JPH04154672A - Production of ceramic sintered compact for electronic part - Google Patents

Production of ceramic sintered compact for electronic part

Info

Publication number
JPH04154672A
JPH04154672A JP2275669A JP27566990A JPH04154672A JP H04154672 A JPH04154672 A JP H04154672A JP 2275669 A JP2275669 A JP 2275669A JP 27566990 A JP27566990 A JP 27566990A JP H04154672 A JPH04154672 A JP H04154672A
Authority
JP
Japan
Prior art keywords
varistor
sintered body
ceramic sintered
molded body
sintered compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2275669A
Other languages
Japanese (ja)
Inventor
Kenji Shino
篠 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2275669A priority Critical patent/JPH04154672A/en
Priority to US07/773,404 priority patent/US5350551A/en
Publication of JPH04154672A publication Critical patent/JPH04154672A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title sintered compact without causing variation in its composition by calcining a form containing a metallic oxide liable to migrate in calcining operation on a plate consisting of a ceramic sintered compact containing the same kind of metallic oxide liable to migrate in the calcining process. CONSTITUTION:A plate 4 consisting of a ceramic sintered compact containing a metallic oxide (e.g. Sb2O3) liable to migrate in calcining operation is set up on a stock 2, and plural metallic oxide form 1 (e.g. varistor form) each containing the same kind of metallic oxide as that mentioned above are set up upright adjacently to each other on the plate 4. The system as a whole is then put into a hot oven where the forms 1 are calcined, thus obtaining the objective ceramic sintered compact for electronic parts. Thereby, because of putting the plate 4 in between, the transfer (due to outflow, diffusion, etc.) of the metallic oxide liable to migrate in calcining from the forms 1 to the stock 2 side can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミックバリスタ等の電子線節用セラミック
焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a ceramic sintered body for electron beam nodes such as ceramic varistors.

[従来の技術及び発明が解決しようとする課題]ZnO
を主成分とする電圧非直線抵抗体(以下、単にバリスタ
と称する)は、数種類の酸化物原料を混合した後に、有
機結合剤を使用して造粒し、続いてこれを円盤状のディ
スク(バリスタ成形体)に仕上げて焼成することで得ら
れる。バリスタ成形体を焼成する方法として、多数のバ
リスタ成形体を酸化マグネシウム(マグネシア)を主成
分とする載置台のv字状の溝部に直立に配置して焼成す
る方法がある。この方法によれば、複数のバリスタ成形
体を積重ねて焼成する場合に問題となるバリスタ成形体
どうしの付着を回避できる。
[Prior art and problems to be solved by the invention] ZnO
A voltage nonlinear resistor (hereinafter simply referred to as a varistor) whose main component is a varistor is produced by mixing several types of oxide raw materials, granulating them using an organic binder, and then granulating them into a disc-shaped disc ( It is obtained by finishing it into a varistor molded body and firing it. As a method for firing varistor molded bodies, there is a method in which a large number of varistor molded bodies are placed upright in a V-shaped groove of a mounting table whose main component is magnesium oxide (magnesia), and fired. According to this method, it is possible to avoid adhesion of varistor molded bodies to each other, which is a problem when a plurality of varistor molded bodies are stacked and fired.

しかしながら、この焼成方法では、焼成時に載置台に接
触した部分及びその近傍部分において一部の金属酸化物
が載置台に吸い込まれて成形体の組成比が変化するとい
う現象が生じることが本願発明者によって確認された。
However, with this firing method, the inventor of the present application has found that some metal oxides are sucked into the mounting table at the portions that come into contact with the mounting table during firing and in the vicinity thereof, causing a change in the composition ratio of the molded body. confirmed by.

第5図は、′従来の焼成方法によって製作されたZnO
を主成分とするバリスタ焼結体1bのsb    (酸
化アンチモン)の分布状態を点によって模式的に示した
ものである。図示のように、載置台2に接触した部分及
びその近傍部分において、5b203の含有量が著しく
低下し、5b203が焼結体の全体に均一に分布されて
いないことがわかる。5b203は、結晶粒(ZnO結
晶粒)の増大を抑制する作用を有する金属酸化物であり
、S b 2 o−sの含有量が小さい上記の部分では
結晶の粒径が著しく大きくなっていることが確められた
。このように結晶粒径の大きい部分が生じるとサージ耐
量に優れたバリスタを得ることが困難になる。
Figure 5 shows 'ZnO produced by conventional firing method.
The distribution state of sb (antimony oxide) in the varistor sintered body 1b whose main component is sb is schematically shown by dots. As shown in the figure, the content of 5b203 is significantly reduced in the portion in contact with the mounting table 2 and in the vicinity thereof, and it can be seen that 5b203 is not uniformly distributed throughout the sintered body. 5b203 is a metal oxide that has the effect of suppressing the increase of crystal grains (ZnO crystal grains), and the crystal grain size is significantly large in the above portion where the S b 2 o-s content is small. was confirmed. If such a portion has a large crystal grain size, it becomes difficult to obtain a varistor with excellent surge resistance.

今、ZnOを主成分とするバリスタについて述べたが、
別の組成のセラミックにおいても同様な問題が生じる。
I just mentioned a varistor whose main component is ZnO,
Similar problems arise with ceramics of other compositions.

そこで、本発明の目的は出発原料の組成の変動を抑制す
ることができる電子部品用セラミック焼結体の製造方法
を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a ceramic sintered body for electronic components, which can suppress variations in the composition of starting materials.

[課題を解決するための手段] 上記目的を達成するための本発明は、焼成時に移動し昌
い金属酸化物を含有している複数の金属酸化物の成形体
を形成する工程と、前記移動し易い金属酸化物を含むセ
ラミック焼結体から成る載置体を用意する工程と、前記
載置体に前記成形体を載置して前記成形体を焼成して焼
結体を得る工程とを有することを特徴とする電子部品用
セラミック焼結体の製造方法に係わるものである。
[Means for Solving the Problems] The present invention for achieving the above object includes a step of forming a molded body of a plurality of metal oxides containing metal oxides that move during firing, and a step of preparing a mounting body made of a ceramic sintered body containing a metal oxide that is easy to oxidize, and a step of placing the molded body on the mounting body and firing the molded body to obtain a sintered body. The present invention relates to a method of manufacturing a ceramic sintered body for electronic components, characterized by having the following features.

なお、ZnOを主成分とし且つ5b203 (酸化アン
チモン)を含むバリスタの製作に本発明は好適なもので
あ゛す、この場合には成形体載置用物体にS b 20
 gを含めることが望ましい。
Note that the present invention is suitable for producing a varistor whose main component is ZnO and also contains 5b203 (antimony oxide).
It is desirable to include g.

[作 用] 本発明に係わる載置体は成形体に含まれている移動しや
すい金属酸化物と同一の金属酸化物を含むので、成形体
側から載置体側への金属酸化物の流出や拡散等による移
動を抑制することができる。
[Function] Since the mounting body according to the present invention contains the same metal oxide as the easily mobile metal oxide contained in the molded body, the metal oxide does not leak or diffuse from the molded body side to the mounting body side. It is possible to suppress movement caused by such factors.

これにより成形体の組成か維持され、良質な焼結体が得
られる。
This maintains the composition of the molded body and provides a high quality sintered body.

ZnOを主成分とするバリスタの場合においては、5b
203を載置体に含めることにより、成形体の5b20
3の成形体外への移動が制限され。
In the case of a varistor whose main component is ZnO, 5b
By including 203 in the mounting body, 5b20 of the molded body
The movement of No. 3 to the outside of the molded body is restricted.

結晶粒の均一化が達成される。Uniform grain size is achieved.

[実施例] 次に、第1図〜第4図及び第6図を参照して本発明の実
施例に係わるZnOを主成分とするバリスタ素子の製造
方法を説明する。
[Example] Next, a method for manufacturing a varistor element containing ZnO as a main component according to an example of the present invention will be described with reference to FIGS. 1 to 4 and 6.

まず、93.2モル%のZnO(酸化亜鉛)、0.3モ
ル%のBi2O3(酸化ビスマス)く1゜5モル%の5
b203 (酸化アンチモン)、1゜0モル%の000
(酸化コバルト)、2.5モル%のMg0(酸化マグネ
シウム)、0.5モル%のMn0(酸化マンガン)、1
.0モル%のNi0(酸化ニッケル)から成る基礎成分
100重量部に対して0.05重量部の820 a  
<酸化ホウ素)と0.003重量部のAl2O3(酸化
アルミニウム)を添加した原料粉末をボールミルで十分
に混合し、この混合物をスプレードライヤ(造粒機)で
造粒した。上記金属酸化物のうち、5b203は後述の
バリスタ焼結体を形成する際に、ZnO結晶粒の粒径が
増大することを抑制するよ、  うに機能する融点が約
656℃の低融点金属酸化物である。
First, 93.2 mol% ZnO (zinc oxide), 0.3 mol% Bi2O3 (bismuth oxide), 1.5 mol% 5
b203 (antimony oxide), 1°0 mol% 000
(cobalt oxide), 2.5 mol% Mg0 (magnesium oxide), 0.5 mol% Mn0 (manganese oxide), 1
.. 0.05 parts by weight of 820a per 100 parts by weight of the basic component consisting of 0 mol% Ni0 (nickel oxide)
<Boron oxide) and 0.003 parts by weight of Al2O3 (aluminum oxide) were mixed thoroughly in a ball mill, and this mixture was granulated in a spray dryer (granulator). Among the metal oxides mentioned above, 5b203 is a low melting point metal oxide with a melting point of about 656°C that functions to suppress the increase in the grain size of ZnO crystal grains when forming a varistor sintered body to be described later. It is.

次に、造粒された原料を圧縮成形して目標寸法直径約1
0am、厚さ約31の円盤状のバリスタ成形体1を製作
した。
Next, the granulated raw material is compression molded to a target size of approximately 1 mm in diameter.
A disc-shaped varistor molded body 1 with a diameter of 0 am and a thickness of approximately 31 mm was manufactured.

次に、このバリスタ成形体1を焼結するために、第1図
〜第3図に示す溝3を有する載置台2及び2枚の載置板
4を用意した。載置板4はバリスタ成形体1の原料と同
じ金属酸化物つまり、ZnO。
Next, in order to sinter the varistor molded body 1, a mounting table 2 and two mounting plates 4 having grooves 3 shown in FIGS. 1 to 3 were prepared. The mounting plate 4 is made of the same metal oxide as the raw material of the varistor molded body 1, that is, ZnO.

Bi2O3,5b203、CoOlMgOSMnOlN
iOSB O、Al2O3の混合物を板状に成形し、し
かる後、焼成したものから成るセラミック焼結体である
。但し、載置板4のS b 203の含有率はバリスタ
成形体lの原料に含まれる5b203の含有率よりも大
きい約2.0モル゛%となっている。載置台2は酸化マ
グネシウム(マグネシア)を主成分とする焼結体であり
、この一方の主面にV字状の溝3が設けられている。
Bi2O3,5b203,CoOlMgOSMnOlN
This is a ceramic sintered body made by molding a mixture of iOSB O and Al2O3 into a plate shape and then firing it. However, the content of S b 203 in the mounting plate 4 is about 2.0 mol %, which is higher than the content of 5b203 contained in the raw material of the varistor molded body 1. The mounting table 2 is a sintered body whose main component is magnesium oxide (magnesia), and a V-shaped groove 3 is provided on one main surface thereof.

次に、載置台2の溝3を構成する2つの面に載置板4を
配置し、この上に上記のバリスタ成形体1を複数枚直立
させて且つ互いに隣接させて配置した。バリスタ成形体
1は、第1図から明らかなように、2箇所で載置板4に
当接し、バリスタ成形体1のそれ以外の部分は載置板4
に接しない。
Next, the mounting plate 4 was placed on the two surfaces constituting the groove 3 of the mounting table 2, and a plurality of the above-mentioned varistor molded bodies 1 were placed upright thereon and adjacent to each other. As is clear from FIG. 1, the varistor molded body 1 contacts the mounting plate 4 at two places, and the other parts of the varistor molded body 1 contact the mounting plate 4.
Do not come into contact with

また、バリスタ成形体1は載置台2に対しては全く接し
ていない。
Further, the varistor molded body 1 does not touch the mounting table 2 at all.

上記の様に配置した状態で、バリスタ成形体1を載置台
2及び載置板4と共に加熱炉に収容し、バリスタ成形体
1を焼成した。焼成のための熱処理温度と時間は500
℃までは約り00℃/時間、その後は約り50℃/時間
の割合で1250℃まで昇温し、1250℃(ピーク温
度)を1時間保持し、その後自然冷却した。なお、この
熱処理は大気雰囲気中で行った。これにより、バリスタ
成形体1の焼結体1aが得られた。この焼結体1aの組
成は出発原料と実質的に同じである。
With the varistor molded body 1 arranged as described above, the varistor molded body 1 was placed in a heating furnace together with the mounting table 2 and the mounting plate 4, and the varistor molded body 1 was fired. The heat treatment temperature and time for firing is 500℃
The temperature was raised to 1250° C. at a rate of about 00° C./hour and then about 50° C./hour, maintained at 1250° C. (peak temperature) for 1 hour, and then naturally cooled. Note that this heat treatment was performed in an air atmosphere. As a result, a sintered body 1a of the varistor molded body 1 was obtained. The composition of this sintered body 1a is substantially the same as that of the starting material.

次に、第6図に示すようにバリスタ焼結体1aの両生面
にAg(銀)ペーストを塗布して焼付けて一対の電極5
.6を形成し、バリスタ素子を完成させた。
Next, as shown in FIG. 6, Ag (silver) paste is coated on both sides of the varistor sintered body 1a and baked to form a pair of electrodes 5.
.. 6 was formed to complete the varistor element.

次に、バリスタ素子のサージ耐量を調べるために、まず
、バリスタ素子に1mAを流した時の電極5.6間の電
圧(バリスタ電圧)Viaを測定し、その後、電気学会
規格212番に従って、8×20μs、250OAのサ
ージ電流を30秒間隔で5回バリスタ素子に印加し、再
び1mAにおけるバリスタ電圧Vlbを測定した。そし
て、最初のバリスタ電圧Vlaとサージ−印加後のバリ
スタ電圧Vlbとに基づいてバリスタ電圧の変化率dを
次式で求めた。
Next, in order to examine the surge withstand capacity of the varistor element, we first measured the voltage (varistor voltage) Via between the electrodes 5 and 6 when 1 mA was applied to the varistor element, and then measured the 8 A surge current of 250 OA for 20 μs was applied to the varistor element five times at 30 second intervals, and the varistor voltage Vlb at 1 mA was measured again. Then, the rate of change d of the varistor voltage was determined based on the initial varistor voltage Vla and the varistor voltage Vlb after the surge was applied using the following equation.

d −[(Via−Vlb) /Vial X 100
 (%)このバリスタ電圧の変化率dが10%以上にな
るまで上記の測定を繰返した。この結果、40回の測定
でバリスタ電圧の変化率dは10%以上になった。即ち
40X5−200回のサージ電流の印加でバリスタ電圧
Vlが10%以上低下した。
d-[(Via-Vlb)/Vial X 100
(%) The above measurements were repeated until the rate of change d of the varistor voltage became 10% or more. As a result, the rate of change d of the varistor voltage was 10% or more after 40 measurements. That is, the varistor voltage Vl decreased by 10% or more after applying the surge current 40×5-200 times.

一方、第5図に従う従来のバリスタ素子に対して同様な
測定を行ったところ、7回の測定(7×5−35回のサ
ージ電流印加)でバリスタ電圧V1は10%以上低下し
た。測定回数(サージ電流印加回数)か多い程サージ耐
量が大きいことを意味するので、本発明に従ってバリス
タ素子のサージ耐量が大幅に向上していることが努る。
On the other hand, when similar measurements were performed on the conventional varistor element shown in FIG. 5, the varistor voltage V1 decreased by more than 10% after 7 measurements (7×5-35 surge current applications). Since the greater the number of measurements (the number of times of surge current application), the greater the surge withstand capacity, the present invention strives to significantly improve the surge withstand capacity of the varistor element.

なお、上記の測定結果は10個のバリスタ素子の平均値
である。
Note that the above measurement results are the average values of 10 varistor elements.

また、本実施例に従うバリスタ焼結体1a及び従来のバ
リスタ焼結体1bの結晶状態を顕微鏡で観察したところ
、本実施例に従うバリスタ焼結体1aにおいては粒径が
均一で且つ小さかった。これに対して従来のバリスタ焼
結体1bでは第5図に示す5b203の濃度の低い領域
で粒径が不均一で且つ大きかった。
Furthermore, when the crystalline states of the varistor sintered body 1a according to this example and the conventional varistor sintered body 1b were observed under a microscope, it was found that the grain size of the varistor sintered body 1a according to this example was uniform and small. On the other hand, in the conventional varistor sintered body 1b, the grain size was non-uniform and large in the region where the concentration of 5b203 was low as shown in FIG.

また、本実施例の焼結体1aにおける5b203の分布
濃度を測定したところ、第4図で点によって模式的に示
すように5b203は均一に分布していた。即ち、この
分布は、第5図に示す従来の焼結体1bにおけるS b
 20 aの分布よりも大幅に改善されていた。
Further, when the distribution concentration of 5b203 in the sintered body 1a of this example was measured, it was found that 5b203 was uniformly distributed as schematically shown by the dots in FIG. That is, this distribution corresponds to S b in the conventional sintered body 1b shown in FIG.
The distribution was significantly improved compared to that of 20a.

本実施例にけるS b 20 gの均一分布は、sbO
を含有する載置板4を使用することによって達成されて
いる。載置板4は焼結体1aと同一物質から成り、且つ
5b203の含有率が焼結体1aよりも大きい約2.0
モル%となっているので、焼成時に成形体1の5b20
8が載置板4に拡散又は流動で移動することが制限され
る。このように5b203及びその他の低融点物質の載
置板4への移動が抑制されると、均一性の良い結晶粒が
形成され、上述のようにサージ電流耐量が向上する。
The uniform distribution of S b 20 g in this example is sbO
This is achieved by using a mounting plate 4 containing . The mounting plate 4 is made of the same material as the sintered body 1a, and the content of 5b203 is approximately 2.0% higher than that of the sintered body 1a.
Since it is mol%, 5b20 of molded body 1 during firing
8 is restricted from moving to the mounting plate 4 by diffusion or flow. When the movement of 5b203 and other low-melting point substances to the mounting plate 4 is suppressed in this way, crystal grains with good uniformity are formed, and the surge current withstand capacity is improved as described above.

[変形例] 本発明は上述の実施例に限定されるものでなく、例えば
次の変形が可能なものである。
[Modifications] The present invention is not limited to the above-described embodiments, and, for example, the following modifications are possible.

(1) 載置台2に低融点物質である5b203を含有
させて載置板4を省き、Sb O含有載置台2に成形体
1を載せるようtoこしてもよい。
(1) The mounting table 2 may contain 5b203, which is a low melting point substance, and the mounting plate 4 may be omitted, and the compact 1 may be placed on the Sb 2 O-containing mounting table 2.

(2) 焼結体から成る載置板4の形状は種々の変更が
可能であり、例えば、載置台2の溝3の形状に合せて断
面■字形状としても良い。
(2) The shape of the mounting plate 4 made of a sintered body can be changed in various ways, for example, it may have a cross-section shaped like a square square according to the shape of the groove 3 of the mounting table 2.

(3) 載置板4等の載置体をバリスタ焼結体1aと同
一物質で形成することが望ましいが、Sb 20 sを
含む別の組成の焼結体であってもよい。
(3) Although it is desirable that the mounting body such as the mounting plate 4 be formed of the same material as the varistor sintered body 1a, the sintered body may have a different composition containing Sb 20 s.

(4) 本発明は、5b203のように結晶粒の増大を
抑制する機能を有する金属酸化物の流れ出し防止に特に
有効であるが、例えばBi2O3や8203等の低融点
金属酸化物の流れ出し防止にも適用して効果がある。
(4) The present invention is particularly effective in preventing the outflow of metal oxides that have the function of suppressing crystal grain growth, such as 5b203, but it is also effective in preventing the outflow of low-melting point metal oxides such as Bi2O3 and 8203. Effective when applied.

(5) 載置台2を例えばZr(ジルコニウム:から成
る焼結体で形成することができる。
(5) The mounting table 2 can be made of a sintered body made of Zr (zirconium), for example.

(6) バリスタ以外のセラミック焼結体の製造にも本
発明を適用し得る。
(6) The present invention can also be applied to the production of ceramic sintered bodies other than varistors.

[発明の効果] 以上のように、本発明によれば移動し易い成分の分布の
均一性を高めることができ、特性の良い焼結体を得るこ
とができる。
[Effects of the Invention] As described above, according to the present invention, the uniformity of the distribution of easily mobile components can be improved, and a sintered body with good characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例に係わるバリスタ焼結体
の製造装置を示す正面図、 第2図は第1図の装置の一部切欠平面図、第3図は第1
図の載置台及び載置板を示す斜視図、 第4図は第1の実施例のバリスタ焼結体における5b2
03の分布を模式的に示す図、第5図は従来のバリスタ
焼結体における5b208の分布を模式的に示す図、 第6図はバリスタ素子を示す正面図である。 1、・、成形体、1a・・・焼結体、4・・・酸化アン
チモ; ンを含む載置板。
FIG. 1 is a front view showing an apparatus for manufacturing a varistor sintered body according to a first embodiment of the present invention, FIG. 2 is a partially cutaway plan view of the apparatus shown in FIG. 1, and FIG.
FIG. 4 is a perspective view showing the mounting table and the mounting plate shown in FIG.
5 is a diagram schematically showing the distribution of 03, FIG. 5 is a diagram schematically showing the distribution of 5b208 in a conventional varistor sintered body, and FIG. 6 is a front view showing a varistor element. 1. Molded body, 1a... Sintered body, 4... Antimony oxide; Mounting plate containing.

Claims (1)

【特許請求の範囲】 [1]焼成時に移動し易い金属酸化物を含有している複
数の金属酸化物の成形体を形成する工程と、 前記移動し易い金属酸化物を含むセラミック焼結体から
成る載置体を用意する工程と、 前記載置体に前記成形体を載置して前記成形体を焼成し
て焼結体を得る工程と を有することを特徴とする電子部品用セラミック焼結体
の製造方法。 [2]前記移動し易い金属酸化物は前記焼成の温度より
も融点の低い物質である請求項1記載の電子部品用セラ
ミック焼結体の製造方法。 [3]前記成形体は酸化亜鉛を主成分とするバリスタ材
料の成形体であり、前記融点の低い物質は酸化アンチモ
ンである請求項2記載の電子部品用セラミック焼結体の
製造方法。
[Scope of Claims] [1] A step of forming a molded body of a plurality of metal oxides containing a metal oxide that is easily mobile during firing, and a step of forming a ceramic sintered body containing the metal oxide that is easily mobile. Ceramic sintering for electronic components, characterized by comprising the steps of: preparing a mounting body consisting of the mounting body, and obtaining a sintered body by placing the molded body on the mounting body and firing the molded body. How the body is manufactured. [2] The method for manufacturing a ceramic sintered body for electronic components according to claim 1, wherein the easily mobile metal oxide is a substance having a melting point lower than the firing temperature. [3] The method for producing a ceramic sintered body for electronic components according to claim 2, wherein the molded body is a molded body of a varistor material containing zinc oxide as a main component, and the substance with a low melting point is antimony oxide.
JP2275669A 1990-10-15 1990-10-15 Production of ceramic sintered compact for electronic part Pending JPH04154672A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2275669A JPH04154672A (en) 1990-10-15 1990-10-15 Production of ceramic sintered compact for electronic part
US07/773,404 US5350551A (en) 1990-10-15 1991-10-09 Method of firing ceramic moldings containing a diffusible metallic oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275669A JPH04154672A (en) 1990-10-15 1990-10-15 Production of ceramic sintered compact for electronic part

Publications (1)

Publication Number Publication Date
JPH04154672A true JPH04154672A (en) 1992-05-27

Family

ID=17558701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275669A Pending JPH04154672A (en) 1990-10-15 1990-10-15 Production of ceramic sintered compact for electronic part

Country Status (1)

Country Link
JP (1) JPH04154672A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528731A (en) * 2007-06-07 2010-08-26 ノベル バイオケア サーヴィシィズ アーゲー Method and apparatus for forming a dental bridge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528731A (en) * 2007-06-07 2010-08-26 ノベル バイオケア サーヴィシィズ アーゲー Method and apparatus for forming a dental bridge

Similar Documents

Publication Publication Date Title
JPH0310204B2 (en)
US4111852A (en) Pre-glassing method of producing homogeneous sintered zno non-linear resistors
US4127511A (en) Ceramic electrical resistor with nonlinear voltage characteristic
JPH04154672A (en) Production of ceramic sintered compact for electronic part
US5350551A (en) Method of firing ceramic moldings containing a diffusible metallic oxide
JPH04154674A (en) Production of ceramic sintered compact for electronic part
US4174303A (en) Ceramic electrical material with high nonlinear resistance
JPS6045150B2 (en) Method for manufacturing barium titanate semiconductor porcelain
JP3057989B2 (en) Manufacturing method of ceramic electronic components
JPH04113601A (en) Method and enclosure for manufacturing nonlinearly voltage-dependent resistance
JPS6045149B2 (en) Method for manufacturing barium titanate semiconductor porcelain
JP2634838B2 (en) Method of manufacturing voltage non-linear resistor
JPH04130703A (en) Manufacture of ceramic electronic parts
JPS6221241B2 (en)
JP2718175B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH05326213A (en) Production of voltage nonlinear resistor
JPH05121212A (en) Production of varistor sintered body
JP2838249B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain
JPH08293403A (en) Manufacture of voltage nonlinear resistor element
JPH0399404A (en) Method and apparatus for manufacture of zinc oxide varistor
JPH07263204A (en) Voltage nonlinear resistor and its production
JPS6031097B2 (en) Method for firing semiconductor porcelain for capacitors
JPS6025387B2 (en) Method for manufacturing barium titanate semiconductor porcelain
JPS6025388B2 (en) Method for manufacturing barium titanate semiconductor porcelain
JPH08273905A (en) Manufacture of voltage nonlinear resistor