JPH04154654A - Production of sintered material of ito - Google Patents
Production of sintered material of itoInfo
- Publication number
- JPH04154654A JPH04154654A JP2281345A JP28134590A JPH04154654A JP H04154654 A JPH04154654 A JP H04154654A JP 2281345 A JP2281345 A JP 2281345A JP 28134590 A JP28134590 A JP 28134590A JP H04154654 A JPH04154654 A JP H04154654A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- sintered body
- ito
- oxygen
- tin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000000463 material Substances 0.000 title abstract description 7
- 239000000843 powder Substances 0.000 claims abstract description 40
- 238000005245 sintering Methods 0.000 claims abstract description 20
- 239000002245 particle Substances 0.000 claims abstract description 13
- 229910052738 indium Inorganic materials 0.000 claims abstract description 12
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052718 tin Inorganic materials 0.000 claims abstract description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 10
- 229910001887 tin oxide Inorganic materials 0.000 claims description 10
- 229910003437 indium oxide Inorganic materials 0.000 claims description 9
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims 1
- 239000002994 raw material Substances 0.000 abstract description 16
- 238000000465 moulding Methods 0.000 abstract description 5
- 239000011812 mixed powder Substances 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 description 18
- 230000002159 abnormal effect Effects 0.000 description 11
- 238000004544 sputter deposition Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000004453 electron probe microanalysis Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- AZWHFTKIBIQKCA-UHFFFAOYSA-N [Sn+2]=O.[O-2].[In+3] Chemical compound [Sn+2]=O.[O-2].[In+3] AZWHFTKIBIQKCA-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910006853 SnOz Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 101150052401 slc44a1 gene Proteins 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、透明導電膜作成に使用するスパッタリング用
ターゲット、即ちITO焼結体の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a sputtering target used for producing a transparent conductive film, that is, an ITO sintered body.
(従来技術)
ITO焼結体をスパッタリングして得られる透明導電膜
は、その比抵抗値の低さから有望な膜として注封されて
いる。(Prior Art) A transparent conductive film obtained by sputtering an ITO sintered body is potted as a promising film because of its low specific resistance value.
従来、相対密度が80%以上と高密度のITO焼結体は
、次の様にして製造されている。Conventionally, high-density ITO sintered bodies with a relative density of 80% or more have been manufactured in the following manner.
即ち、実質的にインジウム、スズ及び酸素から成り、所
望の組成に配合された粉末を加圧成形した後に、酸素あ
るいは大気中で焼結するか、または加圧下で温度を上げ
、1000℃以下の温度で焼結することによって製造さ
れている。That is, a powder consisting essentially of indium, tin, and oxygen, blended to a desired composition, is pressure-molded and then sintered in oxygen or air, or heated under pressure to a temperature of 1000°C or less. It is manufactured by sintering at high temperatures.
(発明が解決しようとする課B)
然しながら、上記の様にして製造されたITOターゲッ
トを用いてスパッタリングを行う場合、その成膜中に生
じる異常放電現象によってプラズマ状態が不安定となり
、安定した成膜が行われず、スパッタされた膜の構造が
悪化し、膜の特性値が劣化するという不都合を生じるこ
とが知られている。(Problem B to be solved by the invention) However, when sputtering is performed using the ITO target manufactured as described above, the plasma state becomes unstable due to an abnormal discharge phenomenon that occurs during film formation, making it difficult to achieve stable film formation. It is known that this causes disadvantages in that the film is not formed, the structure of the sputtered film deteriorates, and the characteristic values of the film deteriorate.
また、異常放電現象が頻繁に発生する状況下において長
時間ITOター、ゲットを使用していると、ターゲット
表面に変質層が生じ(所謂黒化)、これにより成膜速度
が低下し、生産性が低下するという問題も生じている。In addition, if an ITO target is used for a long time under conditions where abnormal discharge phenomena occur frequently, a degraded layer will form on the target surface (so-called blackening), which will reduce the film formation rate and reduce productivity. There is also the problem of a decline in
従って本発明は、上述した従来のITOターゲットの製
造方法を改良し、異常放電現象の発生を有効に抑制する
ことが可能なITO焼結体の製造方法を提供することを
目的とする。Therefore, an object of the present invention is to provide a method for manufacturing an ITO sintered body that improves the above-described conventional method for manufacturing an ITO target and can effectively suppress the occurrence of abnormal discharge phenomena.
(課題を達成するための手段)
本発明によれば、実質的にインジウム、スズ及び酸素か
ら成り、相対密度が80%以上であるITO焼結体を製
造する方法において、
インジウム酸化物及びスズ酸化物から成る平均粒径が0
.1μ裁以下の粉末を加圧成形し、次いで1350℃以
上の温度で焼結を行ない、得られた焼結体を無酸素雰囲
気中で500〜1300℃の温度で熱処理することを特
徴とするITO焼結体の製造方法が提供される。(Means for Achieving the Object) According to the present invention, in a method for producing an ITO sintered body consisting essentially of indium, tin and oxygen and having a relative density of 80% or more, indium oxide and tin oxide The average particle size consisting of
.. An ITO characterized in that powder of 1 μm or less is pressure-molded, then sintered at a temperature of 1350°C or higher, and the resulting sintered body is heat-treated at a temperature of 500 to 1300°C in an oxygen-free atmosphere. A method of manufacturing a sintered body is provided.
また本発明によれば、実を的にインジウム、スズ及び酸
素から成り、相対密度が80%以上であるITO焼結体
を製造する方法において、インジウム酸化物及びスズ酸
化物から成る平均粒径が0.1μm以下の粉末を、50
0〜1300℃の温度及び100 kg/cj以上の圧
力下において、無酸素雰囲気中で該粉末を焼結すること
を特徴とするITO焼結体の製造方法が提供される。Further, according to the present invention, in a method for producing an ITO sintered body mainly consisting of indium, tin and oxygen and having a relative density of 80% or more, the average particle size of indium oxide and tin oxide is Powder of 0.1 μm or less is
A method for producing an ITO sintered body is provided, which comprises sintering the powder in an oxygen-free atmosphere at a temperature of 0 to 1300°C and a pressure of 100 kg/cj or more.
本発明の製造方法によって得られたITO焼結体は、相
対密度が80%以上であって、電子線マイクロアナライ
ザー(EPMA)の線分析におけるスズ組成が平均組成
の0.8〜1.2倍の範囲にあるとともに、表面抵抗値
が1+wΩ/cii以下の範囲にある。The ITO sintered body obtained by the manufacturing method of the present invention has a relative density of 80% or more, and the tin composition in line analysis with an electron beam microanalyzer (EPMA) is 0.8 to 1.2 times the average composition. The surface resistance value is in the range of 1+wΩ/cii or less.
即ちスパッタリング中の異常放電現象は、ターゲットに
アルゴンイオンが衝突した際に、ターゲットから二次電
子が放出され、ターゲット内に正の電荷が蓄積すること
に起因するものである。本発明は、ITO焼結体を上記
のように高密度とし、スズを均一に分散させ、且つ焼結
体の電気伝導度を良好なものとすることによって、電荷
の蓄積を防止し、その結果として異常放電現象を有効に
抑制することに成功したものである。That is, the abnormal discharge phenomenon during sputtering is caused by secondary electrons being emitted from the target when argon ions collide with the target, and positive charges accumulating within the target. The present invention prevents charge accumulation by making the ITO sintered body high in density as described above, dispersing tin uniformly, and making the sintered body have good electrical conductivity. As a result, we succeeded in effectively suppressing abnormal discharge phenomena.
原料粉末
本発明において、原料粉末としては、インジウム酸化物
及びスズ酸化物からなるものが使用される。具体的には
、酸化インジウム−酸化スズ複合粉末、酸化インジウム
粉末と酸化スズ粉末との混合粉末、酸化インジウム−酸
化スズ複合粉末と酸化スズ粉末との混合粉末、酸化イン
ジウム−酸化スズ複合粉末と酸化インジウム粉末との混
合粉末等が使用される。これら粉末は、目的とするIT
O焼結体の組成に応じたインジウム含量及びスズ含量を
有しており、例えば、−船釣には、インジウム含量が7
0〜78重量%、スズ含量が4〜12重量%となるよう
に各粉末を混合調整されたものが使用される。Raw Material Powder In the present invention, raw material powder made of indium oxide and tin oxide is used. Specifically, indium oxide-tin oxide composite powder, mixed powder of indium oxide powder and tin oxide powder, mixed powder of indium oxide-tin oxide composite powder and tin oxide powder, indium oxide-tin oxide composite powder and oxidized A mixed powder with indium powder, etc. is used. These powders are
It has an indium content and a tin content depending on the composition of the O sintered body. For example, for boat fishing, the indium content is 7.
Each powder is mixed and adjusted so that the tin content is 0 to 78% by weight and the tin content is 4 to 12% by weight.
本発明においては、この原料粉末として、その平均粒径
が0.1μm以下、特に0.08μm以下のもあを使用
することが重要である。即ち、平均粒径が0.1μ麟よ
りも高い原料粉末を使用すると、酸化インジウムあるい
は酸化スズの粗大粒子が存在するために、原料粉末中の
組成の均一分散性が悪化し、また原料粉末の成形性、焼
結性が悪化し、この結果として、80%以上の高密度の
焼結体が得られなくなる。In the present invention, it is important to use powder having an average particle size of 0.1 μm or less, particularly 0.08 μm or less as the raw material powder. That is, if a raw material powder with an average particle size higher than 0.1 μm is used, the presence of coarse particles of indium oxide or tin oxide will deteriorate the uniform dispersion of the composition in the raw material powder, and the raw material powder will be Formability and sinterability deteriorate, and as a result, a sintered body with a high density of 80% or more cannot be obtained.
上述した原料粉末の調製は、ボールミル等を用いての混
合・粉砕によって行なわれ、混合時間は、通常12時間
以上、好ましくは24時間以上である。The raw material powder described above is prepared by mixing and pulverizing using a ball mill or the like, and the mixing time is usually 12 hours or more, preferably 24 hours or more.
また本発明において使用する原料粉末には、上記の混合
粉砕時、あるいは後述する成形前の段階において、適宜
パラフィンワックス、ポリビニルアルコール等のバイン
ダーを添加することができ、これにより成形体の強度を
向上させることができる。このようなバインダーの添加
量は、一般に1〜2重量%の範囲であることが好ましい
。In addition, a binder such as paraffin wax or polyvinyl alcohol can be appropriately added to the raw material powder used in the present invention during the above-mentioned mixing and pulverization, or at the stage before molding described later, thereby improving the strength of the molded product. can be done. The amount of such a binder added is generally preferably in the range of 1 to 2% by weight.
本発明のITO焼結体の製造方法は、上述した原料粉末
を使用するものであり、これには2通りの方法がある。The method for producing an ITO sintered body of the present invention uses the above-mentioned raw material powder, and there are two methods for this.
第土豊製造方跋
第1の製造方法は、前記原料粉末を用いて、加圧成形、
焼結及び熱処理を行なう方法である。The first manufacturing method is to use the raw material powder, press molding,
This method involves sintering and heat treatment.
加圧成形;
この加圧成形は、適当な金型を用いて、一般に1 to
n/c4以上、好ましくは2〜3 ton/aiの圧力
で行なわれる。この圧力が1 ton/1fflよりも
低いと、焼結体の密度を80%以上とすることが困難と
なる。Pressure molding: This pressure molding is generally carried out in one to
It is carried out at a pressure of n/c4 or more, preferably 2 to 3 ton/ai. If this pressure is lower than 1 ton/1ffl, it will be difficult to make the density of the sintered body 80% or more.
焼結;
加圧成形に引き続いて行なわれる焼結は、酸素雰囲気下
あるいは大気中で行なわれる。焼結温度は、1350℃
以上、好ましくは1400℃以上であることが必要であ
る。焼結温度が1350℃未満であると、高密度の焼結
体を得ることができない。Sintering: The sintering that follows pressure forming is performed in an oxygen atmosphere or in the air. Sintering temperature is 1350℃
As mentioned above, it is necessary that the temperature is preferably 1400°C or higher. If the sintering temperature is less than 1350°C, a high-density sintered body cannot be obtained.
またこの焼結温度は、1550℃以下とすることか好ま
しい。1550℃よりも高い場合には、スズの凝集を生
じるおそれがある。Further, the sintering temperature is preferably 1550°C or lower. If the temperature is higher than 1550°C, tin may aggregate.
焼結時間は、一般に5〜10時間程度である。Sintering time is generally about 5 to 10 hours.
熱処理;
焼結後に行なわれる熱処理は、無酸素雰囲気下で行なわ
れる。焼結体中には、酸素が化学量論組成分食まれてお
り、この無酸素雰囲気下での熱処理により、酸素空孔を
導入し、焼結体の表面抵抗を低下させるのである。尚、
無酸素雰囲気とは、例えば(1,Q I Torr以下
の真空中あるいはアルゴンガス、窒素ガス等の不活性ガ
ス雰囲気を意味する。Heat treatment: The heat treatment performed after sintering is performed in an oxygen-free atmosphere. In the sintered body, a stoichiometric amount of oxygen is consumed, and this heat treatment in an oxygen-free atmosphere introduces oxygen vacancies and lowers the surface resistance of the sintered body. still,
An oxygen-free atmosphere means, for example, a vacuum of 1, Q I Torr or less or an inert gas atmosphere such as argon gas or nitrogen gas.
またこの熱処理は、500〜1300℃1好ましくは7
00〜1250℃の温度で行なわれる。Further, this heat treatment is carried out at a temperature of 500 to 1300°C, preferably 7°C.
It is carried out at a temperature of 00 to 1250°C.
熱処理温度が500℃未満であると、酸素空孔の導入を
有効に行なうことができず、焼結体の表面抵抗を低下さ
せることができない。また1300℃よりも高温である
と、酸素とともにスズ原子も飛散してしまい、焼結体の
組成制御が困難となる。If the heat treatment temperature is less than 500° C., oxygen vacancies cannot be effectively introduced and the surface resistance of the sintered body cannot be reduced. Moreover, if the temperature is higher than 1300° C., tin atoms will be scattered along with oxygen, making it difficult to control the composition of the sintered body.
上述した熱処理は、一般に3〜10時間行なうことが好
適である。The heat treatment described above is generally preferably carried out for 3 to 10 hours.
11!」む凱引汰・
第2の製造方法は、無酸素雰囲気中において、加圧下で
焼結を行なう方法である。この方法によれば、−段の処
理で、表面抵抗の低い焼結体が得られる。即ち、この焼
結を無酸素雰囲気中で行なうのは、第1の方法と同様、
焼結体中に酸素空孔を導入するためである。11! ``The second manufacturing method is a method in which sintering is performed under pressure in an oxygen-free atmosphere. According to this method, a sintered body with low surface resistance can be obtained in -stage treatment. That is, performing this sintering in an oxygen-free atmosphere is similar to the first method,
This is to introduce oxygen vacancies into the sintered body.
この方法において、焼結温度は500〜1300℃1好
ましくは500〜1000℃であり、加圧圧力は、10
0kg/al1以上、好ましくは300 kg/c4以
上である。焼結温度が500℃未満あるいは加圧圧力が
100 kg/ctl1未満の何れの場合においても焼
結体の密度を80%以上の高密度とすることが困難とな
る。また焼結温度を1300℃よりも高温とすると、ス
ズ原子の飛散が妨げられなくなる。In this method, the sintering temperature is 500 to 1300°C, preferably 500 to 1000°C, and the pressure is 10
It is 0 kg/al or more, preferably 300 kg/c4 or more. When the sintering temperature is less than 500° C. or when the pressure is less than 100 kg/ctl1, it is difficult to make the sintered body have a high density of 80% or more. Moreover, when the sintering temperature is set higher than 1300° C., the scattering of tin atoms is not prevented.
ここで行なわれる加圧下の焼結は、一般に1〜2時間程
度で行なわれる。The sintering under pressure carried out here is generally carried out for about 1 to 2 hours.
土工旦茨痘生
かくして得られるITO焼結体は、実質的にインジウム
、スズ及び酸素から成るものであり、In2O3−5n
O□系のものである。この組成自体は公知のITO焼結
体と同様であり、一般に、スズの平均組成が4〜12重
量%であり、インジウムの平均組成が70〜78重量%
の範囲にある。The ITO sintered body thus obtained consists essentially of indium, tin and oxygen, and is composed of In2O3-5n.
It is of the O□ type. The composition itself is similar to that of known ITO sintered bodies, and generally the average composition of tin is 4 to 12% by weight, and the average composition of indium is 70 to 78% by weight.
within the range of
本発明の製造法によって得られたITO焼結体において
は、相対密度が80%以上、好ましくは85%以上の範
囲にある。従って、局所的に電荷が蓄積し易い低密度の
部分が殆ど存在せず、異常放電−の発生が有効に回避さ
れる。In the ITO sintered body obtained by the production method of the present invention, the relative density is in the range of 80% or more, preferably 85% or more. Therefore, there are almost no low-density portions where charges are likely to accumulate locally, and the occurrence of abnormal discharge can be effectively avoided.
またこのITO焼結体は、電子線マイクロアナライザー
の線分析におけるスズ組成のバラツキ範囲が、平均組成
の0.8〜1.2倍の範囲内にある。Further, in this ITO sintered body, the variation range of tin composition in line analysis with an electron beam microanalyzer is within a range of 0.8 to 1.2 times the average composition.
例えば、上記線分析におけるスズ組成のバラツキ範囲が
上記範囲外となる′ような場合には、スズ量が集中的に
かなり多量に存在する部分があることを意味する。この
ように多量のスズ量が集中する部分においては導電性が
低く、この結果として電荷が蓄積し易くなり、異常放電
を発生し易くなるのである0本発明の製造方法により得
られたITO焼結体は、スズが焼結体全体にわたって均
一に分散しており、スズが局所的に集中する部分がない
ために、局所的な電荷の蓄積が有効に回避され、異常放
電を有効に抑制することが可能となる。For example, if the variation range of the tin composition in the line analysis is outside the above range, it means that there is a portion where the amount of tin is concentrated and quite large. In this way, the conductivity is low in areas where a large amount of tin is concentrated, and as a result, charges are likely to accumulate and abnormal discharge is likely to occur. Since tin is uniformly distributed throughout the sintered body and there are no areas where tin is locally concentrated, local charge accumulation is effectively avoided and abnormal discharge is effectively suppressed. becomes possible.
さらに上記ITO焼結体は、焼結体の表面抵抗値は、1
mΩ/cd以下となる。従って、この焼結体自体が電荷
の蓄積を生じ難いものであるため、異常放電を有効に抑
制することが可能となる。Further, the ITO sintered body has a surface resistance value of 1
It becomes less than mΩ/cd. Therefore, since the sintered body itself does not easily accumulate electric charges, it is possible to effectively suppress abnormal discharge.
本発明の優れた効果を次の例で説明する。The excellent effects of the present invention will be explained with the following example.
(実施例)
実施五土
平均粒径0.07μmの酸化インジウム(InzO3)
粉末と、平均粒径0.5μ蒙の酸化スズ(SnOz)粉
末とを、5n02が10重量%となるように配合し、ボ
ールミル中で48時間、混合・粉砕を行なった。その後
、1.5重蓋%のパラフィンワックスを添加し、更に1
2時間、混合粉砕を行なって、平均粒径が0.05μm
の原料粉末を得た。(Example) Indium oxide (InzO3) with an average grain size of 0.07 μm
The powder and tin oxide (SnOz) powder having an average particle size of 0.5 μm were mixed so that 5n02 was 10% by weight, and mixed and pulverized in a ball mill for 48 hours. Then, 1.5% paraffin wax was added, and 1.5% paraffin wax was added.
After 2 hours of mixed pulverization, the average particle size was 0.05 μm.
A raw material powder was obtained.
この原料粉末を乾燥した後に造粒を行ない、3ton/
cjの圧力で75mm径X5mm厚の円板状にプレス成
形し、次いで酸素雰囲気中で1550℃にて5時間保持
し、焼結させた。その後、アルゴン中、1250℃にて
3時間、熱処理を行ない、表面抵抗値の低下処理を行な
った。After drying this raw material powder, it is granulated to produce 3 tons/
The material was press-molded into a disk shape with a diameter of 75 mm and a thickness of 5 mm at a pressure of cj, and then held at 1550° C. for 5 hours in an oxygen atmosphere to sinter. Thereafter, heat treatment was performed at 1250° C. for 3 hours in argon to reduce the surface resistance value.
得られた焼結体の密度及び四探針法により測定した表面
抵抗値を第1表に示す。Table 1 shows the density of the obtained sintered body and the surface resistance value measured by the four-probe method.
また上記焼結体の断面を@磨した後、ビーム径1tIl
lのEPMA線分析で50μmの長さにわたってスズの
バラツキを調べた結果、スズ組成は、7.0重量%から
8.9重量%の間でばらついた。尚、化学分析による平
均スズ組成は7.9重量%であった。Also, after polishing the cross section of the sintered body, the beam diameter was 1tIl.
As a result of investigating the variation in tin over a length of 50 μm by EPMA line analysis of 1, the tin composition varied between 7.0% by weight and 8.9% by weight. The average tin composition determined by chemical analysis was 7.9% by weight.
また上記焼結体をスパッタリング用ターゲツト材として
使用し、DCマグネトロンスパッタ法により16時間の
連続スパッタを行い、1分間当たりに発生した異常放電
の回数を第1表に示した。また16時間経過後の表面状
態の観察結果、並びに16時間スパッタ後の成膜速度の
、1時間スパッタ後の成膜速度に対する変化の割合を、
併せて第1表に示した。Further, using the above sintered body as a target material for sputtering, continuous sputtering was performed for 16 hours by DC magnetron sputtering, and Table 1 shows the number of abnormal discharges that occurred per minute. In addition, the observation results of the surface state after 16 hours and the rate of change in the film formation rate after 16 hours of sputtering with respect to the film formation rate after 1 hour of sputtering were determined.
They are also shown in Table 1.
尖施拠I
平均粒径0.07μmの酸化インジウム(InzOz)
粉末と、平均粒径0.5μmの酸化スズ(SnO□)粉
末とを使用し、その重量組成比が(InzOz)qc+
(SnOz) t。Point I Indium oxide (InzOz) with an average particle size of 0.07 μm
powder and tin oxide (SnO□) powder with an average particle size of 0.5 μm, and the weight composition ratio was (InzOz)qc+
(SnOz) t.
となるように両者を配合した。Both were blended so that
次いで、これに純水を加えた後、10閣径のジルコニア
ボールを用いて24時間ボールミル混合を行ない、平均
粒径0.07μ硼の原料粉末を得た。Next, after adding pure water to this, ball mill mixing was performed for 24 hours using zirconia balls with a diameter of 10 mm to obtain a raw material powder with an average particle size of 0.07 μm.
この原料粉末を乾燥した後、グラファイト型に充填し、
真空中で800″C4こて0.2ton/c+I!の圧
力でホットプレスを行い、75am径×5M1厚の円板
状の焼結体(ターゲット)を得た。After drying this raw material powder, it is filled into a graphite mold,
Hot pressing was performed in a vacuum using an 800″ C4 trowel at a pressure of 0.2 ton/c+I! to obtain a disk-shaped sintered body (target) with a diameter of 75 am and a thickness of 5 M1.
得られた焼結体について、実施例1と同様に、密度及び
表面抵抗の測定、EPMA線分析によるスズ組成の測定
、並びにスパッタリング試験を行ない、その結果を第1
表に示した。The obtained sintered body was subjected to measurements of density and surface resistance, measurement of tin composition by EPMA line analysis, and sputtering test in the same manner as in Example 1.
Shown in the table.
止較尉上
実施例1で用いたのと同様の各粉末を、実施例1と同じ
組成に配合し、■−ブレンダーを用いて60分間圧合し
た後、これをグラファイト型に充填し、真空中で800
℃にて0.2ton/cdの圧力でホットプレスを行い
、75mm径X5m厚の円板状の焼結体(ターゲット)
を得た。Each powder similar to that used in Example 1 was blended with the same composition as in Example 1, and after being compressed for 60 minutes using a blender, this was filled into a graphite mold and heated under vacuum. 800 inside
A disk-shaped sintered body (target) with a diameter of 75 mm and a thickness of 5 m was produced by hot pressing at a pressure of 0.2 ton/cd at ℃.
I got it.
この焼結体の各種性状の測定及びスパッタリング試験を
実施例1と同様に行い、その結果を第1表に示した。Various properties of this sintered body were measured and sputtering tests were conducted in the same manner as in Example 1, and the results are shown in Table 1.
1較fl
実施例1で調製された平均粒径0.05μmの原料粉末
を、乾燥及び造粒した後、2 ton/cfflの圧力
で80(財)径X7mm厚の円板状に成形し、これを毎
分1!の酸素気流中、1300℃にて5時間、焼結を行
なった。1 comparison fl The raw material powder with an average particle size of 0.05 μm prepared in Example 1 was dried and granulated, and then molded into a disk shape of 80 (Foundation) diameter x 7 mm thick at a pressure of 2 tons/cffl, Do this once every minute! Sintering was performed at 1300° C. for 5 hours in an oxygen stream.
得られた焼結体について、実施例1と同様に、密度及び
表面抵抗の測定、EPMA線分析によるスズ組成の測定
、並びにスパッタリング試験を行ない、その結果を第1
表に示した。The obtained sintered body was subjected to measurements of density and surface resistance, measurement of tin composition by EPMA line analysis, and sputtering test in the same manner as in Example 1.
Shown in the table.
(発明の効果)
本発明によれば、スパッタリング中の異常放電回数が極
めて少なく、また長時間使用後においても、表面黒化の
生じないITOターゲットを提供することができる。(Effects of the Invention) According to the present invention, it is possible to provide an ITO target that has an extremely small number of abnormal discharges during sputtering and does not cause surface blackening even after long-term use.
Claims (2)
対密度が80%以上であるITO焼結体を製造する方法
において、 インジウム酸化物及びスズ酸化物から成る平均粒径が0
.1μm以下の粉末を加圧成形し、次いで1350℃以
上の温度で焼結を行ない、得られた焼結体を無酸素雰囲
気中で500〜1300℃の温度で熱処理することを特
徴とするITO焼結体の製造方法。(1) In a method for producing an ITO sintered body consisting essentially of indium, tin and oxygen and having a relative density of 80% or more, the average particle size consisting of indium oxide and tin oxide is 0.
.. ITO sintering is characterized in that powder of 1 μm or less is pressure-molded, then sintered at a temperature of 1350°C or higher, and the obtained sintered body is heat-treated at a temperature of 500 to 1300°C in an oxygen-free atmosphere. Method for producing solids.
対密度が80%以上であるITO焼結体を製造する方法
において、 インジウム酸化物及びスズ酸化物から成る平均粒径が0
.1μm以下の粉末を、500〜1300℃の温度及び
100kg/cm^2以上の圧力下において、無酸素雰
囲気中で該粉末を焼結することを特徴とするITO焼結
体の製造方法。(2) In a method for producing an ITO sintered body consisting essentially of indium, tin and oxygen and having a relative density of 80% or more, the average particle size consisting of indium oxide and tin oxide is 0.
.. A method for producing an ITO sintered body, which comprises sintering powder of 1 μm or less in an oxygen-free atmosphere at a temperature of 500 to 1300° C. and a pressure of 100 kg/cm^2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2281345A JPH04154654A (en) | 1990-10-19 | 1990-10-19 | Production of sintered material of ito |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2281345A JPH04154654A (en) | 1990-10-19 | 1990-10-19 | Production of sintered material of ito |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04154654A true JPH04154654A (en) | 1992-05-27 |
Family
ID=17637818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2281345A Pending JPH04154654A (en) | 1990-10-19 | 1990-10-19 | Production of sintered material of ito |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04154654A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5656216A (en) * | 1994-08-25 | 1997-08-12 | Sony Corporation | Method for making metal oxide sputtering targets (barrier powder envelope) |
US6582641B1 (en) | 1994-08-25 | 2003-06-24 | Praxair S.T. Technology, Inc. | Apparatus and method for making metal oxide sputtering targets |
WO2011058882A1 (en) * | 2009-11-13 | 2011-05-19 | Semiconductor Energy Laboratory Co., Ltd. | Sputtering target and manufacturing method thereof, and transistor |
-
1990
- 1990-10-19 JP JP2281345A patent/JPH04154654A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5656216A (en) * | 1994-08-25 | 1997-08-12 | Sony Corporation | Method for making metal oxide sputtering targets (barrier powder envelope) |
US6582641B1 (en) | 1994-08-25 | 2003-06-24 | Praxair S.T. Technology, Inc. | Apparatus and method for making metal oxide sputtering targets |
WO2011058882A1 (en) * | 2009-11-13 | 2011-05-19 | Semiconductor Energy Laboratory Co., Ltd. | Sputtering target and manufacturing method thereof, and transistor |
JP2011122238A (en) * | 2009-11-13 | 2011-06-23 | Semiconductor Energy Lab Co Ltd | Sputtering target and manufacturing method thereof, and transistor |
US8937020B2 (en) | 2009-11-13 | 2015-01-20 | Semiconductor Energy Laboratory Co., Ltd. | Sputtering target and manufacturing method thereof, and transistor |
JP2015061953A (en) * | 2009-11-13 | 2015-04-02 | 株式会社半導体エネルギー研究所 | Sputtering target and method for manufacturing the same |
US10083823B2 (en) | 2009-11-13 | 2018-09-25 | Semiconductor Energy Laboratory Co., Ltd. | Sputtering target and manufacturing method thereof, and transistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101421474B1 (en) | Siox:si sputtering targets and method of making and using such targets | |
TWI761664B (en) | Oxide sputtering target, manufacturing method thereof, and oxide thin film formed using the oxide sputtering target | |
EP2428500B1 (en) | Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film | |
JPH06158308A (en) | Target for sputtering for indium-tin oxide film and its production | |
JP5418751B2 (en) | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film | |
JP5418752B2 (en) | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film | |
JP5418747B2 (en) | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film | |
JP5516838B2 (en) | Method for producing ZnO vapor deposition material | |
JP5418748B2 (en) | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film | |
JP5418749B2 (en) | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film | |
JPH04154654A (en) | Production of sintered material of ito | |
JP2009097089A (en) | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE | |
JP5418750B2 (en) | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film | |
JPH07243036A (en) | Ito sputtering target | |
JP2904358B2 (en) | Manufacturing method of ITO sintered body | |
JPH10147861A (en) | Production of indium oxide-tin oxide sintered body | |
JP3030913B2 (en) | Manufacturing method of ITO sintered body | |
JPH0754133A (en) | Ito target for sputtering | |
JPH0779005B2 (en) | ITO sintered body and manufacturing method thereof | |
JPH08246139A (en) | Oxide sintered compact | |
JP7554687B2 (en) | Cu-Bi2O3 sputtering target and its manufacturing method | |
JP2523251B2 (en) | Method for manufacturing ITO sintered body | |
JP2019094550A (en) | Izo target and method for producing the same | |
JP2002284570A (en) | Oxide sintered compact and sputtering target | |
JP5613926B2 (en) | Sputtering target for transparent conductive film and method for producing the same |