JP2718175B2 - Voltage nonlinear resistor and method of manufacturing the same - Google Patents
Voltage nonlinear resistor and method of manufacturing the sameInfo
- Publication number
- JP2718175B2 JP2718175B2 JP1122183A JP12218389A JP2718175B2 JP 2718175 B2 JP2718175 B2 JP 2718175B2 JP 1122183 A JP1122183 A JP 1122183A JP 12218389 A JP12218389 A JP 12218389A JP 2718175 B2 JP2718175 B2 JP 2718175B2
- Authority
- JP
- Japan
- Prior art keywords
- high resistance
- sintered body
- resistance layer
- main component
- linear resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Thermistors And Varistors (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は主として電力分野に用いられる酸化亜鉛を主
成分とする電圧非直線抵抗体およびその製造方法に関す
るものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage non-linear resistor mainly composed of zinc oxide used mainly in the field of electric power and a method of manufacturing the same.
従来の技術 電圧非直線抵抗体は一般にバリスタと呼ばれ、電圧安
定化やサージ吸収素子として広く用いられている。中で
も、酸化亜鉛を主成分とし、これに少量のBi2O3,Co2O3,
MnO2,Sb2O3,Cr2O3などの金属酸化物を添加した酸化亜鉛
形バリスタは、その大きなサージ電流耐量と優れた電圧
非直線性から、近年ギャップレスアレスタ用の素子とし
て従来のシリコンカーバイトバリスタにとって代わり広
く利用されている。2. Description of the Related Art A voltage non-linear resistor is generally called a varistor, and is widely used as a voltage stabilizing or surge absorbing element. Among them, zinc oxide is the main component, and a small amount of Bi 2 O 3 , Co 2 O 3 ,
Zinc oxide varistors to which metal oxides such as MnO 2 , Sb 2 O 3 , and Cr 2 O 3 are added have been used in recent years as conventional elements for gapless arresters because of their large surge current capability and excellent voltage nonlinearity. Widely used instead of carbide varistors.
この酸化亜鉛形バリスタをアレスタとして用いる場
合、放電耐量特性,課電寿命特性がきわめて重要な特性
要素となる。ここで、放電耐量特性は4/10μsの衝撃電
流を5分間隔で同一方向に2回印加できる電流の限界値
である。また、課電寿命特性は酸化亜鉛形バリスタ素子
に定格電圧を印加して使用した場合に推定されるバリス
タ素子の寿命で、通常温度および課電率を上げる加速試
験が行われる。When this zinc oxide type varistor is used as an arrester, the discharge withstand characteristics and the charging life characteristics are extremely important characteristic elements. Here, the discharge withstand characteristic is a limit value of a current at which an impact current of 4/10 μs can be applied twice in the same direction at 5-minute intervals. The voltage application life characteristic is the life of the varistor element estimated when a rated voltage is applied to the zinc oxide type varistor element, and an acceleration test for increasing the normal temperature and the power application rate is performed.
従来より、電圧非直線抵抗体の製造方法として、例え
ば特公昭53−29375号公報などに記載されたように、酸
化亜鉛を主成分とし、Bi2O3を始めとする数種の金属酸
化物を加えた原料粉を適当な形状に圧縮,成形した後、
800℃〜1000℃の温度範囲で仮焼し、得られた仮焼体側
面にBi2O3,Sb2O3,SiO2などからなるペースト状側面剤を
塗布し、この仮焼体を1100℃〜1300℃で焼成することに
より、側面剤と素子が反応し、焼結体側面にZn2SiO4とZ
n7Sb2O12からなる側面高抵抗層を形成し、電圧非直線抵
抗体を得るものであった。Conventionally, as a method for producing a voltage non-linear resistor, for example, as described in JP-B-53-29375, zinc oxide as a main component and several metal oxides such as Bi 2 O 3 After compressing and molding the raw material powder added with
The calcined body is calcined in a temperature range of 800 ° C. to 1000 ° C., and a paste-like side agent made of Bi 2 O 3 , Sb 2 O 3 , SiO 2 or the like is applied to the side surface of the obtained calcined body. ° C. by firing to 1300 ° C., and the side surface agent and element reaction, and Zn 2 SiO 4 in the sintered body side Z
A side high-resistance layer made of n 7 Sb 2 O 12 was formed to obtain a voltage non-linear resistor.
発明が解決しようとする課題 しかし、以上のような側面剤と素子を反応させて高抵
抗層を形成する場合、側面剤と素子との反応のコントロ
ールが難しく、均一な厚みを持ち、しかも欠陥の少ない
側面高抵抗層が得られにくく、この結果、放電耐量特性
が低く、バラツキも大きいという問題点があった。However, when the high-resistance layer is formed by reacting the side agent with the element as described above, it is difficult to control the reaction between the side agent and the element, has a uniform thickness, and has a defect. It is difficult to obtain a small side surface high resistance layer, and as a result, there is a problem that the discharge withstand characteristics are low and the variation is large.
本発明は、このような従来の課題を解決するもので、
電圧非直線抵抗体の高性能化、すなわち放電耐量特性の
大幅な向上と品質の安定化を目的とするものである。The present invention solves such a conventional problem,
The purpose of the present invention is to improve the performance of the voltage non-linear resistor, that is, to significantly improve the discharge capability and stabilize the quality.
課題を解決するための手段 本発明では前記従来の課題を解決するため、酸化亜鉛
を主成分とする焼結体の側面に、SiO2,Al2O3,ZrO2,MgO
の中から選ばれた少なくとも1種類以上の酸化物を主成
分とし、AlPO4を1.0〜25.0モル%含む側面高抵抗層を有
するものである。また、前記焼結体を450℃〜700℃の温
度範囲で熱処理した後、前記焼結体の側面にSiO2,Al
2O3,ZrO2,MgOの中から選ばれた少なくとも1種類以上の
酸化物を主成分とし、リン酸アルミニウム塩を含む側面
高抵抗剤を塗布し、200℃〜700℃の温度範囲で焼付処理
を行い、側面高抵抗層を形成したものである。Means for Solving the Problems In the present invention, in order to solve the above-mentioned conventional problems, SiO 2 , Al 2 O 3 , ZrO 2 , MgO
A main component at least one or more oxides selected from among those having a side surface high-resistivity layer including AlPO 4 of 1.0 to 25.0 mol%. Further, after the sintered body is heat-treated at a temperature range of 450 ° C. to 700 ° C., SiO 2 , Al
2 O 3 , ZrO 2 , MgO, at least one oxide selected from the main component, and apply a side high resistance agent containing aluminum phosphate salt, baking at a temperature range of 200 ℃ ~ 700 ℃ The treatment is performed to form a high-side resistance layer.
作用 本発明によれば、仮焼工程や側面高抵抗層の形成に焼
成時の雰囲気、昇降温カーブの微妙なコントロールが不
必要であり、さらにSiO2,Al2O3,ZrO2,MgOなどの酸化物
は高絶縁性を有し、AlPO4と焼結体の密着性もよいた
め、安定した品質でしかも高い放電耐量特性の電圧非直
線抵抗体を得ることができる。According to the present invention, the calcining step and the formation of the side surface high-resistance layer do not require the sintering atmosphere, delicate control of the temperature rise / fall curve, and furthermore, SiO 2 , Al 2 O 3 , ZrO 2 , MgO, etc. Since the oxide has high insulation properties and good adhesion between AlPO 4 and the sintered body, a voltage non-linear resistor having stable quality and high discharge capability can be obtained.
実施例 以下、本発明の電圧非直線抵抗体およびその製造方法
について実施例に基づき詳細に説明する。EXAMPLES Hereinafter, the voltage nonlinear resistor of the present invention and a method for manufacturing the same will be described in detail with reference to examples.
まず、ZnOの粉末に、合計量に対しBi2O3 0.5モル%,
Co2O3 0.5モル%,MnO2 0.5モル%,Sb2O3 1.0モル%,
Cr2O3 0.5モル%,NiO 0.5モル%を加え、充分に粉
砕,混合した後、造粒して原料粉を得た。この原料粉を
直径40mm,厚さ30mmの大きさに圧縮成形した。次に、こ
の成形体を1100℃〜1250℃の温度範囲で焼成し焼結体を
得た。この焼結体を450℃〜700℃の温度範囲で熱処理を
行った。次いで、前記熱処理を施した焼結体の側面にAl
2O3を主成分とし、リン酸アルミニウム塩を適当量含む
側面高抵抗剤をディップ法により塗布した。ここで、側
面高抵抗剤の塗布量は120℃で30分以上焼結体を乾燥し
た後に測定した。このようにして得られた側面高抵抗剤
塗布剤の焼結体を200℃〜700℃の温度範囲で焼付処理を
行った。その後、焼結体の両端面を平面研磨し、アルミ
ニウムの溶射電極を形成し電圧非直線抵抗体を得た。第
1図は以上のようにして得た電圧非直線抵抗体の断面図
で、1は酸化亜鉛を主成分とする焼結体、2はAl2O3を
主成分としてAlPO4を副成分とする側面高抵抗層、3は
アルミニウムの溶射電極である。First, 0.5 mol% of Bi 2 O 3 based on the total amount is added to ZnO powder,
Co 2 O 3 0.5 mol%, MnO 2 0.5 mol%, Sb 2 O 3 1.0 mol%,
0.5 mol% of Cr 2 O 3 and 0.5 mol% of NiO were added, sufficiently pulverized and mixed, and then granulated to obtain a raw material powder. This raw material powder was compression molded to a size of 40 mm in diameter and 30 mm in thickness. Next, this molded body was fired in a temperature range of 1100 ° C. to 1250 ° C. to obtain a sintered body. This sintered body was heat-treated in a temperature range of 450 ° C to 700 ° C. Next, Al was applied to the side surface of the heat-treated sintered body.
A side surface high resistance agent containing 2 O 3 as a main component and containing an appropriate amount of aluminum phosphate was applied by a dipping method. Here, the application amount of the side surface high resistance agent was measured after drying the sintered body at 120 ° C. for 30 minutes or more. The sintered body of the side surface high resistance coating material thus obtained was subjected to a baking treatment in a temperature range of 200 ° C to 700 ° C. After that, both end surfaces of the sintered body were polished to form a sprayed aluminum electrode to obtain a voltage non-linear resistor. FIG. 1 is a cross-sectional view of a voltage non-linear resistor obtained as described above, wherein 1 is a sintered body mainly composed of zinc oxide, 2 is Al 2 O 3 as a main component and AlPO 4 is a sub-component. The side high resistance layer 3 is a sprayed electrode of aluminum.
次に、比較検討例として本発明の実施例と同一の原料
粉末を用いて同一形状に圧縮した成形体を、900℃で仮
焼した後、Bi2O3,Sb2O3,SiO2をそれぞれ10モル%,10モ
ル%,80モル%を含むペースト状側面剤を塗布し、本発
明の実施例と同一条件で焼成,熱処理を実施し、試料
(従来例)を作成した。Next, as a comparative study example, a green compact compressed to the same shape using the same raw material powder as in the example of the present invention was calcined at 900 ° C., and then Bi 2 O 3 , Sb 2 O 3 , and SiO 2 were removed. Paste-like side agents containing 10 mol%, 10 mol%, and 80 mol%, respectively, were applied, and baked and heat-treated under the same conditions as in the examples of the present invention, thereby preparing samples (conventional examples).
下記の第1表に本発明および従来例による電圧非直線
抵抗体の外観,初期特性,放電耐量特性および課電寿命
特性を示す。ここで、試料数は各ロットともにn=10ヶ
である。また、放電耐量特性は4/10μsのインパルスを
5分間隔で同一方向に2回ずつ印加し、40KAよりステッ
プアップした。さらに、課電寿命特性は周囲温度130
℃,課電率95%(AC,ピーク値)の条件で行った。ま
た、課電寿命特性は漏れ電流が3mA(ピーク値)に至る
までの時間を測定した。Table 1 below shows the appearance, initial characteristics, discharge withstand characteristics, and charging life characteristics of the voltage non-linear resistor according to the present invention and the conventional example. Here, the number of samples is n = 10 for each lot. As for the discharge withstand characteristic, an impulse of 4/10 μs was applied twice in the same direction at 5 minute intervals, and stepped up from 40KA. In addition, the charging life characteristic is 130
The test was performed under the conditions of ° C and a power application rate of 95% (AC, peak value). In addition, as for the charging life characteristics, the time required for the leakage current to reach 3 mA (peak value) was measured.
第1表より、低温で側面高抵抗剤を焼付ける場合は問
題とならないが、500℃以上で焼付処理を行う場合、予
め450℃以上の熱処理を実施しておかないと側面高抵抗
層の剥離が発生し、放電耐量特性が低くなることがわか
る。しかしながら、750℃以上の温度で熱処理を実施し
た場合、初期特性が劣化し課電寿命特性が悪化すること
がわかる。従って、熱処理は450℃〜700℃の温度範囲で
実施することが望ましい。次に、側面高抵抗剤の焼付条
件は150℃では放電耐量特性が低く、800℃では課電寿命
特性が悪化するため、200℃〜700℃の温度範囲で焼付処
理を実施することが望ましく、この条件で放電耐量特性
は良好な値を示しバラツキも小さい。一方、従来例では
放電耐量特性に大きなバラツキがあることがわかる。こ
れは従来法では仮焼体と側面高抵抗剤とを焼成時に反応
させているため、反応が均一に行われず、側面高抵抗層
の厚みなどにむらができるためと考えられる。 According to Table 1, there is no problem when baking the side surface high resistance agent at low temperature, but when baking at 500 ° C or more, the heat treatment at 450 ° C or more must be performed beforehand to peel off the side high resistance layer. It can be seen that a discharge occurs and the discharge withstand capability characteristic is lowered. However, when the heat treatment is performed at a temperature of 750 ° C. or more, it is understood that the initial characteristics are deteriorated and the charging life characteristics are deteriorated. Therefore, the heat treatment is desirably performed in a temperature range of 450 ° C to 700 ° C. Next, the baking condition of the side surface high resistance agent is such that the discharge withstand characteristic is low at 150 ° C. and the charging life characteristic deteriorates at 800 ° C. Therefore, it is desirable to perform the baking treatment in a temperature range of 200 ° C. to 700 ° C. Under these conditions, the discharge withstand characteristics show good values and small variations. On the other hand, in the conventional example, it is found that there is a large variation in the discharge withstand characteristics. This is presumably because the calcined body and the side surface high resistance agent are reacted during firing in the conventional method, so that the reaction is not performed uniformly and the thickness of the side surface high resistance layer becomes uneven.
次に、側面高抵抗剤中のリン酸アルミニウム塩の添加
量を調整して側面高抵抗層中のAl2O3,AlPO4の組成比に
ついて検討した。この結果を下記の第2表に示す。ここ
で、焼結体の熱処理条件は500℃、オーバーコート剤の
塗布重量は焼結体の単位側面積当り15mgである。Next, the composition ratio of Al 2 O 3 and AlPO 4 in the side surface high resistance layer was examined by adjusting the addition amount of the aluminum phosphate salt in the side surface high resistance agent. The results are shown in Table 2 below. Here, the heat treatment condition of the sintered body is 500 ° C., and the applied weight of the overcoat agent is 15 mg per unit area of the sintered body.
第2表より、側面高抵抗層中のAlPO4の量が、0.01モ
ル%の場合、側面高抵抗層と焼結体の密着強度が充分で
なく、放電耐量特性が低いことがわかる。また、25.0モ
ル%を越えると側面高抵抗層が焼付処理時に剥離し、放
電耐量特性が低下することがわかる。以上の結果より、
側面高抵抗層中のAlPO4の最適量は0.1〜25.0モル%であ
ることがわかる。 From Table 2, it can be seen that when the amount of AlPO 4 in the side surface high resistance layer is 0.01 mol%, the adhesion strength between the side surface high resistance layer and the sintered body is not sufficient, and the discharge withstand characteristics are low. Further, when it exceeds 25.0 mol%, the side high-resistance layer is peeled off during the baking treatment, and it is found that the discharge withstand characteristics deteriorate. based on the above results,
The optimum amount of AlPO 4 side high-resistance layer is found to be from 0.1 to 25.0 mol%.
次に、下記の第3表に側面高抵抗剤塗布量と、諸特性
の関係を示した。ここで、側面高抵抗剤は焼付処理後Al
PO4が5.0モル%となるよう調整した。また、焼結体の熱
処理温度は500℃である。さらに、側面高抵抗剤の塗布
量は粘度および塗布回数によりコントロールし、塗布後
120℃で30分以上乾燥し塗布重量を測定した。Next, Table 3 below shows the relationship between the applied amount of the side surface high resistance agent and various characteristics. Here, the side high resistance agent is Al
It was adjusted so that PO 4 was 5.0 mol%. The heat treatment temperature of the sintered body is 500 ° C. Furthermore, the amount of side high resistance agent applied is controlled by the viscosity and the number of applications, and after application
After drying at 120 ° C. for 30 minutes or more, the coating weight was measured.
第3表より、側面高抵抗剤の塗布量が0.1mgの場合、
高抵抗層の厚さが薄く絶縁耐圧が低いため、放電耐量特
性が低く、100mgを越える塗布量では側面高抵抗層の剥
離が発生する。従って、塗布量の最適値は1.0〜100.0mg
/cm2であることがわかる。 From Table 3, when the application amount of the side surface high resistance agent is 0.1 mg,
Since the thickness of the high-resistance layer is small and the withstand voltage is low, the discharge withstand characteristic is low. If the coating amount exceeds 100 mg, the side high-resistance layer is peeled off. Therefore, the optimal amount of application is 1.0 to 10.00.0 mg
/ cm 2 .
なお、本実施例では側面高抵抗剤の主成分がAl2O3の
場合についてのみ述べたが、SiO2,ZrO2,MgOのいずれの
場合であっても同様の効果があることを確認した。ま
た、側面高抵抗剤の塗布方法にディップ法を用いたが、
これはスプレー方式,ハケ塗り方式など、均一な塗布が
可能な方法であれば本発明の効果に変わりはない。In this example, only the case where the main component of the side surface high resistance agent was Al 2 O 3 was described, but it was confirmed that the same effect was obtained in any case of SiO 2 , ZrO 2 , and MgO. . Also, the dipping method was used for applying the side high resistance agent,
This is the same as the effect of the present invention as long as a uniform coating method such as a spray method or a brush coating method is possible.
発明の効果 以上のように本発明によれば、酸化亜鉛を主成分とす
る焼結体を450℃〜700℃の温度範囲で熱処理し、SiO2,A
l2O3,ZrO2,MgOの中から選ばれた1種類以上の酸化物を
主成分とし、リン酸アルミニウム塩を含む側面高抵抗剤
を塗布し、200℃〜700℃の温度範囲で焼付処理すること
により、焼結体側面に均一な厚みの絶縁耐圧の高い側面
高抵抗層を形成することができ、その結果、放電耐量特
性が高く、しかも特性バラツキの小さい電圧非直線抵抗
体を得ることができる。Effects of the Invention As described above, according to the present invention, a sintered body containing zinc oxide as a main component is heat-treated in a temperature range of 450 ° C to 700 ° C, and SiO 2 , A
l 2 O 3, ZrO 2, as a main component one or more oxides selected from among MgO, coated side high-resistance agent containing aluminum phosphate salt, baking in the temperature range of 200 ° C. to 700 ° C. By performing the treatment, a side-surface high-resistance layer having a uniform thickness and a high withstand voltage can be formed on the side surface of the sintered body. As a result, a voltage non-linear resistor having a high discharge withstand characteristic and a small characteristic variation can be obtained. be able to.
第1図は本発明の一実施例による電圧非直線抵抗体の断
面図である。 1……焼結体、2……側面高抵抗層、3……電極。FIG. 1 is a sectional view of a voltage non-linear resistor according to an embodiment of the present invention. 1 ... sintered body, 2 ... side high resistance layer, 3 ... electrode.
Claims (3)
SiO2,Al2O3,ZrO2,MgOの中から選ばれた少なくとも1種
類以上の酸化物を主成分とし、AlPO4を1.0〜25.0モル%
含む側面高抵抗層を有する電圧非直線抵抗体。1. A side face of a sintered body mainly composed of zinc oxide,
The main component is at least one oxide selected from SiO 2 , Al 2 O 3 , ZrO 2 and MgO, and AlPO 4 is 1.0 to 25.0 mol%
A voltage non-linear resistor having a side high resistance layer.
00℃の温度範囲で熱処理した後、前記焼結体の側面にSi
O2,Al2O3,ZrO2,MgOの中から選ばれた少なくとも1種類
以上の酸化物を主成分とし、リン酸アルミニウム塩を含
む側面高抵抗剤を塗布し、200℃〜700℃の温度範囲で焼
付処理を行い、側面高抵抗層を形成したことを特徴とす
る電圧非直線抵抗体の製造方法。2. A sintered body comprising zinc oxide as a main component at a temperature of 450.degree.
After heat treatment in a temperature range of 00 ° C., Si
O 2 , Al 2 O 3 , ZrO 2 , at least one oxide selected from MgO as a main component, coated with a side surface high resistance agent containing aluminum phosphate, 200 ℃ ~ 700 ℃ A method for manufacturing a voltage non-linear resistor, wherein a side surface high resistance layer is formed by performing a baking treatment in a temperature range.
乾燥後、1.0〜100.0mg/cm2の範囲である特許請求の範囲
第2項記載の電圧非直線抵抗体の製造方法。3. The application amount of the side surface high resistance agent on the side surface of the sintered body is as follows:
3. The method for producing a voltage non-linear resistor according to claim 2 , wherein after drying is in the range of 1.0 to 100.0 mg / cm 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1122183A JP2718175B2 (en) | 1989-05-16 | 1989-05-16 | Voltage nonlinear resistor and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1122183A JP2718175B2 (en) | 1989-05-16 | 1989-05-16 | Voltage nonlinear resistor and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02302001A JPH02302001A (en) | 1990-12-14 |
JP2718175B2 true JP2718175B2 (en) | 1998-02-25 |
Family
ID=14829631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1122183A Expired - Fee Related JP2718175B2 (en) | 1989-05-16 | 1989-05-16 | Voltage nonlinear resistor and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2718175B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115181372B (en) * | 2022-07-25 | 2023-05-05 | 华南理工大学 | Preparation method of insulating cable material with high volume resistivity |
-
1989
- 1989-05-16 JP JP1122183A patent/JP2718175B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02302001A (en) | 1990-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0316015B1 (en) | Material for resistor body and non-linear resistor made thereof | |
EP0452511B1 (en) | Zinc oxide varistor, manufacture thereof, and crystallized glass composition for coating | |
JP3293403B2 (en) | Lateral high resistance agent for zinc oxide varistor, zinc oxide varistor using the same, and method of manufacturing the same | |
JP2718175B2 (en) | Voltage nonlinear resistor and method of manufacturing the same | |
JP2718176B2 (en) | Voltage nonlinear resistor and method of manufacturing the same | |
JPS5941284B2 (en) | Manufacturing method of voltage nonlinear resistor | |
JP2815990B2 (en) | Manufacturing method of nonlinear resistor | |
JP3220200B2 (en) | Method for manufacturing voltage non-linear resistor | |
JP3830354B2 (en) | Method for manufacturing voltage nonlinear resistor | |
JP4157237B2 (en) | Voltage nonlinear resistor and manufacturing method thereof | |
JP2692210B2 (en) | Zinc oxide varistor | |
JP2560851B2 (en) | Voltage nonlinear resistor | |
JP2978009B2 (en) | Method of manufacturing voltage non-linear resistor | |
JP2735320B2 (en) | Non-linear resistor | |
JPH0258806A (en) | Voltage nonlinear resistor and its manufacture | |
JPH0519802B2 (en) | ||
JP2687470B2 (en) | Manufacturing method of zinc oxide type varistor | |
JP2819691B2 (en) | Manufacturing method of zinc oxide varistor | |
JP2001052907A (en) | Ceramic element and manufacturing method | |
JPH0258807A (en) | Manufacture of voltage nonlinear resistor | |
JP2621408B2 (en) | Manufacturing method of zinc oxide type varistor | |
JP2985619B2 (en) | Method of manufacturing voltage non-linear resistor and lightning arrester | |
JP3220193B2 (en) | Voltage non-linear resistor | |
JPH0684610A (en) | Production of voltage nonlinear resistor | |
JPH05152105A (en) | Nonlinear voltage-dependent registor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071114 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081114 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |