JP5418747B2 - ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film - Google Patents
ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film Download PDFInfo
- Publication number
- JP5418747B2 JP5418747B2 JP2008245299A JP2008245299A JP5418747B2 JP 5418747 B2 JP5418747 B2 JP 5418747B2 JP 2008245299 A JP2008245299 A JP 2008245299A JP 2008245299 A JP2008245299 A JP 2008245299A JP 5418747 B2 JP5418747 B2 JP 5418747B2
- Authority
- JP
- Japan
- Prior art keywords
- zno
- vapor deposition
- deposition material
- powder
- slurry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
Description
本発明は、例えば太陽電池などに用いられる透明導電膜またはガスおよび水蒸気に対する耐性膜や、液晶表示装置、エレクトロルミネッセンス表示装置、タッチパネル装置の透明圧電センサーの透明電極またはガスおよび水蒸気に対する耐性膜、また表示装置を構成するアクティブマトリクス駆動装置、帯電防止導電膜コーティング、ガスセンサー、電磁遮蔽パネル、圧電デバイス、光電変換装置、発光装置、薄膜型二次電池などに用いられる膜を成膜するために用いられるZnO蒸着材とその製造方法、および該ZnO蒸着材によって形成されるZnO膜の形成方法に関するものである。
The present invention relates to a transparent conductive film or gas and water vapor resistant film used for, for example, a solar cell, a transparent electrode of a transparent piezoelectric sensor of a liquid crystal display device, an electroluminescence display device or a touch panel device, or a gas and water vapor resistant film, Used to form films used in active matrix drive devices, antistatic conductive film coatings, gas sensors, electromagnetic shielding panels, piezoelectric devices, photoelectric conversion devices, light-emitting devices, thin-film secondary batteries, etc. that constitute display devices The present invention relates to a ZnO vapor deposition material, a method for producing the same, and a method for forming a ZnO film formed by the ZnO vapor deposition material.
近年、太陽電池などの光電変換装置などを製造する場合には、透明導電膜が不可欠である。従来の透明導電膜としては、ITO膜(錫をドープしたインジウム酸化物膜)が知られている。ITO膜は、透明性に優れ、低抵抗であるという利点を有する。 In recent years, a transparent conductive film is indispensable when manufacturing photoelectric conversion devices such as solar cells. An ITO film (indium oxide film doped with tin) is known as a conventional transparent conductive film. The ITO film has the advantages of excellent transparency and low resistance.
一方、太陽電池や液晶表示装置等にあっては、その低コスト化が求められている。しかし、インジウムが高価なことから、ITO膜を透明導電膜として用いると、その太陽電池も必然的にコスト高になる難点があった。また、太陽電池等は透明導電膜上にアモルファスシリコンをプラズマCVD法等により成膜して製造されるが、その際に、透明導電膜がITO膜であると、プラズマCVD時の水素プラズマにより、ITO膜が劣化するという問題点もあった。 On the other hand, cost reduction is required for solar cells, liquid crystal display devices, and the like. However, since indium is expensive, when an ITO film is used as the transparent conductive film, the solar cell inevitably has a problem of high cost. In addition, solar cells and the like are manufactured by forming amorphous silicon on a transparent conductive film by a plasma CVD method or the like. At that time, if the transparent conductive film is an ITO film, hydrogen plasma at the time of plasma CVD There was also a problem that the ITO film deteriorated.
これらの点を解消するために、安価に作製することのできるAl、B、Siなどの導電活性元素をドープした酸化亜鉛系膜を太陽電池等の透明導電膜として使用することが提案され、この酸化亜鉛系膜をスパッタリングにより形成するための酸化亜鉛系スパッタリング用ターゲットが提案されている(例えば、特許文献1)。この酸化亜鉛系スパッタリング用ターゲットによると、上記導電活性元素を亜鉛に対して所定量含有させることにより極めて低抵抗な酸化亜鉛系焼結体が得られ、この焼結体は、原料粉末が微細で高分散性を有するほど焼結密度が向上し導電性が向上すると云われている。
しかし、従来の酸化亜鉛系スパッタリング用ターゲットを用いて高速成膜するために高電圧をかけながらスパッタリングを行うと、異常放電が発生しやすく、放電状態が不安定でターゲットが不均一に消耗し、得られた膜に組成ずれが生じて低抵抗の膜を得ることが困難となる不具合があった。一方、投入電力を小さくして電圧を低くすると成膜速度が遅くなり、酸化亜鉛系膜の成膜効率は大幅に低下する不具合があった。 However, if sputtering is performed while applying a high voltage to form a high-speed film using a conventional zinc oxide sputtering target, abnormal discharge is likely to occur, the discharge state is unstable and the target is consumed unevenly, There was a problem that it was difficult to obtain a low-resistance film due to composition shift in the obtained film. On the other hand, when the input power is reduced and the voltage is lowered, the film formation rate is reduced, and the film formation efficiency of the zinc oxide film is greatly reduced.
さらに従来のターゲット材は、蒸発効率および成膜効率が低いためターゲット材交換サイクルの寿命が短く、生産性を高めるために蒸発効率および成膜効率のよいターゲット材が求められている。成膜速度が低いと膜密度の低下を招き、屈折率の低下、耐スパッタ性の低下、放電特性、絶縁性の悪化などの問題が生じる虞がある。 Further, since the conventional target material has low evaporation efficiency and film formation efficiency, the life of the target material replacement cycle is short, and a target material with high evaporation efficiency and film formation efficiency is required to increase productivity. If the film formation rate is low, the film density is lowered, and there is a possibility that problems such as a decrease in refractive index, a decrease in sputtering resistance, a discharge characteristic, and a deterioration in insulation properties may occur.
本発明は、従来の上記問題を解決したものであり、ITO膜に迫る高い導電率の膜を高速成膜することができ、さらに透過性および緻密性に優れた導電膜を形成することができるZnO蒸着材およびこれを用いたZnO膜を提供する。また、本発明は単位エネルギーあたりの蒸発量が多く、成膜速度をも向上し得るZnO蒸着材およびこれを用いたZnO膜を提供する。 The present invention solves the above-mentioned conventional problems, can form a film having a high conductivity approaching that of an ITO film at a high speed, and can form a conductive film having excellent permeability and denseness. A ZnO vapor deposition material and a ZnO film using the same are provided. In addition, the present invention provides a ZnO vapor deposition material that has a large amount of evaporation per unit energy and can improve the deposition rate, and a ZnO film using the same.
本発明は以下の構成によって上記課題を解決したZnO蒸着材に関する。
〔1〕透明導電膜の成膜に用いられるZnO蒸着材であって、CeおよびAlを含み、Ce含有量がAl含有量より多く、Ce含有量が0.1〜14.9質量%の範囲内およびAl含有量が0.1〜10質量%の範囲内であり、CeとAlの合計含有量が0.2〜15質量%の範囲内であるZnO多孔質焼結体からなり、該焼結体が3〜50%の気孔率を有し、平均気孔径0.1〜500μmの気孔を有することを特徴とするZnO蒸着材。
〔2〕ZnO多孔質焼結体が1〜500μmの範囲の平均結晶粒径を有する粒子の焼結体である上記[1]に記載するZnO蒸着材。
This invention relates to the ZnO vapor deposition material which solved the said subject with the following structures.
[1] A ZnO vapor deposition material used for forming a transparent conductive film, which contains Ce and Al, has a Ce content higher than an Al content, and a Ce content in a range of 0.1 to 14.9% by mass. And a ZnO porous sintered body in which the Al content is in the range of 0.1 to 10% by mass, and the total content of Ce and Al is in the range of 0.2 to 15% by mass. A ZnO vapor deposition material characterized in that the bonded body has a porosity of 3 to 50% and has pores having an average pore diameter of 0.1 to 500 µm .
[2] The ZnO vapor deposition material according to [1], wherein the ZnO porous sintered body is a sintered body of particles having an average crystal grain size in the range of 1 to 500 μm.
本発明のZnO蒸着材は、ZnO多孔質焼結体がCeとAlの2元素を特定の割合で所定量含むので、このZnO蒸着材を用いることによって、ITO膜に迫る高い導電性を有するZnO膜を得ることができる。具体的には、好ましくは、CeとAlの合計含有量が0.2〜15質量%の範囲内であることによって、導電特性および分光特性において優れた効果が得られる。 In the ZnO vapor deposition material of the present invention, the ZnO porous sintered body contains a predetermined amount of two elements of Ce and Al at a specific ratio. By using this ZnO vapor deposition material, ZnO having high conductivity approaching the ITO film is obtained. A membrane can be obtained. Specifically, preferably, when the total content of Ce and Al is in the range of 0.2 to 15% by mass, excellent effects in the conductive characteristics and the spectral characteristics can be obtained.
また、本発明のZnO蒸着材は、ZnO多孔質焼結体が3〜50%の気孔率を有するので、蒸着材内部の比表面積が大きく、蒸着材の蒸発速度を高くすることができる。具体的には、従来のZnO蒸着材に比較して1.1〜2倍程度の蒸発速度を得ることが可能となる。 Moreover, since the ZnO porous sintered body has a porosity of 3 to 50% in the ZnO vapor deposition material of the present invention, the specific surface area inside the vapor deposition material is large, and the evaporation rate of the vapor deposition material can be increased. Specifically, it is possible to obtain an evaporation rate about 1.1 to 2 times that of a conventional ZnO vapor deposition material.
さらに、本発明のZnO蒸着材は、ZnO多孔質焼結体が平均気孔径0.1〜500μmの気孔を有することによって蒸発速度を高くすることができる。また、ZnO多孔質焼結体が1〜500μmの平均結晶粒径を有する粒子の焼結体であることによって、蒸着材内部の比表面積が増大して蒸着材の蒸発速度を高くすることができ、成膜されたZnO膜は優れた膜特性を有する。 Furthermore, the ZnO vapor deposition material of the present invention can increase the evaporation rate when the ZnO porous sintered body has pores having an average pore diameter of 0.1 to 500 μm. In addition, since the ZnO porous sintered body is a sintered body of particles having an average crystal grain size of 1 to 500 μm, the specific surface area inside the deposition material can be increased, and the evaporation rate of the deposition material can be increased. The formed ZnO film has excellent film characteristics.
さらに、本発明のZnO蒸着材は、ZnO多孔質焼結体が、多結晶体でもまたは単結晶体であっても良く、CeとAlの2元素を特定の割合で所定量含むことによってITO膜に迫る高い導電性を有するZnO膜を得ることができる。 Further, in the ZnO vapor deposition material of the present invention, the ZnO porous sintered body may be a polycrystalline body or a single crystal body, and an ITO film containing two elements of Ce and Al at a specific ratio in a predetermined ratio. Thus, a ZnO film having high conductivity approaching the above can be obtained.
また、本発明は以下の構成によって上記課題を解決した製造方法に関する。
〔3〕(I)純度98%以上のZnO粉末と、ZnO蒸着材中のCe含有量が0.1〜14.9質量%になる量のCeO2粉末と、ZnO蒸着材中のAl含有量が0.1〜10質量%になる量のAl2O3粉末と、バインダと、有機溶媒とを混合して、濃度30〜75質量%のスラリーを調製する工程と、(II)該スラリーに気体を吹込んでガス含有スラリーを得る工程と、(III)該ガス含有スラリーを噴霧乾燥して平均粒径が50〜300μmの多孔質造粒粉末を得る工程と、(IV)該多孔質造粒粉末を成形して多孔質成形体を得る工程と、(V)該多孔質成形体を所定温度で焼結してZnO多孔質焼結体を得る工程とを有し、CeおよびAlを含み、Ce含有量がAl含有量より多く、Ce含有量が0.1〜14.9質量%の範囲内およびAl含有量が0.1〜10質量%の範囲内であり、CeとAlの合計含有量が0.2〜15質量%の範囲内であるZnO多孔質焼結体からなり、該焼結体が3〜50%の気孔率を有し、平均気孔径0.1〜500μmの気孔を有するZnO蒸着材を製造することを特徴とするZnO蒸着材の製造方法。
〔4〕上記[3]の製造方法において、上記(II)(III)の工程に代え、(II-2)原料粉末またはスラリーに発泡剤を混入して発泡剤含有スラリーを得る工程と、(III-2)該発泡剤含有スラリーを噴霧乾燥しつつ発泡させて平均粒径が50〜300μmの多孔質造粒粉末を得る工程を有するZnO蒸着材の製造方法。
〔5〕上記[3]の製造方法において、上記(II)〜(V)の工程に代え、(II-3)原料粉末またはスラリーに焼成時に揮発分解する添加剤を混入して添加剤含有スラリーを得る工程と、(III-3)該添加剤含有スラリーを噴霧乾燥して平均粒径が50〜300μmの造粒粉末を得る工程と、(IV-3)該造粒粉末を成形して成形体を得る工程と、(V-3)上記添加剤を揮発分解させつつ焼結してZnO多孔質焼結体を得る工程を有するZnO蒸着材の製造方法。
〔6〕上記[3]〜上記[5]の製造方法において、上記(I)の工程で、純度が98%以上および平均粒径が10〜500μm、かつ粒度分布が平均粒径の±10%の範囲内に含まれるZnO粉末、CeO2粉末、およびAl2O3粉末を用い、これらの粉末と、バインダと、有機溶媒とを混合して、濃度30〜75質量%のスラリーを調製するZnO蒸着材の製造方法。
Moreover, this invention relates to the manufacturing method which solved the said subject with the following structures.
[3] (I) ZnO powder with a purity of 98% or more, CeO 2 powder in such an amount that the Ce content in the ZnO vapor deposition material becomes 0.1 to 14.9% by mass, and the Al content in the ZnO vapor deposition material A step of preparing a slurry having a concentration of 30 to 75% by mass by mixing Al 2 O 3 powder in an amount of 0.1 to 10% by mass, a binder, and an organic solvent, and (II) A step of obtaining a gas-containing slurry by blowing gas; (III) a step of obtaining a porous granulated powder having an average particle size of 50 to 300 μm by spray drying the gas-containing slurry; and (IV) the porous granulation. A step of obtaining a porous molded body by molding a powder, and (V) a step of obtaining a ZnO porous sintered body by sintering the porous molded body at a predetermined temperature, including Ce and Al, Ce content is higher than Al content, Ce content is in the range of 0.1 to 14.9% by mass, and Al content is 0.1 to 10 It consists of a ZnO porous sintered body having a total content of Ce and Al in the range of 0.2 to 15% by mass, and the sintered body has a porosity of 3 to 50%. And producing a ZnO vapor deposition material having pores with an average pore diameter of 0.1 to 500 μm .
[4] In the production method of [3], instead of the steps (II) and (III), (II-2) a step of obtaining a foaming agent-containing slurry by mixing a foaming agent into the raw material powder or slurry; III-2) A method for producing a ZnO vapor deposition material comprising a step of foaming the foaming agent-containing slurry while spray drying to obtain a porous granulated powder having an average particle size of 50 to 300 μm.
[5] In the production method of [3] , instead of the steps (II) to (V), (II-3) an additive-containing slurry in which an additive that volatilizes and decomposes upon firing is mixed into the raw material powder or slurry. And (III-3) spray-drying the additive-containing slurry to obtain a granulated powder having an average particle size of 50 to 300 μm, and (IV-3) molding the granulated powder to form it. And (V-3) a method for producing a ZnO vapor-deposited material, comprising: (V-3) sintering while volatilizing and decomposing the additive to obtain a ZnO porous sintered body.
[6] In the method of [3] to [5] above, in the step (I), the purity is 98% or more, the average particle size is 10 to 500 μm, and the particle size distribution is ± 10% of the average particle size. ZnO powder, CeO 2 powder, and Al 2 O 3 powder contained in the range of ZnO are mixed, and these powders, a binder, and an organic solvent are mixed to prepare a slurry having a concentration of 30 to 75% by mass. A method for producing a vapor deposition material.
本発明の製造方法は、上記(I)〜(V)の製造工程によって、蒸発量が多く、成膜性および緻密性に優れたZnO蒸着材を比較的容易に製造することができる。特に、(II)該スラリーに気体を吹込んでガス含有スラリーを得る工程、または(II-2)原料粉末またはスラリーに発泡剤を混入して発泡剤含有スラリーを得る工程、または(II-2)原料粉末またはスラリーに発泡剤を混入して発泡剤含有スラリーを得る工程によって、所定の気孔率、および平均気孔径を有する気孔、平均結晶粒径を有するZnO蒸着材を比較的容易に製造することができる。 According to the production method of the present invention, a ZnO vapor deposition material having a large evaporation amount and excellent film formability and denseness can be produced relatively easily by the production steps (I) to (V). In particular, (II) a step of obtaining a gas-containing slurry by blowing a gas into the slurry, or (II-2) a step of obtaining a blowing agent-containing slurry by mixing a foaming agent into the raw material powder or slurry, or (II-2) A ZnO vapor deposition material having a predetermined porosity, pores having an average pore diameter, and an average crystal grain size is manufactured relatively easily by a step of mixing a foaming agent into raw material powder or slurry to obtain a foaming agent-containing slurry. Can do.
また、本発明の製造方法は、平均粒径が10〜500μm、かつ粒度分布が平均粒径の±10%の範囲内に含まれる粉末を用いることによって、粒子間に微細な粒子が実質的に入り込まないので、気孔率3〜50%の多孔質成形体を容易に得ることができる。 Further, the production method of the present invention uses a powder having an average particle size of 10 to 500 μm and a particle size distribution within a range of ± 10% of the average particle size, so that fine particles are substantially between the particles. Since it does not enter, a porous molded body having a porosity of 3 to 50% can be easily obtained.
さらに、本発明は以下のZnO膜の製造に関する。
〔7〕上記[1]または上記[2]に記載するZnO蒸着材、または上記[3]〜上記[6]の何れかに記載する方法によって製造されたZnO蒸着材をターゲット材として、電子ビーム蒸着法、イオンプレーティング法、スパッタリング法、またはプラズマ蒸着法によってZnO膜を形成する方法。
Furthermore, the present invention relates to the production of the following ZnO films.
[7] A ZnO vapor deposition material according to [1] or [2] above or a ZnO vapor deposition material produced by the method according to any one of [3] to [6] above as an electron beam. A method of forming a ZnO film by vapor deposition, ion plating, sputtering, or plasma vapor deposition.
本発明のZnO蒸着材は、電子ビーム蒸着法、イオンプレーティング法、スパッタリング法、またはプラズマ蒸着法などの真空成膜法に広く用いることができる。また、本発明のZnO蒸着材を用いることによって、例えば電子ビーム蒸着法において従来と同程度の成膜速度で成膜する際に、フィラメント交換頻度を少なくすることができ、また成膜速度を上げて、製造時間を短縮することができる。 The ZnO vapor deposition material of the present invention can be widely used in vacuum film forming methods such as electron beam vapor deposition, ion plating, sputtering, or plasma vapor deposition. Further, by using the ZnO vapor deposition material of the present invention, for example, when the film is formed at the same film formation rate as in the conventional electron beam evaporation method, the filament exchange frequency can be reduced, and the film formation rate can be increased. Thus, the manufacturing time can be shortened.
本発明のZnO蒸着材は、添加元素としてCeとAlを含むため、イオン半径がZnより大きいCeによって歪んだ結晶を、イオン半径の小さいAlを添加して回復整合させることにより、透過率の高いZnO膜が形成され、更に緻密性に優れた耐久性が高いZnO膜を形成することができる。また、優れた耐湿性、ガスおよび水蒸気遮断性を有する膜を得ることができる。 Since the ZnO vapor deposition material of the present invention contains Ce and Al as additive elements, a crystal distorted by Ce having an ionic radius larger than Zn is recovered and matched by adding Al having a small ionic radius, so that the transmittance is high. A ZnO film is formed, and a highly durable ZnO film having excellent denseness can be formed. In addition, a film having excellent moisture resistance, gas and water vapor barrier properties can be obtained.
さらに、本発明のZnO蒸着材は、所定範囲の気孔率を有し、また好ましくは気孔が特定範囲の平均気孔径を有し、粒子が特定範囲の平均結晶粒径を有するので、蒸着材内部の比表面積が増大して蒸発速度を高くすることができ、成膜効率が良くZnO膜を形成することができる。また、本発明のZnO蒸着材によって形成したZnO膜は緻密であり、高い導電率を有し、膜の耐久性に優れる。 Furthermore, the ZnO vapor deposition material of the present invention has a predetermined range of porosity, and preferably the pores have a specific range of average pore diameter, and the particles have a specific range of average crystal grain size, The specific surface area can be increased, the evaporation rate can be increased, and the ZnO film can be formed with good film formation efficiency. Moreover, the ZnO film formed by the ZnO vapor deposition material of the present invention is dense, has high conductivity, and is excellent in durability of the film.
以下、本発明を実施例と共に具体的に説明する。
〔ZnO蒸着材〕
本発明のZnO蒸着材は、透明導電膜の成膜に用いられるZnO蒸着材であって、CeおよびAlを含み、Ce含有量がAl含有量より多く、Ce含有量が0.1〜14.9質量%の範囲内およびAl含有量が0.1〜10質量%の範囲内であり、CeとAlの合計含有量が0.2〜15質量%の範囲内であるZnO多孔質焼結体からなり、該焼結体が3〜50%の気孔率を有し、平均気孔径0.1〜500μmの気孔を有することを特徴とする。
Hereinafter, the present invention will be specifically described together with examples.
[ZnO vapor deposition material]
The ZnO vapor deposition material of the present invention is a ZnO vapor deposition material used for forming a transparent conductive film, which contains Ce and Al, has a Ce content higher than an Al content, and a Ce content of 0.1 to 14. ZnO porous sintered body having a content of 9% by mass and an Al content of 0.1 to 10% by mass, and a total content of Ce and Al of 0.2 to 15% by mass The sintered body has a porosity of 3 to 50% and has pores having an average pore diameter of 0.1 to 500 μm .
ZnO蒸着材およびこの蒸着材を用いて成膜されたZnO膜中の添加物種およびその含有量における導電性への影響を詳細に調査したところ、ZnO多孔質焼結体中に添加元素として含まれるCeとAlの2元素の含有割合が大きく影響していることが確認された。本発明に係るZnO蒸着材は、上記知見に基づき、ZnOを主成分とし、CeとAlの双方の元素を含有することによって、導電に寄与する過電子を大量に発現させ維持させて高い導電率を有するZnO膜を成膜できるようにしたZnO蒸着材である。 A detailed investigation was conducted on the influence of the ZnO vapor deposition material and the additive species in the ZnO film formed using this vapor deposition material and the content thereof on the conductivity. As a result, the ZnO porous sintered body contained it as an additive element. It was confirmed that the content ratio of the two elements of Ce and Al had a great influence. Based on the above knowledge, the ZnO vapor deposition material according to the present invention contains ZnO as a main component and contains both elements of Ce and Al, thereby expressing and maintaining a large amount of overelectrons that contribute to conductivity, and having high conductivity. This is a ZnO vapor deposition material that can form a ZnO film having the following.
ZnO多孔質焼結体中に含まれるCeとAlの2元素の割合が一定範囲内で多いほど概して導電性は良好となり、この範囲を外れると導電性が逆に劣化する。具体的には、ZnO蒸着材に含まれるCeの含有量は0.1〜14.9質量%が適当であり、3〜6質量%が好ましい。Ce量が下限値の0.1質量%未満になると導電性が著しく低下し、上限値の14.9質量%を上回ると透過率が著しく低下する。 As the ratio of the two elements of Ce and Al contained in the ZnO porous sintered body is larger within a certain range, the conductivity generally becomes better. Specifically, the content of Ce contained in the ZnO vapor deposition material is suitably 0.1 to 14.9% by mass, and preferably 3 to 6% by mass. When the Ce content is less than the lower limit of 0.1% by mass, the conductivity is remarkably reduced, and when the Ce content exceeds the upper limit of 14.9% by mass, the transmittance is remarkably reduced.
また、ZnO蒸着材に含まれるAlの含有量は0.1〜10質量%が適当であり、1〜3質量%が好ましい。Al量が下限値の0.1質量%未満になると導電性が著しく低下し、上限値の10質量%を上回ると蒸着時の組成ずれを生じさせる。 Moreover, 0.1-10 mass% is suitable for content of Al contained in a ZnO vapor deposition material, and 1-3 mass% is preferable. When the amount of Al is less than the lower limit of 0.1% by mass, the conductivity is remarkably lowered, and when the amount of Al exceeds the upper limit of 10% by mass, a composition shift occurs during vapor deposition.
本発明のZnO蒸着材は、CeをAlより多く含有することによって緻密な結晶構造を維持する。Ce含有量がAl含有量より少ないと導電性および透過率が低下する。また、CeとAlの合計含有量は0.2〜15質量%の範囲内であることが好ましい。CeとAlの合計含有量がこの範囲を上回るとZnO蒸着材の比抵抗および透過率が著しく低下する。 The ZnO vapor deposition material of the present invention maintains a dense crystal structure by containing more Ce than Al. When the Ce content is less than the Al content, conductivity and transmittance are lowered. The total content of Ce and Al is preferably in the range of 0.2 to 15% by mass. When the total content of Ce and Al exceeds this range, the specific resistance and transmittance of the ZnO vapor deposition material are significantly reduced.
これらのCeおよびAlは、ZnO蒸着材中に微量に含まれる場合には、ZnOマトリックスの粒界や粒内に粒状の析出物として存在するのではなく、ZnO蒸着材中に均一に分散している。また、ZnO蒸着材中では、CeはCeO2またはCe2O3のような酸化物として存在し、AlはAl2O3として存在すると考えられる。 When these Ce and Al are contained in a trace amount in the ZnO vapor deposition material, they are not present as granular precipitates in the grain boundaries and grains of the ZnO matrix, but are uniformly dispersed in the ZnO vapor deposition material. Yes. In the ZnO vapor deposition material, Ce is present as an oxide such as CeO 2 or Ce 2 O 3 , and Al is considered to be present as Al 2 O 3 .
本発明のZnO蒸着材は、3価または4価の希土類元素であるCeを添加元素として含み、このCeが2価のZnに対して過剰のキャリア電子を発生させることによって、高い導電率を確保することができる。また、希土類元素はZnO蒸着材に添加した場合、蒸着時の組成ずれを起こし難い材料であり、成膜したときに所望の組成比率を維持することができる。 The ZnO vapor deposition material of the present invention contains trivalent or tetravalent rare earth element Ce as an additive element, and this Ce generates excess carrier electrons with respect to divalent Zn, thereby ensuring high conductivity. can do. In addition, when rare earth elements are added to a ZnO vapor deposition material, they are materials that are unlikely to cause a composition shift during vapor deposition, and a desired composition ratio can be maintained when a film is formed.
また、本発明のZnO蒸着材によれば、キャリア電子の強制投入以外に酸素欠損による導電性が得られる。通常、蒸着法では酸素ガスを導入するが、一般的には膜組成において酸素が不足状態となる。透明導電膜形成において酸素欠損を生成させて抵抗を下げる手法が採られるが、希土類元素を添加する場合、蒸発性能に優れるため制御しやすい利点がある。本発明のZnO蒸着材は、この利点に加え、Alを添加元素として含むことによって、ITOに迫る高い導電率を得ることができる。 Moreover, according to the ZnO vapor deposition material of this invention, the electroconductivity by oxygen deficiency other than forced injection of a carrier electron is acquired. Normally, oxygen gas is introduced in the vapor deposition method, but generally oxygen is insufficient in the film composition. In forming a transparent conductive film, a method of reducing oxygen resistance by generating oxygen vacancies is employed. However, when a rare earth element is added, there is an advantage that it is easy to control because it has excellent evaporation performance. In addition to this advantage, the ZnO vapor deposition material of the present invention can obtain high conductivity approaching that of ITO by including Al as an additive element.
本発明のZnO蒸着材は、3〜50%の気孔率を有するZnO多孔質焼結体からなる。焼結体の気孔率は3〜50%が適当であり、5〜30%が好ましく、10〜30%がより好ましく、20〜30%がさらに好ましい。気孔率が3%未満では電子ビーム蒸着法や、イオンプレーティング法などでの成膜時に、蒸着材の蒸発速度が上がらず、その結果、成膜時速度が低下し、結果的に製造コストが増大するので好ましくない。また、気孔率が50%を上回ると多孔質焼結体の強度が低下し十分な機械強度を得ることが難しくなる。なお、気孔率が10%以上であれば蒸発速度を向上することができ、更に気孔率が20%以上であれば、従来のZnO蒸着材に対して2.0倍程度の蒸発速度を有する蒸着材を得ることができる。 The ZnO vapor deposition material of the present invention is composed of a ZnO porous sintered body having a porosity of 3 to 50%. The porosity of the sintered body is suitably from 3 to 50%, preferably from 5 to 30%, more preferably from 10 to 30%, still more preferably from 20 to 30%. When the porosity is less than 3%, the evaporation rate of the vapor deposition material does not increase during the film formation by the electron beam evaporation method or the ion plating method, resulting in a decrease in the film formation rate, resulting in a lower manufacturing cost. Since it increases, it is not preferable. On the other hand, if the porosity exceeds 50%, the strength of the porous sintered body is lowered and it is difficult to obtain sufficient mechanical strength. If the porosity is 10% or more, the evaporation rate can be improved. If the porosity is 20% or more, the evaporation rate is about 2.0 times that of the conventional ZnO evaporation material. A material can be obtained.
さらに本発明のZnO多孔質焼結体の気孔は平均気孔径が0.1〜500μmであることが好ましい。気孔の平均気孔径が上記範囲内であることによって、蒸発速度をより一層高めることができる。ここで、気孔径が0.1μm未満であると気孔を有するメリットがなく、気孔径が500μmを上回ると焼結体の強度が低下するため、EB(電子ビーム)照射による破損、即ちスプラッシュの原因となるので好ましくない。 Furthermore, the pores of the ZnO porous sintered body of the present invention preferably have an average pore diameter of 0.1 to 500 μm. When the average pore diameter of the pores is within the above range, the evaporation rate can be further increased. Here, if the pore diameter is less than 0.1 μm, there is no merit of having pores, and if the pore diameter exceeds 500 μm, the strength of the sintered body is reduced. Therefore, it is not preferable.
なお、気孔径(気孔の内径)とは、例えばSEM等の観察手段によって蒸着材断面部分を観察した際に存在する気孔においてその内部寸法のうち最大のものを意味する。この気孔の評価方法としては、置換法による気孔率の測定、顕微鏡法による気孔率の測定、ガス吸着による表面積および細孔分布の測定、水銀圧入法による表面積および細孔分布の測定、ガス透過法による表面積測定、またはX線小角散乱法による細孔分布の測定等を採用することができる。 In addition, a pore diameter (inner diameter of a pore) means, for example, the largest one among the internal dimensions of pores existing when an evaporation material cross section is observed by an observation means such as SEM. The evaluation method of this pore includes the measurement of the porosity by the substitution method, the measurement of the porosity by the microscopic method, the measurement of the surface area and the pore distribution by gas adsorption, the measurement of the surface area and the pore distribution by the mercury intrusion method, the gas permeation method It is possible to employ surface area measurement by means of, or measurement of pore distribution by the X-ray small angle scattering method.
気孔の形状は、丸みを帯びたものが好ましく、気孔の表面に更に細かい気孔が形成されているほうが蒸発速度向上のためには好ましい。なお、気孔の評価方法として、表面積測定において、5〜40m2/gであることが好ましく、細孔分布の測定において、1〜100μmの範囲に少なくとも一つの細孔分布のピークを有することが好ましい。また、気孔以外の部分(骨格部分)はほぼ焼結している状態が好ましく、例えば、多孔質焼結体の骨格部分の密度は98%以上であることが好ましい。 The shape of the pores is preferably rounded, and finer pores are preferably formed on the surface of the pores in order to improve the evaporation rate. As a method for evaluating pores, the surface area measurement is preferably 5 to 40 m 2 / g, and the pore distribution measurement preferably has at least one peak of pore distribution in the range of 1 to 100 μm. . Moreover, it is preferable that the portions (frame portions) other than the pores are substantially sintered. For example, the density of the frame portions of the porous sintered body is preferably 98% or more.
更に、本発明のZnO多孔質焼結体の粒子は平均結晶粒径1〜500μmであって、焼結体内に0.1〜500μm程度の丸みを帯びた気孔を有するものが好ましい。このZnO多孔質焼結体は、平均結晶粒径が上記範囲の微細な結晶構造を有し、かつその結晶粒界に欠陥が生じるのを低減できるため、成膜されたZnO膜は、ZnOの膜密度、膜厚分布、屈折率、耐スパッタ性、放電特性(放電電圧、放電応答性等)、絶縁性等の膜特性が優れたものとなる。ここで、平均結晶粒径が1μm未満であると成膜速度を低下させる不具合があり、その平均結晶粒径が500μmを越えると添加元素の蒸着率が不均一になる不具合がある。この平均結晶粒径は5〜40μmの範囲にあることが好ましく、10〜30μmの範囲にあることが更に好ましい。 Further, the particles of the ZnO porous sintered body of the present invention preferably have an average crystal grain size of 1 to 500 μm and have round pores of about 0.1 to 500 μm in the sintered body. Since this ZnO porous sintered body has a fine crystal structure with an average crystal grain size in the above range and can reduce the occurrence of defects at the crystal grain boundaries, the formed ZnO film is made of ZnO. Excellent film characteristics such as film density, film thickness distribution, refractive index, sputtering resistance, discharge characteristics (discharge voltage, discharge response, etc.), insulation, and the like. Here, if the average crystal grain size is less than 1 μm, there is a problem that the film forming rate is lowered, and if the average crystal grain size exceeds 500 μm, the deposition rate of the additive element becomes non-uniform. The average crystal grain size is preferably in the range of 5 to 40 μm, and more preferably in the range of 10 to 30 μm.
本発明のZnO蒸着材は、好ましくは円板状または球状のペレットに成形される。この蒸着材が球状である場合には、その直径は5〜30mmが適当であり、5〜15mmが好ましい。この直径が5mm未満では小さすぎてスプラッシュの発生原因となり、直径が30mmを越えると実際の製造工程において取り扱いが困難となるからである。この蒸着材が円板状である場合には、その直径は5〜20mm、好ましくは5〜10mmであって、高さが1〜10mm、好ましくは2〜5mmが良い。この直径が5mm未満または高さが1mm未満では小さすぎてスプラッシュの発生原因となり、直径が30mmを越えるかまたは高さが10mmを越えると実際の製造工程において取り扱いが困難となるので好ましくない。 The ZnO vapor deposition material of the present invention is preferably formed into a disk-like or spherical pellet. When this vapor deposition material is spherical, the diameter is suitably 5 to 30 mm, preferably 5 to 15 mm. This is because if the diameter is less than 5 mm, it is too small to cause splash, and if the diameter exceeds 30 mm, it becomes difficult to handle in the actual manufacturing process. When this vapor deposition material is disk shape, the diameter is 5-20 mm, Preferably it is 5-10 mm, and height is 1-10 mm, Preferably 2-5 mm is good. If the diameter is less than 5 mm or the height is less than 1 mm, it is too small to cause splash, and if the diameter exceeds 30 mm or the height exceeds 10 mm, handling becomes difficult in the actual manufacturing process, which is not preferable.
以下、本発明に係るZnO蒸着材の製造方法を説明する。
〔製造方法〕
本発明に係るZnO蒸着材は、純度98%以上のZnO粉末と、ZnO蒸着材中のCe含有量が0.1〜14.9質量%になる量のCeO2粉末と、ZnO蒸着材中のAl含有量が0.1〜10質量%になる量のAl2O3粉末と、バインダと、有機溶媒とを混合して、濃度30〜75質量%のスラリーを調製する工程と、該スラリーを噴霧乾燥して平均粒径が50〜300μmの造粒粉末を得る工程と、該造粒粉末を成形して多孔質成形体を得る工程と、該成形体を所定温度で焼結してZnO多孔質焼結体を得る工程によって製造することができる。
Hereinafter, the manufacturing method of the ZnO vapor deposition material which concerns on this invention is demonstrated.
〔Production method〕
The ZnO vapor deposition material according to the present invention includes a ZnO powder having a purity of 98% or more, a CeO 2 powder in an amount such that the Ce content in the ZnO vapor deposition material is 0.1 to 14.9% by mass, and the ZnO vapor deposition material. and Al 2 O 3 powder in an amount Al content is 0.1 to 10 mass%, and a binder, by mixing the organic solvent, preparing a concentration of 30 to 75 wt% of the slurry, the slurry A step of obtaining a granulated powder having an average particle size of 50 to 300 μm by spray drying, a step of obtaining a porous compact by molding the granulated powder, and sintering the compact at a predetermined temperature to obtain a porous ZnO It can manufacture by the process of obtaining a quality sintered compact.
ZnO粉末は純度98%以上であることが好ましく、98.4%以上であることが更に好ましい。ZnO粉末の純度が98%以上であれば、不純物の影響による導電率の低下を抑えることができる。また、ZnO粉末の平均粒径は0.1〜10μmの範囲内にあることが好ましい。ZnO粉末の平均粒径が0.1μm未満では、粉末が細かすぎて凝集するため、粉末のハンドリングが悪くなり、高濃度スラリーを調製し難い傾向があり、10μmを越えると、微細構造の制御が難しく、緻密なペレットが得られ難い傾向がある。さらに、ZnO粉末の平均粒径を上記範囲に調整すると、焼結助剤を用いなくても所望の焼結体が得られる利点もある。 The ZnO powder preferably has a purity of 98% or more, and more preferably 98.4% or more. If the purity of the ZnO powder is 98% or more, it is possible to suppress a decrease in conductivity due to the influence of impurities. Moreover, it is preferable that the average particle diameter of ZnO powder exists in the range of 0.1-10 micrometers. If the average particle size of the ZnO powder is less than 0.1 μm, the powder is too fine and agglomerates, so that the handling of the powder tends to be poor, and it is difficult to prepare a high-concentration slurry. It tends to be difficult and difficult to obtain dense pellets. Furthermore, when the average particle diameter of the ZnO powder is adjusted to the above range, there is an advantage that a desired sintered body can be obtained without using a sintering aid.
CeO2粉末はCe粉末の偏在防止とZnOマトリックスとの反応性およびCe化合物の純度を考慮した場合、1次粒子径がナノスケールの酸化セリウム粒子を添加することが好ましい。Al2O3粉末は平均粒径が0.01〜1μmの範囲内のものが好ましく、0.05〜0.5μmの範囲のものが特に好ましい。この平均粒径のAl2O3粉末を使用すれば、CeO2粉末を均一に分散するのに都合が良い。 The CeO 2 powder is preferably added with cerium oxide particles having a primary particle size of nanoscale when considering the uneven distribution of the Ce powder, the reactivity with the ZnO matrix, and the purity of the Ce compound. The Al 2 O 3 powder preferably has an average particle size in the range of 0.01 to 1 μm, particularly preferably in the range of 0.05 to 0.5 μm. Use of Al 2 O 3 powder having this average particle size is convenient for uniformly dispersing CeO 2 powder.
バインダとしてはポリエチレングリコールやポリビニルブチラール等を用いることができ、バインダは0.2〜2.5質量%添加することが好ましい。有機溶媒としてはエタノールやプロパノール等を用いることができる。 As the binder, polyethylene glycol, polyvinyl butyral or the like can be used, and the binder is preferably added in an amount of 0.2 to 2.5% by mass. As the organic solvent, ethanol, propanol or the like can be used.
上記原料粉末と、バインダと、有機溶媒とを混合して、濃度30〜75質量%、好ましくは40〜65質量%のスラリーを調製する。スラリー濃度が75質量%を越えると上記スラリーが非水系であるため安定した造粒が難しく、30質量%未満では均一な組織を有する緻密なZnO焼結体が得られ難い。スラリー濃度を上記範囲に調整すると、スラリーの粘度が200〜1000cpsとなり、スプレードライヤによる粉末の造粒を安定して行うことができ、更には成形体の密度が高くなって緻密な焼結体を得ることができる。 The raw material powder, a binder, and an organic solvent are mixed to prepare a slurry having a concentration of 30 to 75% by mass, preferably 40 to 65% by mass. If the slurry concentration exceeds 75% by mass, stable granulation is difficult because the slurry is non-aqueous, and if it is less than 30% by mass, a dense ZnO sintered body having a uniform structure is difficult to obtain. When the slurry concentration is adjusted to the above range, the slurry has a viscosity of 200 to 1000 cps, and can be stably granulated with a spray dryer. Further, the density of the molded body is increased and a dense sintered body can be obtained. Can be obtained.
上記原料粉末とバインダと有機溶媒との湿式混合、特に原料粉末と分散媒である有機溶媒との湿式混合は、湿式ボールミルまたは撹拌ミルを用いると良い。湿式ボールミルにおいてZrO2製ボールを用いる場合には、直径5〜10mmの多数のZrO2 製ボールを用いて8〜24時間、好ましくは20〜24時間湿式混合すると良い。ZrO2製ボールの直径が5mm未満では混合が不十分となる場合があり、直径が10mmを越えると不純物が増大する場合があるので好ましくない。なお、混合時間が最長24時間と長くても粉砕による不純物の発生が少ない。一方、湿式ボールミルにおいて、鉄芯入りの樹脂製ボールを用いる場合には、直径10〜15mmのボールを用いることが好ましい。 The wet mixing of the raw material powder, the binder and the organic solvent, particularly the wet mixing of the raw material powder and the organic solvent which is the dispersion medium may be performed using a wet ball mill or a stirring mill. When ZrO 2 balls are used in the wet ball mill, wet mixing is performed using a large number of ZrO 2 balls having a diameter of 5 to 10 mm for 8 to 24 hours, preferably 20 to 24 hours. If the diameter of the ZrO 2 ball is less than 5 mm, mixing may be insufficient. If the diameter exceeds 10 mm, impurities may increase, which is not preferable. Even when the mixing time is as long as 24 hours, the generation of impurities due to pulverization is small. On the other hand, in a wet ball mill, when a resin ball with an iron core is used, it is preferable to use a ball having a diameter of 10 to 15 mm.
撹拌ミルでは、直径1〜3mmのZrO2製ボールを用いて0.5〜1時間湿式混合すると良い。なお、ZrO2製ボールの直径が1mm未満では混合が不十分になり易く、3mmを越えると不純物が増えるので好ましくない。また、混合時間が1時間を越えると原料の混合のみならず粉砕による不純物の発生の原因となるので好ましくない。なお、1時間もあれば十分に混合できる。更に、粉末と添加剤の混合/造粒は、一般的な転動造粒法で行ってもよい。この場合、工程後のボール等との分離作業が必要なく、工程が簡略化される利点がある。 In the stirring mill, wet mixing is preferably performed for 0.5 to 1 hour using a ZrO 2 ball having a diameter of 1 to 3 mm. If the diameter of the ZrO 2 ball is less than 1 mm, mixing tends to be insufficient, and if it exceeds 3 mm, impurities increase, which is not preferable. Further, if the mixing time exceeds 1 hour, it is not preferable because it causes not only mixing of raw materials but also generation of impurities due to pulverization. In addition, if it is 1 hour, it can mix sufficiently. Furthermore, mixing / granulation of the powder and the additive may be performed by a general rolling granulation method. In this case, there is an advantage that the process can be simplified because there is no need to separate the ball and the like after the process.
本発明の製造方法は、多孔質焼結体を得るための第一の手段として、上記スラリーに気体を吹込んで混入することによってガス含有スラリーを調製する。この気体の吹き込みおよび混入は、機械式ポンプ、ガス圧による吹き込み等により行われることが好ましい。気体としては空気、不溶性ガス、非水溶性ガス等を用いることができる。 The production method of the present invention prepares a gas-containing slurry by blowing gas into the slurry as a first means for obtaining a porous sintered body. This gas blowing and mixing is preferably performed by a mechanical pump, gas pressure blowing, or the like. As the gas, air, insoluble gas, water-insoluble gas or the like can be used.
このガス含有スラリーを噴霧乾燥させる。この噴霧乾燥はスプレードライヤを用いると良く、150〜250℃で3時間乾燥すると良い。スラリーには気体が吹き込まれているので、このスラリーを噴霧乾燥して得られた造粒粉末は多孔質となる。この噴霧乾燥によって平均粒径50〜300μmの多孔質造粒粉末を得ることができる。 The gas-containing slurry is spray dried. This spray drying may be performed using a spray dryer, and may be performed at 150 to 250 ° C. for 3 hours. Since gas is blown into the slurry, the granulated powder obtained by spray drying the slurry becomes porous. By this spray drying, a porous granulated powder having an average particle size of 50 to 300 μm can be obtained.
本発明の製造方法は、多孔質焼結体を得るための第二の手段として、発泡剤を混合したスラリーを調製する。発泡剤は有機発泡剤または無機発泡剤を用いることができる。有機発泡剤としてはアゾジカルボンアミド、ジニトロソペンタメチレンテトラミン等が用いられ、無機発泡剤としては炭酸塩等が用いられる。発泡剤は、ZnO粉末、CeO2粉末、Al2O3粉末と共に混合しても良く、スラリー調製時に添加しても良い。 The manufacturing method of this invention prepares the slurry which mixed the foaming agent as a 2nd means for obtaining a porous sintered compact. As the foaming agent, an organic foaming agent or an inorganic foaming agent can be used. As the organic foaming agent, azodicarbonamide, dinitrosopentamethylenetetramine or the like is used, and as the inorganic foaming agent, carbonate or the like is used. Blowing agents, ZnO powder, CeO 2 powder, be mixed with Al 2 O 3 powder may be added during slurry preparation.
この発泡剤含有スラリーを噴霧乾燥させる。この噴霧乾燥はスプレードライヤを用いると良く、150〜250℃で3時間乾燥すると良い。スラリーに含有された発泡剤はこの噴霧乾燥段階において発泡分解し、得られた造粒粉末を多孔質化させる。この噴霧乾燥によって平均粒径が50〜300μmの多孔質造粒粉末を得ることができる。 The foaming agent-containing slurry is spray dried. This spray drying may be performed using a spray dryer, and may be performed at 150 to 250 ° C. for 3 hours. The foaming agent contained in the slurry is foamed and decomposed in this spray drying stage, and the resulting granulated powder is made porous. By this spray drying, a porous granulated powder having an average particle diameter of 50 to 300 μm can be obtained.
本発明の製造方法は、多孔質焼結体を得るための第三の手段として、焼結時に揮発・分解する添加剤を混合したスラリーを調製する。この添加剤として、溶媒に溶解するものとしてはブチラール、アルコール系溶媒に可溶な系として、セルロース系、ポリビニル系、ポリエステル系、ポリエチレン系等がある。また、アルコール系溶媒に溶解しないものとしては平均粒径が数μm〜500μm程度のスターチ系、ポリスチレン系を用いることができる。スラリーに20質量%程度のブチラールを混入するか、又は、スラリーに20質量%程度のスターチを混入することが好ましい。 In the production method of the present invention, as a third means for obtaining a porous sintered body, a slurry in which an additive that volatilizes and decomposes at the time of sintering is mixed is prepared. Examples of the additive that can be dissolved in a solvent include butyral, and examples of a system that is soluble in an alcohol solvent include cellulose, polyvinyl, polyester, and polyethylene. Moreover, as what does not melt | dissolve in an alcohol solvent, the starch type | system | group and polystyrene type whose average particle diameter is about several micrometers-about 500 micrometers can be used. It is preferable that about 20% by mass of butyral is mixed into the slurry, or about 20% by mass of starch is mixed into the slurry.
スラリーが上記添加剤を含有することによって、この添加剤が焼結時に揮発・分解して気孔が形成されるため、多孔質焼結体を得ることができる。なお、添加剤の種類ないし量を調整して気孔の径および形状を制御することができる。例えば、ブチラール系の添加剤を用いることによって、0.1μm〜10μmオーダーの気孔径を有する気孔を形成することができる。また、スターチを用いた場合には、スターチの粒径と同程度の気孔径および形状を有する気孔を形成することができる。このようにスターチは気孔の気孔径および形状を制御するのが一層容易である。 Since the slurry contains the additive, the additive is volatilized and decomposed during sintering to form pores, so that a porous sintered body can be obtained. Note that the diameter and shape of the pores can be controlled by adjusting the type or amount of the additive. For example, by using a butyral-based additive, pores having a pore diameter on the order of 0.1 μm to 10 μm can be formed. Moreover, when a starch is used, pores having a pore size and shape comparable to the particle size of the starch can be formed. Thus, the starch is easier to control the pore diameter and shape of the pores.
具体的には、例えば、従来の相対密度98%程度以上のZnO蒸着材の蒸発速度に対して、本発明のZnO蒸着材は、ブチラール系の添加剤を使用した蒸着材では1.3倍程度の蒸着速度を得ることが可能であり、更に、平均粒径0.1〜500μmのスターチを使用した蒸着材では、2倍程度の蒸発速度を得ることができる。従って、これらのように高い成膜速度を得ることが可能となる。 Specifically, for example, the ZnO vapor deposition material of the present invention is about 1.3 times that of a vapor deposition material using a butyral additive, compared to the evaporation rate of a conventional ZnO vapor deposition material having a relative density of about 98% or more. It is possible to obtain a vapor deposition rate of about 1.5 times, and with a vapor deposition material using a starch having an average particle size of 0.1 to 500 μm, an evaporation rate of about 2 times can be obtained. Therefore, it is possible to obtain such a high film formation rate.
本発明の製造方法は、多孔質焼結体を得るための第四の手段として、所定範囲の粒度分布を有するZnO粉末を用いたスラリーを調製する。具体的には、平均粒径が10〜500μmであって、かつ粒度分布が平均粒径の±10%の範囲内に含まれるZnO粉末を用いる。ZnO粉末の粒度分布が平均粒径の±10%の範囲から外れると気孔率が低下する。この粒度分布の更に好ましい範囲は平均粒径の±5%の範囲内である。なお、CeO2粉末およびAl2O3粉末の好ましい粒径はZnO粉末よりも格段に小さく、ZnO粉末に比べて使用量も少ないので粒度分布の制限から外しても良い。 The production method of the present invention prepares a slurry using ZnO powder having a particle size distribution in a predetermined range as a fourth means for obtaining a porous sintered body. Specifically, a ZnO powder having an average particle diameter of 10 to 500 μm and a particle size distribution within a range of ± 10% of the average particle diameter is used. When the particle size distribution of the ZnO powder is out of the range of ± 10% of the average particle size, the porosity is lowered. A more preferable range of the particle size distribution is within a range of ± 5% of the average particle size. Incidentally, the preferred particle size of CeO 2 powder and Al 2 O 3 powder much smaller than the ZnO powder, may be removed because the amount is small as compared with the ZnO powder from the restriction of the particle size distribution.
粒度分布を制御したZnO粉末を用いたスラリーを噴霧乾燥させる。この噴霧乾燥はスプレードライヤを用いると良く、150〜250℃で3時間乾燥すると良い。噴霧乾燥されるスラリーには、平均粒径が10〜500μmであって粒度分布が平均粒径の±10%の範囲内に含まれるZnO粉末が用いられており、これより微細なZnO粉末を実質的に含まないので、ZnO粒子相互の間隙の間が微細なZnO粒子によって充填されることがなく、ZnO粒子相互の間隙は気孔のまま残り、造粒粉末は多孔質化になる。この噴霧乾燥によって平均粒径50〜300μmの多孔質造粒粉末を得ることができる。 A slurry using ZnO powder having a controlled particle size distribution is spray-dried. This spray drying may be performed using a spray dryer, and may be performed at 150 to 250 ° C. for 3 hours. In the slurry to be spray-dried, ZnO powder having an average particle size of 10 to 500 μm and a particle size distribution within a range of ± 10% of the average particle size is used. Therefore, the gap between the ZnO particles is not filled with fine ZnO particles, the gap between the ZnO particles remains as pores, and the granulated powder becomes porous. By this spray drying, a porous granulated powder having an average particle size of 50 to 300 μm can be obtained.
次に、上記スラリーを噴霧乾燥して平均粒径50〜300μmの造粒粉末を得た後、この造粒粉末を加圧成形する。ここで、造粒粉末の平均粒径が50μm未満では成形性が劣り、300μmより大きいと成形体密度が低下して強度不足になりやすい。 Next, the slurry is spray-dried to obtain a granulated powder having an average particle size of 50 to 300 μm, and the granulated powder is then pressure-molded. Here, if the average particle size of the granulated powder is less than 50 μm, the moldability is inferior, and if it is more than 300 μm, the density of the molded body is lowered and the strength tends to be insufficient.
加圧成形装置は、一軸プレス装置、冷間静水圧成形装置〔CIP(Cold Isostatic Press)成形装置〕またはその他の装置を用いても良い。成形圧力は100〜2000kgf/cm2(9.8〜196MPa)が適当であり、100〜1000kgf/cm2(9.8〜98MPa)が好ましい。上記範囲の圧力で成形することにより、成形体の密度を高め、焼結後の変形を防止し、後加工を不要にすることができる。 As the pressure molding apparatus, a uniaxial press apparatus, a cold isostatic pressing apparatus (CIP (Cold Isostatic Press) molding apparatus) or other apparatuses may be used. Compacting pressure 100~2000kgf / cm 2 (9.8~196MPa) are suitable, 100~1000kgf / cm 2 (9.8~98MPa) are preferred. By molding at a pressure in the above range, the density of the molded body can be increased, deformation after sintering can be prevented, and post-processing can be eliminated.
次に、上記成形体を焼結する。焼結する前に成形体を350〜620℃の温度で脱脂処理することが好ましい。この脱脂処理によって成形体の焼結後の色斑を防止することができる。この脱脂処理は時間をかけて十分に行うことが好ましい。 Next, the molded body is sintered. It is preferable to degrease the molded body at a temperature of 350 to 620 ° C. before sintering. This degreasing treatment can prevent color spots after sintering of the molded body. This degreasing treatment is preferably performed sufficiently over time.
焼結は大気、不活性ガス、真空または還元ガス雰囲気中で1000℃以上、好ましくは1200〜1400℃の温度で1〜10時間、好ましくは2〜5時間行う。焼結は大気圧下で行うが、ホットプレス(HP)焼結や熱間静水圧プレス(HIP、Hot Isostatic Press)焼結のように加圧焼結を行う場合には、不活性ガス、真空または還元ガス雰囲気中で1000℃以上の温度で1〜5時間行うことが好ましい。 Sintering is performed in air, inert gas, vacuum or reducing gas atmosphere at a temperature of 1000 ° C. or higher, preferably 1200 to 1400 ° C. for 1 to 10 hours, preferably 2 to 5 hours. Sintering is performed at atmospheric pressure, but when performing pressure sintering such as hot press (HP) sintering or hot isostatic press (HIP) sintering, inert gas, vacuum Or it is preferable to carry out for 1 to 5 hours at the temperature of 1000 degreeC or more in reducing gas atmosphere.
得られた多孔質焼結体からなるZnO蒸着材をターゲット材として、真空成膜法により基板表面にZnO膜を形成する。本発明のZnO蒸着材を用いて成膜するのに適する真空成膜法としては、電子ビーム蒸着法、イオンプレーティング法、スパッタリング法およびプラズマ蒸着法が挙げられる。これらの成膜方法により成膜される本発明のZnO膜は、本発明のZnO蒸着材を使用しているため、ITOに迫るような、比抵抗が3〜5×10-4Ω・cmの高い導電率、可視光透過率が90%以上の高い透過率が得られる。更に、イオン半径がZnより大きいCeによって歪んだ結晶を、イオン半径の小さいAlを添加して回復整合させることにより、膜の耐久性も向上する。 A ZnO film is formed on the substrate surface by a vacuum film-forming method using the obtained ZnO vapor deposition material made of a porous sintered body as a target material. Examples of a vacuum film forming method suitable for forming a film using the ZnO vapor deposition material of the present invention include an electron beam vapor deposition method, an ion plating method, a sputtering method, and a plasma vapor deposition method. Since the ZnO film of the present invention formed by these film formation methods uses the ZnO vapor deposition material of the present invention, the specific resistance approaching that of ITO is 3 to 5 × 10 −4 Ω · cm. High conductivity and high transmittance with a visible light transmittance of 90% or more can be obtained. Furthermore, the durability of the film is improved by adding a crystal having a ionic radius that is distorted by Ce larger than Zn and recovering and matching it by adding Al having a small ionic radius.
また、本発明の製造方法は、スラリーに気体を混入させる第一の態様、発泡剤を含むスラリーを調製する第二の態様、焼成時に揮発分解する添加剤を含むスラリーを調製する第三の態様、所定範囲の粒度分布を有するZnO粉末を用いたスラリーを調製する第四の態様の何れにおいても、気孔率、気孔径および気孔形状を容易に制御することができるため、より最適な気孔を有する蒸着材を製造することが可能となり、これによって、製造条件等によって要求される気孔状態が多々ある場合においても、それらに対応して最適な蒸着材を提供することができる。 The production method of the present invention includes a first aspect in which gas is mixed into the slurry, a second aspect in which a slurry containing a foaming agent is prepared, and a third aspect in which a slurry containing an additive that volatilizes and decomposes during firing is prepared. In any of the fourth aspects of preparing a slurry using ZnO powder having a particle size distribution in a predetermined range, the porosity, pore diameter, and pore shape can be easily controlled, so that it has more optimal pores. It becomes possible to manufacture a vapor deposition material. Thereby, even when there are many pore states required depending on the production conditions and the like, it is possible to provide an optimal vapor deposition material corresponding to them.
さらに、本発明のZnO蒸着材は、気孔率5〜30%おおび気孔径が0.1〜500μmの多孔質焼結体を主体とするので、このZnO蒸着材料を用いて、電子ビーム蒸着法またはイオンプレーティング法によりZnO透明導電膜を成膜した際には、蒸発速度を向上することが可能である。つまり、同じ電子ビームエネルギーで成膜した場合には、成膜速度を高くして作業時間を短縮して所定時間における製造数を増大することができ、また、同程度の成膜速度で成膜した場合には、電子ビームエネルギーを低減して、電子銃のフィラメント等の交換時期を遅くして、メンテナンス回数を低減して生産性を向上し、結果的に製造コストを低減することができる。 Furthermore, since the ZnO vapor deposition material of the present invention is mainly composed of a porous sintered body having a porosity of 5 to 30% and a pore diameter of 0.1 to 500 μm, this ZnO vapor deposition material is used for the electron beam vapor deposition method. Alternatively, the evaporation rate can be improved when a ZnO transparent conductive film is formed by ion plating. In other words, when film formation is performed with the same electron beam energy, the film formation rate can be increased to shorten the working time, thereby increasing the number of manufacturing in a predetermined time, and film formation at a similar film formation rate. In this case, it is possible to reduce the electron beam energy, delay the replacement time of the filament of the electron gun, etc., reduce the number of maintenance times, improve the productivity, and consequently reduce the manufacturing cost.
以下、本発明の実施例を比較例と共に示す。各実施例および比較例において、市販のZnO粉末(純度99%以上、平均粒径0.3μm)、CeO2粉末(純度99%以上、平均粒径0.3μm)、Al2O3粉末(純度99%以上、平均粒径0.3μm)を使用した。何れの場合にもスラリーの調製にはボールミル(直径5〜20mmのナイロンコートスチールボール使用)を用い、24時間湿式混合した。さらに、何れの場合にも、成形装置として一軸成形プレス装置を用い、100kgf/cm2(9.8MPa)の圧力で、外径6.7mmφ、厚さ2.0mmに成形した。この成形体を電気炉に入れ、大気中1300℃で3時間焼成し、焼結体ペレットにした。 Examples of the present invention are shown below together with comparative examples. In each example and comparative example, commercially available ZnO powder (purity 99% or more, average particle size 0.3 μm), CeO 2 powder (purity 99% or more, average particle size 0.3 μm), Al 2 O 3 powder (purity) 99% or more, average particle size 0.3 μm) was used. In any case, the slurry was prepared by wet mixing for 24 hours using a ball mill (using a nylon coated steel ball having a diameter of 5 to 20 mm). Further, in any case, a uniaxial molding press was used as a molding device, and the outer diameter was 6.7 mmφ and the thickness was 2.0 mm at a pressure of 100 kgf / cm 2 (9.8 MPa). This molded body was put into an electric furnace and fired at 1300 ° C. in the atmosphere for 3 hours to form sintered body pellets.
実施例および比較例において、気孔率は置換法によって測定した。平均気孔径および結晶粒径の測定はSEM(走査電子顕微鏡)により行った。蒸発速度はハースの斜め上方向に設置した水晶子膜厚モニタによって測定した。比抵抗は測定器として三菱化学株式会社における商品名ロレスタ(HP型、MCP−T410、プローブは直列1.5mmピッチ)を用い、雰囲気が25℃において定電流印加による4端子4探針法により測定した。可視光透過率は測定器として株式会社日立製作所の分光光度計U−4000を用い、可視光波長域(380〜780nm)について、成膜後の基板を測定光に対して垂直に設置して測定した。 In Examples and Comparative Examples, the porosity was measured by a substitution method. The average pore size and crystal grain size were measured by SEM (scanning electron microscope). The evaporation rate was measured with a quartz film thickness monitor installed diagonally above Haas. The specific resistance was measured by a 4-terminal 4-probe method by applying a constant current at 25 ° C. using a product name Loresta (HP type, MCP-T410, probe in series 1.5 mm pitch) at Mitsubishi Chemical Corporation as a measuring instrument. did. Visible light transmittance is measured by using a spectrophotometer U-4000 manufactured by Hitachi, Ltd. as a measuring instrument, and in the visible light wavelength range (380 to 780 nm), the substrate after film formation is placed perpendicular to the measuring light. did.
〔実施例1〕
ZnO粉末91g、CeO2粉末6.2g、Al2O3粉末2.8gからなる原料粉末100gに、バインダとしてポリビニルブチラールを1質量%添加し、さらに分散媒としてメタノール変性アルコールを加えて、濃度30質量%のスラリーとした。次いで、このスラリーをボールミルに入れ、空気を吹き込んで湿式混合し、ガス含有スラリーとした。このスラリーを真空乾燥機にて80℃で分散媒を気化させ、引き続き乾式解砕して、平均粒径200μmの多孔質造粒粉末を得た。この造粒粉末を加圧成形し、この成形体を焼成して多孔質焼結体ペレット(ZnO蒸着材)を製造した。この焼結体の気孔率、平均気孔径、平均結晶粒径を表1に示す。
[Example 1]
To 100 g of raw material powder composed of 91 g of ZnO powder, 6.2 g of CeO 2 powder and 2.8 g of Al 2 O 3 powder, 1% by mass of polyvinyl butyral as a binder is added, and methanol-modified alcohol is added as a dispersion medium to a concentration of 30 A mass% slurry was obtained. Subsequently, this slurry was put into a ball mill, and air was blown in and wet mixed to obtain a gas-containing slurry. This slurry was vaporized with a vacuum dryer at 80 ° C., followed by dry crushing to obtain a porous granulated powder having an average particle size of 200 μm. This granulated powder was pressure-molded and the compact was fired to produce a porous sintered compact pellet (ZnO vapor deposition material). Table 1 shows the porosity, average pore diameter, and average crystal grain size of this sintered body.
〔実施例2〕
実施例1と同様の原料粉末100gに、有機発泡剤および無機発泡剤を添加し、バインダとしてポリビニルブチラールを1質量%添加し、さらに分散媒としてメタノール変性アルコールを加えて、濃度30質量%のスラリー(粘度200〜4000cps)とした。有機発泡剤としてアゾジカルボンアミドおよびジニトロソペンタメチレンテトラミンを用い、無機発泡剤として炭酸塩を用いた。この発泡剤含有スラリーをボールミルに入れ湿式混合した後に、真空乾燥機にて80℃で分散媒を気化させ、引き続き乾式解砕して、平均粒径200μmの多孔質造粒粉末を得た。この造粒粉末を加圧成形し、この成形体を焼成して多孔質焼結体ペレット(ZnO蒸着材)を製造した。この焼結体の気孔率、平均気孔径、平均結晶粒径を表1に示す。
[Example 2]
An organic foaming agent and an inorganic foaming agent are added to 100 g of the same raw material powder as in Example 1, 1% by weight of polyvinyl butyral is added as a binder, methanol-modified alcohol is added as a dispersion medium, and a slurry having a concentration of 30% by weight. (Viscosity 200 to 4000 cps). Azodicarbonamide and dinitrosopentamethylenetetramine were used as organic blowing agents, and carbonates were used as inorganic blowing agents. After this foaming agent-containing slurry was placed in a ball mill and wet-mixed, the dispersion medium was vaporized at 80 ° C. in a vacuum dryer, followed by dry crushing to obtain a porous granulated powder having an average particle size of 200 μm. This granulated powder was pressure-molded and the compact was fired to produce a porous sintered compact pellet (ZnO vapor deposition material). Table 1 shows the porosity, average pore diameter, and average crystal grain size of this sintered body.
〔実施例3〕
実施例1と同様の原料粉末100gに、焼成時に揮発分解する添加剤を加え、バインダとしてポリビニルブチラールを1質量%添加し、さらに分散媒としてメタノール変性アルコールを加えて、濃度30質量%のスラリー(粘度200〜4000cps)とした。焼成時に揮発分解する添加剤としてポリビニールブチラール20質量%を用いた。この添加剤含有スラリーをボールミルに入れ湿式混合した後に、真空乾燥機にて80℃で分散媒を気化させ、引き続き乾式解砕して、平均粒径200μmの造粒粉末を得た。この造粒粉末を加圧成形し、この成形体を焼成して添加剤を揮発分解させ、多孔質焼結体ペレット(ZnO蒸着材)を製造した。この焼結体の気孔率、平均気孔径、平均結晶粒径を表1に示す。
Example 3
An additive that volatilizes and decomposes during firing is added to 100 g of the same raw material powder as in Example 1, 1% by weight of polyvinyl butyral is added as a binder, methanol-modified alcohol is added as a dispersion medium, and a slurry having a concentration of 30% by weight ( The viscosity was 200 to 4000 cps). Polyvinyl butyral 20% by mass was used as an additive that volatilizes and decomposes during firing. This additive-containing slurry was placed in a ball mill and wet-mixed, and then the dispersion medium was vaporized at 80 ° C. in a vacuum dryer, followed by dry crushing to obtain a granulated powder having an average particle size of 200 μm. The granulated powder was pressure-molded, and the molded body was fired to volatilize and decompose the additive to produce a porous sintered body pellet (ZnO vapor deposition material). Table 1 shows the porosity, average pore diameter, and average crystal grain size of this sintered body.
〔実施例4〕
焼成時に揮発分解する添加剤として粒径50μmのスターチ20質量%を用いた以外は実施例3と同様にして多孔質焼結体ペレット(ZnO蒸着材)を製造した。この焼結体の気孔率、平均気孔径、平均結晶粒径を表1に示す。
Example 4
A porous sintered pellet (ZnO vapor deposition material) was produced in the same manner as in Example 3 except that 20% by mass of starch having a particle size of 50 μm was used as an additive that volatilizes and decomposes during firing. Table 1 shows the porosity, average pore diameter, and average crystal grain size of this sintered body.
〔実施例5〕
実施例1と同様の原料粉末を用い、ZnO粉末を篩い分けし、平均粒径60μmであってかつ粒度分布が55〜65μmの範囲内に含まれるZnO粉末とした。このZnO粉末を含む原料粉末に、バインダとしてポリビニルブチラールを1質量%添加し、有機溶媒としてメタノール変性アルコールを30質量%添加し、それらを混合してZnO粉末の濃度が30質量%のスラリーを調整した。次いでこのスラリーを噴霧乾燥させて平均粒径200μmの多孔質造粒粉末を得た。この造粒粉末を加圧成形し、この成形体を焼成して多孔質焼結体ペレット(ZnO蒸着材)を製造した。この焼結体の気孔率、平均気孔径、平均結晶粒径を表1に示す。
Example 5
The same raw material powder as in Example 1 was used, and the ZnO powder was sieved to obtain a ZnO powder having an average particle size of 60 μm and a particle size distribution in the range of 55 to 65 μm. To this raw material powder containing ZnO powder, 1% by weight of polyvinyl butyral is added as a binder, 30% by weight of methanol-modified alcohol is added as an organic solvent, and they are mixed to prepare a slurry having a ZnO powder concentration of 30% by weight. did. Next, this slurry was spray-dried to obtain a porous granulated powder having an average particle size of 200 μm. This granulated powder was pressure-molded and the compact was fired to produce a porous sintered compact pellet (ZnO vapor deposition material). Table 1 shows the porosity, average pore diameter, and average crystal grain size of this sintered body.
〔比較例1〕
実施例1と同様の原料粉末を用い、スラリーへの空気導入、発泡剤の添加、焼成時に揮発分解する添加剤の使用の何れも行わない以外は実施例1と同様にしてスラリーを調製し、このスラリーを噴霧乾燥させて平均粒径200μmの造粒粉末を得た。この造粒粉末を加圧成形し、この成形体を焼成して焼結体ペレット(ZnO蒸着材)を製造した。この焼結体の気孔率、平均気孔径、平均結晶粒径を表1に示す。
[Comparative Example 1]
A slurry is prepared in the same manner as in Example 1 except that the same raw material powder as in Example 1 is used, and neither air introduction to the slurry, addition of a foaming agent, nor use of an additive that volatilizes and decomposes during firing is performed. This slurry was spray-dried to obtain a granulated powder having an average particle size of 200 μm. The granulated powder was pressure-molded, and the compact was fired to produce a sintered pellet (ZnO vapor deposition material). Table 1 shows the porosity, average pore diameter, and average crystal grain size of this sintered body.
〔比較例2〕
CeO2粉末およびAl2O3粉末を加えないZnO粉末を100g用いた以外は比較例1と同様にしてスラリーを調製し、このスラリーを噴霧乾燥させて平均粒径200μmの造粒粉末を得た。この造粒粉末を加圧成形し、この成形体を焼成して焼結体ペレット(ZnO蒸着材)を製造した。この焼結体の気孔率、平均気孔径、平均結晶粒径を表1に示す。
[Comparative Example 2]
A slurry was prepared in the same manner as in Comparative Example 1 except that 100 g of ZnO powder to which CeO 2 powder and Al 2 O 3 powder were not added was used, and this slurry was spray-dried to obtain a granulated powder having an average particle size of 200 μm. . The granulated powder was pressure-molded, and the compact was fired to produce a sintered pellet (ZnO vapor deposition material). Table 1 shows the porosity, average pore diameter, and average crystal grain size of this sintered body.
〔蒸着試験〕
実施例1〜5のZnO蒸着材、比較例1〜2のZnO蒸着材を用い、蒸着試験を行った。電子ビーム蒸着装置のハース(直径50mm、深さ25mm)にサンプルの蒸着材を仕込み、到達真空度2.66×10-4Pa(2.0×10-6Torr)、O2分圧1.33×10-2Pa(1.0×10-4Torr)の雰囲気に調整し、加速電圧10kV、ビームスキャンエリア約40mmφの電子ビームを照射してZnO蒸着材を加熱し、ZnO膜を形成した。なお、蒸発速度はハースの斜め上方向に設置した水晶子膜厚モニタにより測定した。この結果を表1に示す。表1に示すように、実施例1〜5の蒸着速度は比較例1、2の約1.1倍〜2倍であり、蒸発速度が大きい。
[Vapor deposition test]
A vapor deposition test was conducted using the ZnO vapor deposition materials of Examples 1 to 5 and the ZnO vapor deposition materials of Comparative Examples 1 and 2. A sample vapor deposition material is charged in a hearth (diameter 50 mm, depth 25 mm) of an electron beam vapor deposition apparatus, an ultimate vacuum is 2.66 × 10 −4 Pa (2.0 × 10 −6 Torr), and an O 2 partial pressure is 1. A ZnO film was formed by adjusting the atmosphere to 33 × 10 −2 Pa (1.0 × 10 −4 Torr), irradiating an electron beam with an acceleration voltage of 10 kV and a beam scan area of about 40 mmφ, and heating the ZnO vapor deposition material. . The evaporation rate was measured with a quartz film thickness monitor installed diagonally above Haas. The results are shown in Table 1. As shown in Table 1, the vapor deposition rates of Examples 1 to 5 are about 1.1 to 2 times that of Comparative Examples 1 and 2, and the evaporation rate is large.
〔耐湿性試験〕
実施例1〜5、比較例1〜2の試料について、耐湿試験を行った。耐湿性試験は湿度60%、温度90℃の雰囲気で2000時間まで各時間における膜の比抵抗を測定した。この結果を表2に示した。表2に示すようにCeおよびAlを含んだZnO蒸着材を用いて成膜されたZnO膜の耐湿性は、無添加のZnO膜に比べて、比抵抗の劣化率が数倍低い。これはCeおよびAlを含んだZnO膜が数倍安定であることを示している。
[Moisture resistance test]
The samples of Examples 1 to 5 and Comparative Examples 1 and 2 were subjected to a moisture resistance test. In the humidity resistance test, the specific resistance of the film at each time was measured up to 2000 hours in an atmosphere of 60% humidity and 90 ° C. The results are shown in Table 2. As shown in Table 2, the resistivity of a ZnO film formed using a ZnO vapor deposition material containing Ce and Al has a specific resistance deterioration rate several times lower than that of an additive-free ZnO film. This indicates that the ZnO film containing Ce and Al is several times more stable.
〔実施例6〜8〕
Ce含有量0.2質量%、Al含有量0.1質量%、気孔率8〜31%になるように調整した以外は実施例1と同様にして多孔質焼結体ペレット(ZnO蒸着材)を製造した。
[Examples 6 to 8]
Porous sintered body pellets (ZnO vapor deposition material) as in Example 1 except that the Ce content was 0.2% by mass, the Al content was 0.1% by mass, and the porosity was 8 to 31%. Manufactured.
〔実施例9〜11〕
Ce含有量14.9質量%、Al含有量10質量%、気孔率9〜30%になるように調整した以外は実施例1と同様にして多孔質焼結体ペレット(ZnO蒸着材)を製造した。
[Examples 9 to 11]
A porous sintered body pellet (ZnO vapor deposition material) is produced in the same manner as in Example 1 except that the Ce content is 14.9% by mass, the Al content is 10% by mass, and the porosity is 9-30%. did.
〔比較例3〕
気孔率が2%になるように調整した以外は実施例6〜8と同様にして多孔質焼結体ペレット(ZnO蒸着材)を製造した。
[Comparative Example 3]
A porous sintered body pellet (ZnO vapor deposition material) was produced in the same manner as in Examples 6 to 8, except that the porosity was adjusted to 2%.
〔比較例4〕
気孔率が2%になるように調整した以外は実施例9〜11と同様にして多孔質焼結体ペレット(ZnO蒸着材)を製造した。
[Comparative Example 4]
A porous sintered body pellet (ZnO vapor deposition material) was produced in the same manner as in Examples 9 to 11 except that the porosity was adjusted to 2%.
〔比較例5〜8〕
Ce含有量20質量%、Al含有量15質量%、気孔率2〜29%になるように調整した以外は実施例1と同様にして多孔質焼結体ペレット(ZnO蒸着材)を製造した。
[Comparative Examples 5 to 8]
A porous sintered pellet (ZnO vapor deposition material) was produced in the same manner as in Example 1 except that the Ce content was 20% by mass, the Al content was 15% by mass, and the porosity was adjusted to 2 to 29%.
実施例6〜11、比較例3〜8の試料について、蒸着試験を行った。この結果を表3に示した。表3に示すように、実施例6〜11のZnO蒸着材の蒸発速度は表1と同様に比較例より速く、また比抵抗も優れる。一方、気孔率が小さい比較例2、3、4、8の蒸発速度は13.0〜14.7であり、大幅に低い。また、Ce含有量およびAl含有量が多い比較例5〜8は、ZnO膜の比抵抗が格段に大きく、透過率は大幅に低い。 Vapor deposition tests were performed on the samples of Examples 6 to 11 and Comparative Examples 3 to 8. The results are shown in Table 3. As shown in Table 3, the evaporation rate of the ZnO vapor deposition materials of Examples 6 to 11 is faster than that of the comparative example as in Table 1, and the specific resistance is excellent. On the other hand, the evaporation rates of Comparative Examples 2, 3, 4, and 8 having a small porosity are 13.0 to 14.7, which is significantly low. In Comparative Examples 5 to 8 having a large Ce content and Al content, the specific resistance of the ZnO film is remarkably large, and the transmittance is significantly low.
Claims (7)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008245299A JP5418747B2 (en) | 2007-09-27 | 2008-09-25 | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film |
US12/733,897 US8231812B2 (en) | 2007-09-27 | 2008-09-29 | ZnO vapor deposition material, process for producing the same, and ZnO film |
PCT/JP2008/067685 WO2009041694A1 (en) | 2007-09-27 | 2008-09-29 | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM |
KR1020127022931A KR101342721B1 (en) | 2007-09-27 | 2008-09-29 | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM |
KR1020107006392A KR101208380B1 (en) | 2007-09-27 | 2008-09-29 | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM |
EP12165269.7A EP2508497B1 (en) | 2007-09-27 | 2008-09-29 | ZnO vapor deposition material and process for producing the same |
EP08834432.0A EP2194158B1 (en) | 2007-09-27 | 2008-09-29 | ZnO VAPOR DEPOSITION MATERIAL AND PROCESS FOR PRODUCING THE SAME |
TW097137625A TWI431135B (en) | 2007-09-27 | 2008-09-30 | Zno deposition material, method for producing the same, and zno film |
US13/360,001 US8409477B2 (en) | 2007-09-27 | 2012-01-27 | ZnO vapor deposition material, process for producing the same, and ZnO film |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007252759 | 2007-09-27 | ||
JP2007252759 | 2007-09-27 | ||
JP2008245299A JP5418747B2 (en) | 2007-09-27 | 2008-09-25 | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009097086A JP2009097086A (en) | 2009-05-07 |
JP5418747B2 true JP5418747B2 (en) | 2014-02-19 |
Family
ID=40700362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008245299A Expired - Fee Related JP5418747B2 (en) | 2007-09-27 | 2008-09-25 | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5418747B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5299662B2 (en) * | 2007-10-26 | 2013-09-25 | 三菱マテリアル株式会社 | Transparent conductive film and sputtering target for forming the transparent conductive film |
JP5428870B2 (en) * | 2009-01-13 | 2014-02-26 | 三菱マテリアル株式会社 | Method for producing ZnO vapor deposition material |
JP5428871B2 (en) * | 2009-01-13 | 2014-02-26 | 三菱マテリアル株式会社 | Method for producing ZnO vapor deposition material |
JP5428873B2 (en) * | 2009-01-13 | 2014-02-26 | 三菱マテリアル株式会社 | Method for producing ZnO vapor deposition material |
JP5428872B2 (en) * | 2009-01-13 | 2014-02-26 | 三菱マテリアル株式会社 | Method for producing ZnO vapor deposition material |
JP5519959B2 (en) * | 2009-06-10 | 2014-06-11 | 三菱マテリアル株式会社 | Laminated sheet |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2805813B2 (en) * | 1988-08-09 | 1998-09-30 | 東ソー株式会社 | Sputtering target and method for manufacturing the same |
JP3301755B2 (en) * | 1990-08-22 | 2002-07-15 | 東ソー株式会社 | Sputtering target and manufacturing method thereof |
JPH04219359A (en) * | 1990-12-19 | 1992-08-10 | Tosoh Corp | Electrically conductive zinc oxide sintered compact |
JP3128861B2 (en) * | 1991-06-06 | 2001-01-29 | 東ソー株式会社 | Sputtering target and method for manufacturing the same |
JP3343938B2 (en) * | 1992-06-11 | 2002-11-11 | 東洋紡績株式会社 | Materials for vacuum deposition |
JP2000040429A (en) * | 1998-07-24 | 2000-02-08 | Sumitomo Metal Mining Co Ltd | Manufacturing of zinc oxide transparent conductive film |
JP4577924B2 (en) * | 1999-06-29 | 2010-11-10 | 三井金属鉱業株式会社 | Method for producing sputtering target containing zinc oxide |
JP3826755B2 (en) * | 2001-09-28 | 2006-09-27 | 株式会社村田製作所 | ZnO film, method for producing the same, and light emitting device |
JP2005187919A (en) * | 2003-12-26 | 2005-07-14 | Mitsubishi Materials Corp | MgO VAPOR-DEPOSITED MATERIAL AND METHOD FOR MANUFACTURING THE SAME |
JP2005219982A (en) * | 2004-02-06 | 2005-08-18 | Mitsubishi Heavy Ind Ltd | Translucent conductive material |
JP2005264246A (en) * | 2004-03-18 | 2005-09-29 | Japan Fine Ceramics Center | Vapor deposition material and its production method |
JP5169313B2 (en) * | 2007-03-09 | 2013-03-27 | 三菱マテリアル株式会社 | Method for producing ZnO vapor deposition material |
-
2008
- 2008-09-25 JP JP2008245299A patent/JP5418747B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009097086A (en) | 2009-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5418751B2 (en) | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film | |
JP5418747B2 (en) | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film | |
JP5418752B2 (en) | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film | |
JP5418749B2 (en) | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film | |
JP5418748B2 (en) | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film | |
JP5499453B2 (en) | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film | |
JP5516838B2 (en) | Method for producing ZnO vapor deposition material | |
JP5082928B2 (en) | ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby | |
JP5418750B2 (en) | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film | |
TWI431135B (en) | Zno deposition material, method for producing the same, and zno film | |
JP5082927B2 (en) | Method for producing ZnO vapor deposition material | |
JP5381725B2 (en) | Method for producing ZnO vapor deposition material | |
JP5169313B2 (en) | Method for producing ZnO vapor deposition material | |
JP2008255476A (en) | ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM | |
JP5018553B2 (en) | ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby | |
JP2010185129A (en) | METHOD FOR MANUFACTURING ZnO VAPOR DEPOSITION MATERIAL | |
JP5018552B2 (en) | ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby | |
JP5115249B2 (en) | Vapor deposition material and method for forming a vapor deposition film using the vapor deposition material | |
JP5239222B2 (en) | Method for producing ZnO vapor deposition material and method for producing ZnO film | |
JP5417720B2 (en) | Method for producing ZnO vapor deposition material and method for forming vapor deposition film using vapor deposition material produced by the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5418747 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |