JPH04155804A - Resin magnet and manufacture thereof - Google Patents

Resin magnet and manufacture thereof

Info

Publication number
JPH04155804A
JPH04155804A JP2281179A JP28117990A JPH04155804A JP H04155804 A JPH04155804 A JP H04155804A JP 2281179 A JP2281179 A JP 2281179A JP 28117990 A JP28117990 A JP 28117990A JP H04155804 A JPH04155804 A JP H04155804A
Authority
JP
Japan
Prior art keywords
powder
iron
resin
magnet powder
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2281179A
Other languages
Japanese (ja)
Inventor
Takeshi Takahashi
岳史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2281179A priority Critical patent/JPH04155804A/en
Publication of JPH04155804A publication Critical patent/JPH04155804A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To make it possible to obtain magnetic characteristics having small variation by a method wherein a part of neodium-iron-boron magnet powder is replaced with ferrite powder. CONSTITUTION:Neodium-iron-boron magnet powder of 400 to 1000mum or smaller in grain diameter, ferrite powder of 5 to 10mum or smaller in grain diameter, and a resin binder are contained in the constituent ingredients of the title resin magnet. By replacing a part of neodium-iron-boron magnet powder with ferrite power of microscopic grain diameter, the quantity of oil absorption is increased when compared with neodium-iron-boron magnet powder only. Excessive resin binder is adsorbed to the ferrite magnet powder, and the fluidity of the compound after kneading is improved. As a result, the quantity of compound poured in a mold can be made uniform, and a resin magnet molded body having uniform magnetic characteristics can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁石粉末と樹脂バインダーの混合物から圧縮成
形によって得られる樹脂磁石とその製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a resin magnet obtained by compression molding from a mixture of magnet powder and a resin binder, and a method for manufacturing the same.

従来の技術 近年、高性能樹脂磁石用磁性材料として、ネオジウム−
鉄−ボロン系合金粉が用いられているが、樹脂磁石を構
成するために粉砕して粒径を小さくすると磁気特性が低
下するため、微粒化には限界がある。
Conventional technology In recent years, neodymium has been used as a magnetic material for high-performance resin magnets.
Although iron-boron alloy powder is used, there is a limit to its atomization because if it is pulverized to reduce the particle size to form a resin magnet, the magnetic properties deteriorate.

従って、ネオジウム−鉄−ボロン系樹脂磁石の製造法と
しては、ある程度以上の粒径の磁石粉に、樹脂をバイン
ダーとして添加しコンパウンドを作成し、これを金型に
注入し圧縮成形する方法が行われてきた。
Therefore, the method for manufacturing neodymium-iron-boron resin magnets is to create a compound by adding resin as a binder to magnet powder of a certain size or larger, and then injecting this into a mold and compression molding. It has been.

発明が解決しようとする課題 しかし、上記のように粒径が大きなネオジウム−鉄−ボ
ロン系磁石粉を用いる場合、バインダーとして液状樹脂
を混入すると、混練後のコンパウンドの粘性が高く流動
性が無くなる。
Problems to be Solved by the Invention However, when using neodymium-iron-boron magnet powder having a large particle size as described above, if a liquid resin is mixed as a binder, the compound after kneading becomes highly viscous and loses fluidity.

量産時においてコンパウンドの金型への注入方法として
すりきり方式が用いられるが、コンパウンドの粘性が高
く流動性が悪い状態では、金型への磁石粉の均一量の注
入が困難であり、注入量のばらつきから均一な磁気特性
を有する樹脂磁石の量産は難しい。
During mass production, the grinding method is used to inject the compound into the mold, but when the compound has high viscosity and poor fluidity, it is difficult to inject a uniform amount of magnet powder into the mold, and it is difficult to control the injection amount. Mass production of resin magnets with uniform magnetic properties is difficult due to variations.

本発明はコンパウンドの流動性を改善し、均一な磁気特
性を有する樹脂磁石を提供することを目的とするもので
ある。
The present invention aims to improve the fluidity of a compound and provide a resin magnet having uniform magnetic properties.

課題を解決するための手段 この目的を達成するために、本発明は粒径が400t1
m以上11000u未満のネオジウム−鉄−ボロン系磁
石粉末と、粒径5μm以上10〃m以下のフェライト粉
末と、樹脂バインダーとを構成成分中に有するものであ
る。
Means for Solving the Problems To achieve this object, the present invention provides a particle size of 400t1.
The components include neodymium-iron-boron magnet powder with a particle diameter of 5 μm or more and less than 10 μm, and a resin binder.

作用 本発明によれば、ネオジウム−鉄−ボロン系磁石粉末の
一部を微小粒径のフェライト粉末で置き換えることによ
って、ネオジウム−鉄〜ボロン系磁石粉末単独の場合に
比べ吸油量が増大する。このことから一部過剰の樹脂バ
インダーがフェライト磁石粉に吸着され、混練後のコン
パウンドの流動性が改善される。その結果、金型へのコ
ンパウンドの注入量が均一化することにより均一な磁気
特性を有する樹脂磁石成形体が得られる。
According to the present invention, by replacing a portion of neodymium-iron-boron magnet powder with ferrite powder having a fine particle size, oil absorption is increased compared to the case where neodymium-iron-boron magnet powder alone is used. As a result, a portion of the excess resin binder is adsorbed to the ferrite magnet powder, and the fluidity of the compound after kneading is improved. As a result, the amount of compound injected into the mold becomes uniform, and a molded resin magnet having uniform magnetic properties can be obtained.

実施例 以下、本発明の一実施例の樹脂磁石及びその製造方法に
ついて説明する。
EXAMPLE Hereinafter, a resin magnet according to an example of the present invention and a method for manufacturing the same will be described.

本実施例に用いられるネオジウム−鉄−ボロン系磁石粉
末(以下Nd−Fe−B基磁石粉末と記す)としては、
超急冷薄帯を据込み加工してつくられたNd−Fe−B
基磁石粉があげられる。さらに、温度特性、耐食性、磁
気特性を改善するために、ガリウム、コバルト、プラセ
オジウム等の種々の元素を添加、もしくは置換した磁石
粉を使用することも可能である。
The neodymium-iron-boron based magnet powder (hereinafter referred to as Nd-Fe-B based magnet powder) used in this example is as follows:
Nd-Fe-B made by upsetting ultra-quenched ribbon
Examples include base magnet powder. Furthermore, in order to improve temperature characteristics, corrosion resistance, and magnetic characteristics, it is also possible to use magnet powder to which various elements such as gallium, cobalt, and praseodymium are added or substituted.

本実施例に用いられるフェライト粉末は、Srフェライ
ト粉末又はBaフェライト粉末があげられる。
The ferrite powder used in this example is Sr ferrite powder or Ba ferrite powder.

分散剤としては、脂肪酸、シランカップリン剤各種界面
活性剤などが使用される。
As the dispersant, fatty acids, silane coupling agents, various surfactants, etc. are used.

樹脂バインダーとしては接着強度の点からエポキシ樹脂
が用いられる。エポキシ樹脂の硬化剤としては各種アミ
ン類又は酸無水物が使用される。
Epoxy resin is used as the resin binder from the viewpoint of adhesive strength. Various amines or acid anhydrides are used as curing agents for epoxy resins.

混線分散については、各種混線機が使用される例えば、
ボールミル、プラネタリ−ミキサ、アッパーミル、高速
ミキサー、マイクロミルグラインダーなどが用いられる
Regarding crosstalk distribution, various crosstalk machines are used, for example,
Ball mills, planetary mixers, upper mills, high speed mixers, micro mill grinders, etc. are used.

(実施例1) 超急冷法、据込加工を経て作製された異方性Nd−Fe
−B  磁石粉(粒径 400〜500 a m )9
5gと、Srフェライト(粒径 5〜1otIm)5g
を混合し、この混合粉末にオレインMO,9gを添加し
窒素雰囲気下にて高速ミキサーで10分間混練する。
(Example 1) Anisotropic Nd-Fe produced through ultra-quenching method and upsetting process
-B Magnet powder (particle size 400-500 am) 9
5g and 5g of Sr ferrite (particle size 5-1otIm)
9 g of olein MO was added to this mixed powder, and the mixture was kneaded for 10 minutes with a high-speed mixer under a nitrogen atmosphere.

次に、エポキシ樹脂(エピコー)828  油化シェル
エポキシ社製)を1.0g添加し1o分間混合する。
Next, 1.0 g of epoxy resin (Epicor 828 manufactured by Yuka Shell Epoxy Co., Ltd.) was added and mixed for 10 minutes.

さらに、アミン系硬化剤(アクメックスH−90日本合
成化工株式会社製)を1.0 g添加後、10分間混合
して分散を終える。
Further, 1.0 g of an amine curing agent (Akmex H-90 manufactured by Nippon Gosei Kako Co., Ltd.) was added and mixed for 10 minutes to complete the dispersion.

製造した樹脂磁石コンパウンドをすりきり方式で成形金
型中に注入し、15kOeの磁場中で圧縮成形を6 t
on/dの条件で行い、得られた成形体を100℃1時
間で硬化を行って樹脂磁石を得た。
The produced resin magnet compound was injected into a mold using the sukiri method, and compression molded for 6 tons in a 15 kOe magnetic field.
The molded product was cured at 100° C. for 1 hour to obtain a resin magnet.

以上のようにして得られた樹脂磁石の試料N11l〜1
0について磁気特性を測定した結果を第1表に示す。
Resin magnet sample N11l~1 obtained as above
Table 1 shows the results of measuring the magnetic properties of 0.

第1表 (比較例1) 実施例1において、ネオジウム−鉄−ボロン系磁石粉を
100gとし、フェライト粉末を混合しない点以外は、
全〈実施例1と同様にして樹脂磁石成形体を得た。
Table 1 (Comparative Example 1) In Example 1, except that 100 g of neodymium-iron-boron magnet powder was used and ferrite powder was not mixed.
A resin magnet molded body was obtained in the same manner as in Example 1.

以上で得られた樹脂磁石の試料N[11〜10について
磁気特性を測定し、その結果を第2表に示す。
The magnetic properties of samples N[11 to 10 of the resin magnets obtained above were measured, and the results are shown in Table 2.

第2表 ネオジウム−鉄−ボロン系磁石粉とSrフェライト粉末
の混合粉末を用いた実施例1は、ネオジウム−鉄−ボロ
ン系磁石粉末のみを用いた比較例1に比べて、成形した
樹脂磁石の磁気特性に関してばらつきが小さい、比較例
1で、ばらつきがBrで4%以内、(BH)max?1
0%以内であるのに対し、実施例1では、Brで1%以
内、(BH)ma xで3%以内と、ばらつきが小さく
なっている。
Table 2 Example 1 using a mixed powder of neodymium-iron-boron magnet powder and Sr ferrite powder has a higher In Comparative Example 1, where the variation in magnetic properties is small, the variation is within 4% in Br, (BH) max? 1
In contrast, in Example 1, the variation is small, being within 1% for Br and within 3% for (BH)max.

これは、ネオジウム−鉄−ボロン系磁石粉の一部を微粒
径のフェライト粉末で置き換えることによって、ネオジ
ウム−鉄−ボロン系磁石粉末単独の場合に比べ、混合粉
末では吸油量が増大する。
This is because by replacing a portion of the neodymium-iron-boron magnet powder with fine-grained ferrite powder, the mixed powder has an increased oil absorption compared to the neodymium-iron-boron magnet powder alone.

そして、一部過剰のバインダーが磁石粉末に吸着される
ことによりコンパウンドの流動性が改善される。その結
果、金型への注入量が均一化され、磁気特性の均一な樹
脂磁石が得られると考えられる。
Then, a portion of the excess binder is adsorbed to the magnet powder, thereby improving the fluidity of the compound. As a result, it is believed that the amount of resin injected into the mold becomes uniform and a resin magnet with uniform magnetic properties is obtained.

なお本実施例で用いられるネオジウム−鉄−ボロン系磁
石粉は、高磁気特性を保持するために、400μm以上
の粒径のものを用いる。400μm未満では磁気特性の
低下が著しい、又、1000μm以上であれば樹脂磁石
に成形するのが困難となる。添加するフェライト粉末の
粒径は5〜10μmが望ましい。
The neodymium-iron-boron magnet powder used in this example has a particle size of 400 μm or more in order to maintain high magnetic properties. If it is less than 400 μm, the magnetic properties will deteriorate significantly, and if it is 1000 μm or more, it will be difficult to mold it into a resin magnet. The particle size of the ferrite powder to be added is preferably 5 to 10 μm.

又、フェライト粉末は、ネオジウム−鉄−ボロン系磁石
粉に比べ磁気特性が低いため、高磁気特性を有する樹脂
磁石成形体を得るためには、ネオジウム−鉄−ボロン系
磁石粉とフェライト粉末を重置%比で95:5〜80 
: 20の割合で混合するのが望ましい、フェライト粉
末の添加量が5重量%未満ではコンパウンドの流動性の
改善がみられない。21重量%以上では飽和磁化量が低
下する。
Furthermore, since ferrite powder has lower magnetic properties than neodymium-iron-boron magnet powder, in order to obtain a molded resin magnet with high magnetic properties, it is necessary to combine neodymium-iron-boron magnet powder and ferrite powder. % ratio of 95:5 to 80
: It is desirable to mix at a ratio of 20%. If the amount of ferrite powder added is less than 5% by weight, no improvement in the fluidity of the compound will be observed. At 21% by weight or more, the saturation magnetization decreases.

フェライト粉末の粒径が10μmより大になると、ネオ
ジ粉末単独の場合に比べ吸油量は増大するものの、10
μm以下の場合に比べ過剰のバインダーの磁石粉への吸
油量は小さくなり、十分な効果は得られない。
When the particle size of ferrite powder becomes larger than 10 μm, oil absorption increases compared to neodymium powder alone;
Compared to the case where the diameter is less than μm, the amount of oil absorbed by the magnet powder by the excess binder becomes smaller, and a sufficient effect cannot be obtained.

発明の効果 以上のように、本発明によれば、ネオジウム−鉄−ボロ
ン系磁石粉の一部を微粒径のフェライト粉末で置き換え
ることによって、ばらつきの少ない磁気特性を有する樹
脂磁石を得ることが可能である。
Effects of the Invention As described above, according to the present invention, by replacing a portion of neodymium-iron-boron magnet powder with ferrite powder having a fine particle size, it is possible to obtain a resin magnet having magnetic properties with less variation. It is possible.

Claims (2)

【特許請求の範囲】[Claims] (1)粒径が400μm以上1000μm未満のネオジ
ウム−鉄−ボロン系磁石粉末と、粒径が5μm以上10
μm以下のフェライト粉末と、樹脂バインダーとを構成
成分中に有する樹脂磁石。
(1) Neodymium-iron-boron magnet powder with a particle size of 400 μm or more and less than 1000 μm and a particle size of 5 μm or more and 10
A resin magnet containing ferrite powder of µm or less in size and a resin binder as constituent components.
(2)粒径400μm以上1000μm未満のネオジウ
ム−鉄−ボロン系磁石粉末と、粒径が5μm以上10μ
m以下のフェライト粉末とを混合し、これに樹脂バイン
ダー及び硬化剤を加えて混合し、その後成形金型中に注
入して形成する樹脂磁石の製造方法。
(2) Neodymium-iron-boron magnet powder with a particle size of 400 μm or more and less than 1000 μm and a particle size of 5 μm or more and 10 μm
A method for manufacturing a resin magnet, which involves mixing ferrite powder with a particle size of 1.0 m or less, adding a resin binder and a curing agent to the mixture, and then injecting the mixture into a mold.
JP2281179A 1990-10-18 1990-10-18 Resin magnet and manufacture thereof Pending JPH04155804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2281179A JPH04155804A (en) 1990-10-18 1990-10-18 Resin magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2281179A JPH04155804A (en) 1990-10-18 1990-10-18 Resin magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04155804A true JPH04155804A (en) 1992-05-28

Family

ID=17635450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2281179A Pending JPH04155804A (en) 1990-10-18 1990-10-18 Resin magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04155804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313615A (en) * 2001-04-09 2002-10-25 Enplas Corp Plastic magnet composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313615A (en) * 2001-04-09 2002-10-25 Enplas Corp Plastic magnet composition

Similar Documents

Publication Publication Date Title
CN106756579B (en) A kind of fe-Ni soft magnetic alloy and fe-Ni soft magnetic alloy part with shot-range ordered structure
CN101814368A (en) The manufacture method of anisotropic bonded magnet, magnetic circuit and anisotropic bonded magnet
KR20130030896A (en) Manufacturing method for bonded magnet
CN102903474A (en) Injection anisotropic composite magnet and preparation method thereof
CN103295770B (en) A kind of preparation method of compoiste adhering permanent magnet
US20220362843A1 (en) Methods of producing bonded magnet and compound for bonded magnets
JPH04155804A (en) Resin magnet and manufacture thereof
US5213703A (en) Anisotropic neodymium-iron-boron system plastic bonded magnet
JPS61184804A (en) Manufacture of bond magnet
EP0441616B1 (en) Anisotropic plastic bonded magnet of the Nd-Fe-B-type and method for making same
JP2757040B2 (en) Method for producing Nd-Fe-B bonded magnet
JPH02110904A (en) Resin-bonded nd-fe-b magnet
JP2001200169A (en) Resin composite material compounded with ferromagnetic metal powder
JPH0428207A (en) Manufacture of resin magnet
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JPH10112405A (en) Rare-earth bonded magnet and its manufacture
JP2000077220A (en) Granulated powder of rare earth magnet and manufacture of the same, and resin bonded magnet using the same and manufacture of the magnet
JPH04345005A (en) Compound mild magnetic body and manufacture thereof
JPH03288405A (en) Bonded-magnet raw material and manufacture thereof
JPS60235416A (en) Manufacture of permanent magnet
JPH03142906A (en) Manufacture of bond magnet
JPH04176102A (en) Bonded magnet and manufacture thereof
JPH06204067A (en) Manufacture of bonded magnet
JPS6355909A (en) Resin magnet
JPS62117306A (en) Anisotropic composite magnet and manufacture thereof