。この構成により、前記相補型MI
SFETのnチャネルMI 5FETQn、pチャネル
MISFETQpの夫々の配置位置を近接させ、両者間
を接続する配線14の配線長を短縮できるので、信号伝
達速度を速め、DRAMの回路動作速度の高速化を図れ
る。
Furthermore, each of the diode elements D1 and D2 is arranged around the complementary MISFET (array regions 20 and 21) with the intervening one. With this configuration, the complementary MI
The SFET n-channel MI 5FETQn and p-channel MISFETQp can be arranged close to each other, and the wiring length of the wiring 14 connecting them can be shortened, thereby increasing the signal transmission speed and increasing the circuit operation speed of the DRAM. .

(実施例■) 本実施例■は、前記実施例■のダイオード素子のアノー
ド領域を半導体基板で構成した、本発明の第3実施例で
ある。
(Embodiment 2) This embodiment 2 is a third embodiment of the present invention in which the anode region of the diode element of the embodiment 2 is formed of a semiconductor substrate.

本発明の実施例■であるDRAMの相補型MISFET
及びダイオード素子の構成を第5図(要部断面図)で示
す。
Complementary MISFET of DRAM which is Embodiment ① of the present invention
The structure of the diode element is shown in FIG. 5 (cross-sectional view of main parts).

本実施例■のDRAMのダイオード素子D1、D2の夫
々は、第5図に示すように、アノード領域をp°型半導
体基板工で構成し、カソード領域をP−型半導体基板工
の主面に形成したn゛型半導体領域9で構成する。この
ダイオード素子D1、D2の夫々は、n型ウェル領域3
をアノード領域とした場合に比べて若干接合耐圧は高く
なるが、前記実施例Iと同様に、n型ウェル領域2とn
型ウェル領域3とのpn接合部の接合耐圧に比べて接合
耐圧を低く設定できる。
As shown in FIG. 5, each of the diode elements D1 and D2 of the DRAM of this embodiment (2) has an anode region formed of a p° type semiconductor substrate, and a cathode region formed on the main surface of the P− type semiconductor substrate. It is composed of the formed n-type semiconductor region 9. Each of the diode elements D1 and D2 is connected to an n-type well region 3.
Although the junction breakdown voltage is slightly higher than when the anode region is used as the anode region, as in Example I, the n-type well region 2 and the
The junction breakdown voltage can be set lower than the junction breakdown voltage of the pn junction with the type well region 3.

このように構成されるDRAMは前記実施例Iと実質的
に同様の効果を奏することができる。
The DRAM configured in this manner can produce substantially the same effects as those of the embodiment I described above.

以上、本発明者によってなされた発明を、前記実施例に
基づき具体的に説明したが、本発明は、前記実施例に限
定されるものではなく、その要旨を逸脱しない範囲にお
いて種々変更可能であることは勿論である。
As above, the invention made by the present inventor has been specifically explained based on the above embodiments, but the present invention is not limited to the above embodiments, and can be modified in various ways without departing from the gist thereof. Of course.

例えば、本発明は、前記実施例Iのn型ウェル領域2の
主面のn°型半導体領域9、ダイオード素子D1のカソ
ード領域に相当するn°型半導体領域9の夫々を素子分
離絶縁膜4で分離してもよい。
For example, in the present invention, each of the n° type semiconductor region 9 on the main surface of the n type well region 2 of Example I and the n° type semiconductor region 9 corresponding to the cathode region of the diode element D1 is connected to the element isolation insulating film 4. It may be separated by

同様に1本発明は、前記実施例IのnチャネルMISF
ETQnのソース領域に相当するn゛型半導体領域9、
ダイオード素子D2のカソード領域に相当するn°型半
導体領域9の夫々を一体に構成してもよい。この場合、
nチャネルMISFETQnのソース領域に相当するn
゛型半導体領域9は、ダイオード素子D2を兼ねる。
Similarly, one aspect of the present invention is the n-channel MISF of Embodiment I.
an n-type semiconductor region 9 corresponding to the source region of ETQn;
Each of the n° type semiconductor regions 9 corresponding to the cathode region of the diode element D2 may be formed integrally. in this case,
n corresponding to the source region of n-channel MISFETQn
The ゛-type semiconductor region 9 also serves as a diode element D2.

また、本発明は、前記実施例■において、p型ウェル領
域3の主面にp°型半導体領域11を設け、p型ウェル
領域3、p°型半導体基板1の夫々に基準電位Vssを
供給する半導体集積回路装置に適用できる。
Further, the present invention provides a p° type semiconductor region 11 on the main surface of the p type well region 3 in the embodiment (2), and supplies a reference potential Vss to each of the p type well region 3 and the p° type semiconductor substrate 1. It can be applied to semiconductor integrated circuit devices.

また、本発明は、P−型半導体基板の主面にn型ウェル
領域だけを構成する、シングルウェル構造に適用できる
Further, the present invention can be applied to a single well structure in which only an n-type well region is formed on the main surface of a P-type semiconductor substrate.

また、本発明は、n−型半導体基板の主面にn型ウェル
領域及びp型ウェル領域を設けたツインウェル構造を採
用する半導体集積回路装置、若しくはn−型半導体基板
の主面にp型ウェル領域を設けたシングルウェル構造を
採用する半導体集積回路装置に適用できる。
The present invention also provides a semiconductor integrated circuit device that employs a twin well structure in which an n-type well region and a p-type well region are provided on the main surface of an n-type semiconductor substrate, or a p-type well region on the main surface of an n-type semiconductor substrate. The present invention can be applied to a semiconductor integrated circuit device that employs a single well structure with a well region.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば、下記のとおりであ
る。
A brief explanation of the effects obtained by typical inventions disclosed in this application is as follows.

相補型MISFETを有する半導体集積回路装置におい
て、静電気破壊強度を向上できる。
Electrostatic breakdown strength can be improved in a semiconductor integrated circuit device having complementary MISFETs.

また、前記半導体集積回路装置の集積度を向上できる。Furthermore, the degree of integration of the semiconductor integrated circuit device can be improved.

また、前記半導体集積回路装置の製造プロセスを低減で
きる。
Furthermore, the manufacturing process of the semiconductor integrated circuit device can be reduced.

また、前記半導体集積回路装置の動作速度の高。Further, the operating speed of the semiconductor integrated circuit device is high.

速比を図れる。You can measure the speed ratio.

また、前記半導体集積回路装置のラッチアップ耐圧を向
上できる。
Further, the latch-up withstand voltage of the semiconductor integrated circuit device can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例IであるDRAMの周辺回路
に配置される相補型MISFET及びダイオード素子の
要部断面図、 第2図は、前記相補型MISFET及びダイオード素子
の要部平面図、 第3図は、前記相補型MISFET及びダイオード素子
の概略レイアウト図、 第4図は、本発明の実施例■であるDRAMの相補型M
ISFET及びダイオード素子の概略レイアウト図、 第5図は、本発明の実施例■であるDRAMの相補型M
ISFET及びダイオード素子の要部断面図である。 図中、1・・・半導体基板、2,3・・・ウェル領域、
4・・・素子分離絶縁膜、5・・・チャネルストッパ領
域。 6・・・ゲート絶縁膜、7・・・ゲート電極、8,9,
10゜11・・・半導体領域、14.17・・・配線、
20.21・・・配置領域、Q・・・MISFET、D
・・・ダイオード素子である。
FIG. 1 is a sectional view of essential parts of a complementary MISFET and a diode element arranged in a peripheral circuit of a DRAM according to Embodiment I of the present invention. FIG. 2 is a plan view of essential parts of the complementary MISFET and diode element. , FIG. 3 is a schematic layout diagram of the complementary MISFET and diode elements, and FIG. 4 is a complementary MISFET of the DRAM according to the embodiment
A schematic layout diagram of ISFET and diode elements, FIG.
FIG. 3 is a cross-sectional view of main parts of an ISFET and a diode element. In the figure, 1... semiconductor substrate, 2, 3... well region,
4... Element isolation insulating film, 5... Channel stopper region. 6... Gate insulating film, 7... Gate electrode, 8, 9,
10°11...Semiconductor region, 14.17...Wiring,
20.21...Arrangement area, Q...MISFET, D
...It is a diode element.

Claims (1)

【特許請求の範囲】 1、半導体基板の主面の一領域に形成される前記半導体
基板と反対導電型の第1ウエル領域の主面に、この第1
ウエル領域と同一導電型でかつそれに比べて高い不純物
濃度を有する第1半導体領域が構成され、この第1半導
体領域を介在し第1ウエル領域に電源が供給される、相
補型MISFETを有する半導体集積回路装置において
、前記半導体基板の主面の他領域に、又はこの他領域に
形成される、前記半導体基板と同一導電型でかつそれに
比べて高い不純物濃度を有する第2半導体領域の主面に
、前記第1ウエル領域或いは第1半導体領域と同一導電
型でかつ前記第1ウエル領域に比べて高い不純物濃度を
有する第3半導体領域を構成し、この第3半導体領域に
前記第1ウエル領域、第1半導体領域の夫々に供給され
る電源と同一電源が供給されることを特徴とする半導体
集積回路装置。 2、前記半導体基板又は第2半導体領域の主面の第3半
導体領域は、前記第1ウエル領域の第1半導体領域と一
体に構成されることを特徴とする請求項1に記載の半導
体集積回路装置。 3、前記半導体基板又は第2半導体領域の主面の第3半
導体領域は、前記第1ウエル領域の第1半導体領域と同
一製造工程で構成されることを特徴とする請求項1又は
請求項2に記載の半導体集積回路装置。 4、前記半導体基板又は第2半導体領域の主面の第3半
導体領域は、前記相補型MISFETのnチャネルMI
SFET、pチャネルMISFETの夫々の間に配置さ
れることを特徴とする請求項1乃至請求項3に記載の夫
々の半導体集積回路装置。 5、前記半導体基板又は第2半導体領域の主面の第3半
導体領域は、前記相補型MISFETを介在したその周
囲に配置されることを特徴とする請求項1乃至請求項3
に記載のいずれかの半導体集積回路装置。
[Claims] 1. A first well region formed in a region of a main surface of a semiconductor substrate and having a conductivity type opposite to that of the semiconductor substrate is provided with a first well region.
A semiconductor integrated circuit comprising a first semiconductor region having the same conductivity type as the well region and having a higher impurity concentration than the well region, and having a complementary MISFET, in which power is supplied to the first well region through the first semiconductor region. In the circuit device, on the main surface of a second semiconductor region formed in another region of the main surface of the semiconductor substrate or in another region, the second semiconductor region has the same conductivity type as the semiconductor substrate and has a higher impurity concentration than that of the semiconductor substrate, a third semiconductor region having the same conductivity type as the first well region or the first semiconductor region and having a higher impurity concentration than the first well region; A semiconductor integrated circuit device characterized in that the same power supply as that supplied to each of one semiconductor region is supplied. 2. The semiconductor integrated circuit according to claim 1, wherein the third semiconductor region on the main surface of the semiconductor substrate or the second semiconductor region is configured integrally with the first semiconductor region of the first well region. Device. 3. The third semiconductor region on the main surface of the semiconductor substrate or the second semiconductor region is formed in the same manufacturing process as the first semiconductor region of the first well region. The semiconductor integrated circuit device described in . 4. The third semiconductor region on the main surface of the semiconductor substrate or the second semiconductor region is connected to the n-channel MISFET of the complementary MISFET.
4. Each semiconductor integrated circuit device according to claim 1, wherein the semiconductor integrated circuit device is arranged between an SFET and a p-channel MISFET. 5. Claims 1 to 3, wherein the third semiconductor region on the principal surface of the semiconductor substrate or the second semiconductor region is arranged around the complementary MISFET with the intervening one therebetween.
Any of the semiconductor integrated circuit devices described in .
JP2281485A 1990-10-18 1990-10-18 Semiconductor integrated circuit device Pending JPH04155862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2281485A JPH04155862A (en) 1990-10-18 1990-10-18 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2281485A JPH04155862A (en) 1990-10-18 1990-10-18 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH04155862A true JPH04155862A (en) 1992-05-28

Family

ID=17639846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2281485A Pending JPH04155862A (en) 1990-10-18 1990-10-18 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH04155862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104773A1 (en) * 2010-02-25 2011-09-01 パナソニック株式会社 Non-volatile semiconductor storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104773A1 (en) * 2010-02-25 2011-09-01 パナソニック株式会社 Non-volatile semiconductor storage device
JP2011176163A (en) * 2010-02-25 2011-09-08 Panasonic Corp Nonvolatile semiconductor storage device
US8928056B2 (en) 2010-02-25 2015-01-06 Panasonic Intellectual Property Management Co., Ltd. Nonvolatile semiconductor memory device

Similar Documents

Publication Publication Date Title
KR100392027B1 (en) Semiconductor integrated circuit
JP2927463B2 (en) Semiconductor storage device
US4890148A (en) Semiconductor memory cell device with thick insulative layer
JP3085455B2 (en) Static RAM
US20040155281A1 (en) Semiconductor device formed on a SOI substrate
JP2559360B2 (en) Semiconductor memory device
US20040262679A1 (en) Semiconductor storage device and semiconductor integrated circuit
JPH0786508A (en) Esd protective circuit
KR940018972A (en) Semiconductor integrated circuit device and manufacturing method thereof
EP0426174B1 (en) Semiconductor integrated circuit
US5594270A (en) Semiconductor memory device
JPS6046545B2 (en) Complementary MOS storage circuit device
JPS61292951A (en) Semiconductor integrated circuit device
US6445017B2 (en) Full CMOS SRAM cell
JP2013171895A (en) Semiconductor memory device and driving method thereof
JPH04155862A (en) Semiconductor integrated circuit device
JPS62276868A (en) Semiconductor integrated circuit device
JP2780289B2 (en) Semiconductor device
JPS6353965A (en) Semiconductor integrated circuit device
JP2000031301A (en) Semiconductor device
JPH10290519A (en) Semiconductor integrated circuit device
JPH02129960A (en) Semiconductor memory
JPH04250663A (en) Semiconductor memory device
JP2004006868A (en) Semiconductor integrated circuit device
JP2574801B2 (en) Semiconductor memory device and method of manufacturing the same