JP3301755B2 - Sputtering target and manufacturing method thereof - Google Patents

Sputtering target and manufacturing method thereof

Info

Publication number
JP3301755B2
JP3301755B2 JP21905890A JP21905890A JP3301755B2 JP 3301755 B2 JP3301755 B2 JP 3301755B2 JP 21905890 A JP21905890 A JP 21905890A JP 21905890 A JP21905890 A JP 21905890A JP 3301755 B2 JP3301755 B2 JP 3301755B2
Authority
JP
Japan
Prior art keywords
sintered body
less
thin film
sputtering target
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21905890A
Other languages
Japanese (ja)
Other versions
JPH04104937A (en
Inventor
展弘 小川
隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP21905890A priority Critical patent/JP3301755B2/en
Publication of JPH04104937A publication Critical patent/JPH04104937A/en
Application granted granted Critical
Publication of JP3301755B2 publication Critical patent/JP3301755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本発明は、スパッタリング法によって透明導電性薄膜
を形成するための導電性酸化亜鉛焼結体からなるスパッ
タリングターゲット及びその製法に関する。
The present invention relates to a sputtering target made of a conductive zinc oxide sintered body for forming a transparent conductive thin film by a sputtering method, and a method for producing the same.

【0002】[0002]

【従来の技術】[Prior art]

太陽電池やディスプレー機器の透明電極や、帯電防止
用の導電性コーティングとして透明導電性薄膜の需要が
高まっている。このような透明導電性薄膜は主に金属酸
化物のスパッタリングにより形成されており、例えば、
スズをドープしたインジウム酸化物(ITO)、アンチモ
ンをドープした酸化スズ(TAO)などの焼結体をスパッ
タリングすることにより形成されたものが知られてい
る。
There is an increasing demand for transparent conductive thin films as transparent electrodes for solar cells and display devices, and as conductive coatings for antistatic purposes. Such a transparent conductive thin film is mainly formed by sputtering metal oxide, for example,
There are known ones formed by sputtering a sintered body such as tin-doped indium oxide (ITO) or antimony-doped tin oxide (TAO).

【0003】 ところで、従来の透明導電性薄膜は300℃程度に加熱
した高温基板上に結晶化膜として形成されていたが、近
年になって室温から150℃程度の低温基板上に形成する
ことが要求され始めている。すなわち、液晶ディスプレ
ー用の透明導電性薄膜などは、耐熱性の低い有機物(カ
ラーフィルター)やアモルファスシリコンの上に成膜す
ることが必要であり、低温基板上に透明導電性薄膜を形
成することは極めて重要になってきている。しかしなが
ら、前記のITOやTAOでは低温基板上に低抵抗な透明導電
性薄膜を形成することは極めて困難であった。
Meanwhile, a conventional transparent conductive thin film has been formed as a crystallized film on a high-temperature substrate heated to about 300 ° C., but recently, it has been formed on a low-temperature substrate at room temperature to about 150 ° C. It is starting to be demanded. That is, it is necessary to form a transparent conductive thin film for a liquid crystal display on an organic material (color filter) having low heat resistance or amorphous silicon, and it is not possible to form a transparent conductive thin film on a low-temperature substrate. It is becoming extremely important. However, it has been extremely difficult to form a low-resistance transparent conductive thin film on a low-temperature substrate using the above-mentioned ITO and TAO.

【0004】 一方、アルミニウムをドープした酸化亜鉛焼結体をス
パッタリングすることによりITO並に低抵抗で透明性に
優れた透明導電性薄膜が得られることが報告されている
(J.Appl.Phys.55(4),15 February 1988 p102
9)。酸化亜鉛は安価な上に化学的にも安定で、透明
性、導電性にも優れていることから優れた透明導電性薄
膜を形成するための材料として注目されている。しかし
ながら酸化亜鉛焼結体においても、加熱した高温基板上
に透明導電性薄膜を形成するには極めて優れた性能を示
すが、低温基板への成膜においては幾つかの改善が必要
であった。例えば従来の酸化亜鉛焼結体を用いて低温基
板上に透明導電性薄膜を形成した場合、該薄膜は着色
し、抵抗が上昇するという問題があった。
On the other hand, it has been reported that by sputtering a zinc oxide sintered body doped with aluminum, a transparent conductive thin film having as low resistance and excellent transparency as ITO can be obtained (J. Appl. Phys. 55 (4), 15 February 1988 p102
9). Zinc oxide is inexpensive, chemically stable, and excellent in transparency and conductivity, and thus attracts attention as a material for forming an excellent transparent conductive thin film. However, the zinc oxide sintered body also shows extremely excellent performance for forming a transparent conductive thin film on a heated high-temperature substrate, but some improvement is required for film formation on a low-temperature substrate. For example, when a transparent conductive thin film is formed on a low-temperature substrate by using a conventional zinc oxide sintered body, there is a problem that the thin film is colored and the resistance is increased.

【0005】[0005]

【発明が解決しようとする課題】[Problems to be solved by the invention]

本発明の目的は、スパッタリング法によって、70℃程
度の低温基板上にも均一でかつ低抵抗な透明導電性薄膜
を形成することのできる酸化亜鉛焼結体からなるスパッ
タリングターゲット及びその製法を提供することにあ
る。
An object of the present invention is to provide a sputtering target comprising a zinc oxide sintered body capable of forming a uniform and low-resistance transparent conductive thin film on a low-temperature substrate at about 70 ° C. by a sputtering method, and a method for producing the same. It is in.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

本発明者らは上記課題を解決するために鋭意検討を行
なった結果、特有の焼結粒子平均粒径及び体積固有抵抗
を有する酸化亜鉛焼結体をスパッタリングターゲットと
して用いてスパッタリングを行なうことにより、低温基
板上に均一でかつ低抵抗な透明導電性薄膜を形成するこ
とができることを見出だし本発明を完成するに至った。
すなわち本発明は焼結粒子平均粒径が1μm以上10μm
以下、体積固有抵抗が10Ω・cm未満、密度が4.0g/cm3
上5.0g/cm3未満である導電性酸化亜鉛焼結体からなるス
パッタリングターゲットである。以下、本発明を詳細に
説明する。
The present inventors have conducted intensive studies in order to solve the above problems, as a result of performing sputtering using a zinc oxide sintered body having a specific sintered particle average particle diameter and a volume resistivity as a sputtering target, It has been found that a uniform and low-resistance transparent conductive thin film can be formed on a low-temperature substrate, and the present invention has been completed.
That is, in the present invention, the average particle diameter of the sintered particles is 1 μm or more and 10 μm or more.
Hereinafter, a sputtering target made of a conductive zinc oxide sintered body having a volume resistivity of less than 10 Ω · cm and a density of 4.0 g / cm 3 or more and less than 5.0 g / cm 3 . Hereinafter, the present invention will be described in detail.

【0007】 本発明の焼結体は、焼結粒子平均粒径が1μm以上10
μm以下、密度が4.0g/cm3以上5.0g/cm3未満であること
を必須とし、この焼結粒子平均粒径を満たす焼結体を用
いることにより、均一でかつ低抵抗の透明導電性薄膜を
低温基板上に形成することができる。しかしながら、焼
結粒子平均粒径が10μmを越える焼結体を用いて低温基
板上に透明導電性薄膜を形成した場合、この薄膜は着色
し、導電性が低下してしまう。一方焼結粒子平均粒径が
1μm未満の焼結体はその機械的強度が弱くなるため、
透明導電性薄膜を形成するためのスパッタリングターゲ
ットとしての適用が困難となる。本発明の焼結体の焼結
粒子平均粒径の更に好ましい範囲は2μm以上5μm以
下である。また、本発明の焼結体は、その体積固有抵抗
が10Ω・cm以下であることを必須とし、特に3Ω・cm以
下であることが好ましい。このことにより、この焼結体
を直流スパッタリング法のターゲットとして使用するこ
とができる。
The sintered body of the present invention has a sintered particle average particle size of 1 μm or more and 10 μm or more.
μm or less, the density must be 4.0 g / cm 3 or more and less than 5.0 g / cm 3 , and by using a sintered body that satisfies the average particle diameter of the sintered particles, uniform and low-resistance transparent conductive A thin film can be formed on a low temperature substrate. However, when a transparent conductive thin film is formed on a low-temperature substrate using a sintered body having a sintered particle average particle size exceeding 10 μm, the thin film is colored and the conductivity is reduced. On the other hand, a sintered body having an average particle diameter of less than 1 μm has a low mechanical strength.
It becomes difficult to apply as a sputtering target for forming a transparent conductive thin film. A more preferable range of the average particle diameter of the sintered particles of the sintered body of the present invention is 2 μm or more and 5 μm or less. Further, the sintered body of the present invention must have a volume resistivity of 10 Ω · cm or less, and particularly preferably 3 Ω · cm or less. Thereby, this sintered body can be used as a target of the DC sputtering method.

【0008】 本発明の焼結体は上述の条件を満たすものであるが、
特に亜鉛と異種元素の共沈酸化物から構成した焼結体
は、異種元素が焼結体中で均一に分散し、これが導電性
ドーパントとして作用するため、焼結体の導電性が高く
かつ均一となり、これを透明導電性薄膜を形成するため
のスパッタリングターゲットとして用いた場合、得られ
る透明導電膜の均一性も向上する。なお、この異種元素
とは原子価状態として三価以上の状態が存在するもので
あればいかなるものも適用可能であり、例えばIII A族
のSc,Y,III B族のB,Al,Ga,In,Tl,IV A族のTi,Zr,Hf,Th,
IV B族のC,Si,Ge,Sn,Pb,V A族のV,Nb,Ta,Pa,V B族のAs,
Sb,Bi,VI A族のCr,Mo,W,U,VI B族のSe,Te,Po,VII A族の
Mn,Tc,Re,VIIIのFe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt、及びラ
ンタノイド、アクチノイド系列の元素などが適用可能で
あるが、この中でも特にAl,In,Ti,Si,Ge,Snが取扱い易
さの点などから好ましく用いられる。この異種元素を焼
結体に混合する場合、異種元素の焼結体中の含有量は亜
鉛に対し0.1atm%から20.0atm%、特に0.5atm%から5.0
atm%であることが好ましい。この含有量が0.1atm%未
満の場合、異種元素の導電性ドーパントとしての効果が
得られず、一方20.0atm%を越える場合、焼結体や得ら
れる透明導電性薄膜の導電率が低下するおそれがある。
The sintered body of the present invention satisfies the above conditions,
In particular, in a sintered body composed of a coprecipitated oxide of zinc and a different element, the different element is uniformly dispersed in the sintered body and acts as a conductive dopant, so that the conductivity of the sintered body is high and uniform. When this is used as a sputtering target for forming a transparent conductive thin film, the uniformity of the obtained transparent conductive film is also improved. In addition, any of the different elements can be applied as long as they have a trivalent or higher valence state as a valence state.For example, IIIA group Sc, Y, IIIB group B, Al, Ga, In, Tl, IV A group Ti, Zr, Hf, Th,
IV Group C, Si, Ge, Sn, Pb, VA group V, Nb, Ta, Pa, VB group As,
Sb, Bi, VIA Cr, Mo, W, U, VIB Se, Te, Po, VIIA
Mn, Tc, Re, Fe of VIII, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, and lanthanoids, actinoid series elements and the like can be applied, among which Al, In, Ti, Si, Ge, and Sn are preferably used from the viewpoint of easy handling. When this different element is mixed with the sintered body, the content of the different element in the sintered body is from 0.1 atm% to 20.0 atm%, particularly from 0.5 atm% to 5.0 atm with respect to zinc.
It is preferably atm%. When the content is less than 0.1 atm%, the effect as a conductive dopant of a different element cannot be obtained. On the other hand, when the content exceeds 20.0 atm%, the conductivity of the sintered body or the obtained transparent conductive thin film may be reduced. There is.

【0009】 また、本発明の焼結体のうち、(002)結晶配向性が
(101)結晶配向性より大きいものをスパッタリングタ
ーゲットとして用いて透明導電性薄膜を形成した場合、
スパッタリング時に膜質の低下が緩和され、より優れた
均一性の大面積薄膜を得ることができる。
In the case where a transparent conductive thin film is formed by using a sintered body of the present invention having a (002) crystal orientation larger than a (101) crystal orientation as a sputtering target,
Deterioration in film quality during sputtering is alleviated, and a large-area thin film with better uniformity can be obtained.

【0010】 以下、本発明の焼結体の製法の一例について説明す
る。本発明の焼結体は、例えば亜鉛と異種元素の酸化物
前駆体の共沈物を仮焼して共沈酸化物を得、該共沈酸化
物を成型し、1300℃以上で焼結することにより得ること
ができる。このように、本発明の焼結体を亜鉛と異種元
素の共沈酸化物から製造することにより、異種元素が焼
結時に焼結粒子の粒成長を適度に抑制し、焼結粒子平均
粒径を制御しやすくなるので好ましい。例えば酸化亜鉛
と異種元素の混合酸化物を1400℃以上で焼結した場合、
焼結粒子平均粒径は10μm以上に粒成長してしまうが、
共沈酸化物は1600℃で焼結してもその焼結粒子平均粒径
は10μm以下、多くは5μm以下に維持される。上述し
た本発明の焼結体の製法における共沈酸化物の成型方法
としては、例えば金型成型、鋳込み成型などが適用可能
である。また焼結温度は1000℃以上であるが、特に1300
℃から1400℃の範囲が好ましい。焼結温度が1300℃未満
では、得られる焼結体の導電性が不十分となる。更に焼
結時の雰囲気にも特に制限はないが、特に焼結体が還元
されない空気中焼結が好ましく用いられる。ところで、
本発明の焼結体の製法において用いられる共沈酸化物の
合成方法にも特に制限はないが、例えば従来知られてい
る方法により亜鉛と異種元素の共沈水酸化物、共沈無機
塩、共沈有機酸塩などの共沈酸化物前駆体を調製し、そ
れを仮焼することにより得ることができる。更に上記の
ように亜鉛と異種元素を共沈させる場合、沈殿速度が速
く、溶液濃度が高い場合には異種元素成分が偏析しやす
くなるので、溶液濃度としては2mol/l以下、沈殿速度と
しては10mol/時間以下とすることが好ましい。なお本発
明の焼結体を製造するにあたり、焼結体の密度を4.0g/c
m3以上5.0g/cm3未満の範囲に制御することが必須である
が、特に4.5g/cm3以上5.0g/cm3未満の範囲に制御するこ
とが好ましい。この密度が4.0g/cm3未満では焼結体の機
械的強度が弱くなり、焼結体に十分な導電性が付与され
ないおそれが生じ、5.0g/cm3以上では焼結体の焼結粒子
が粒成長し、10μm以下の焼結粒子平均粒径が維持され
ないおそれがある。しかしながら、ホットプレスの様な
特別の手法を用いれば、密度が高くても焼結粒子平均粒
径を小さく維持することが可能である。
Hereinafter, an example of a method for producing a sintered body of the present invention will be described. The sintered body of the present invention is, for example, calcining a coprecipitate of zinc and an oxide precursor of a different element to obtain a coprecipitated oxide, molding the coprecipitated oxide, and sintering at 1300 ° C. or more. Can be obtained. As described above, by producing the sintered body of the present invention from the coprecipitated oxide of zinc and a different element, the different element moderately suppresses the grain growth of the sintered particles during sintering, and the average particle diameter of the sintered particles. Is preferred because it becomes easier to control For example, when sintering a mixed oxide of zinc oxide and a different element at 1400 ° C or higher,
The average particle size of the sintered particles grows to 10 μm or more,
Even when the coprecipitated oxide is sintered at 1600 ° C., the average particle diameter of the sintered particles is maintained at 10 μm or less, and is often maintained at 5 μm or less. As a method for molding the coprecipitated oxide in the method for producing a sintered body of the present invention described above, for example, die molding, casting molding, or the like can be applied. The sintering temperature is 1000 ° C or higher, but especially 1300 ° C.
C. to 1400.degree. C. is preferred. If the sintering temperature is less than 1300 ° C., the conductivity of the obtained sintered body will be insufficient. The atmosphere during sintering is not particularly limited, but sintering in air, in which the sintered body is not reduced, is preferably used. by the way,
The method for synthesizing the coprecipitated oxide used in the method for producing the sintered body of the present invention is not particularly limited. For example, a coprecipitated hydroxide of zinc and a different element, a coprecipitated inorganic salt, It can be obtained by preparing a coprecipitated oxide precursor such as a precipitated organic acid salt and calcining it. Furthermore, when coprecipitating zinc and a different element as described above, the precipitation rate is high, and when the solution concentration is high, the heterogeneous element component is likely to segregate, so the solution concentration is 2 mol / l or less, and the precipitation rate is It is preferable that the concentration be 10 mol / hour or less. In producing the sintered body of the present invention, the density of the sintered body is 4.0 g / c
it is essential to control the range of less than m 3 or more 5.0 g / cm 3, it is particularly preferred to control the range of less than 4.5 g / cm 3 or more 5.0 g / cm 3. The density the mechanical strength of the sintered body becomes weak is less than 4.0 g / cm 3, a possibility that sufficient conductivity in the sintered body is not applied occurs, sintered particles of the sintered body is 5.0 g / cm 3 or more May grow and the average particle size of the sintered particles of 10 μm or less may not be maintained. However, if a special technique such as hot pressing is used, it is possible to keep the average particle diameter of the sintered particles small even if the density is high.

【0011】 また、本発明の焼結体のうち、(101)結晶配向性に
対して(002)結晶配向性の方が大きい焼結体は、例え
ば結晶配向性のある共沈酸化物を成型し、焼結すること
により得ることができる。
In the sintered body of the present invention, a sintered body having a larger (002) crystal orientation than a (101) crystal orientation is formed by molding a coprecipitated oxide having a crystal orientation, for example. Then, it can be obtained by sintering.

【0012】[0012]

【実施例】【Example】

以下実施例に基づき本発明を説明するが、本発明はこ
れらに何ら限定されるものではない。
Hereinafter, the present invention will be described based on examples, but the present invention is not limited thereto.

【0013】 実施例1 硫酸亜鉛1モル、硫酸アルミニウム0.015モルの混合
水溶液を14%アンモニア水で60分かけて中和し、pH=7
で共沈水酸化物を調製した。次に得られた共沈水酸化物
を大気中800℃で仮焼して共沈酸化物とし、これを金型
成型して成型体を得、これを空気中1400℃で焼結した。
得られた焼結体の焼結粒子の平均粒径は電子顕微鏡観察
により3μm、焼結密度は見掛けの密度で4.5g/cm3、比
抵抗は四探針法により測定した結果3.0Ω・cmであっ
た。また焼結体の結晶配向性はX線回折強度比で(00
2)/(101)=4.5/1であった。
Example 1 A mixed aqueous solution of 1 mol of zinc sulfate and 0.015 mol of aluminum sulfate was neutralized with 14% aqueous ammonia for 60 minutes, and the pH was 7
To prepare a coprecipitated hydroxide. Next, the obtained coprecipitated hydroxide was calcined at 800 ° C. in the air to form a coprecipitated oxide, which was molded in a mold to obtain a molded body, which was sintered at 1400 ° C. in air.
The average particle size of the sintered particles of the obtained sintered body was 3 μm by electron microscope observation, the sintering density was 4.5 g / cm 3 in apparent density, and the specific resistance was 3.0 Ω · cm as measured by a four-point probe method. Met. The crystal orientation of the sintered body is represented by the X-ray diffraction intensity ratio (00
2) / (101) = 4.5 / 1.

【0014】 得られた焼結体をスパッタリングターゲットとして用
い、DCマグネトロンスパッタリングで透明導電性薄膜を
表1に示す成膜条件で形成した。その結果、表2に示す
特性の均一で低抵抗な透明導電性薄膜を比較的広い範囲
で得ることができた。
Using the obtained sintered body as a sputtering target, a transparent conductive thin film was formed by DC magnetron sputtering under the film forming conditions shown in Table 1. As a result, it was possible to obtain a transparent conductive thin film having uniform characteristics and low resistance as shown in Table 2 in a relatively wide range.

【0015】 比較例1 酸化亜鉛と酸化アルミニウムを1:0.015(モル比)と
なるように混合し、これを金型成型して成型体を得、こ
れを空気中1400℃で焼結した。得られた焼結体の焼結粒
子の平均粒径は電子顕微鏡観察により20μm、焼結密度
は見掛けの密度で5.3g/cm3、比抵抗は四探針法により測
定した結果0.2Ω・cmであった。また焼結体の結晶配向
性はX線回折強度比で(002)/(101)=1/5.5であっ
た。
Comparative Example 1 Zinc oxide and aluminum oxide were mixed at a ratio of 1: 0.015 (molar ratio), and the mixture was molded in a mold to obtain a molded body, which was sintered at 1400 ° C. in air. The average particle size of the sintered particles of the obtained sintered body was 20 μm by electron microscope observation, the sintering density was 5.3 g / cm 3 in apparent density, and the specific resistance was 0.2 Ωcm as measured by a four probe method. Met. The crystal orientation of the sintered body was (002) / (101) = 1 / 5.5 in X-ray diffraction intensity ratio.

【0016】 得られた焼結体をターゲットとして用い、実施例1と
同様の条件でDCマグネトロンスパッタリングで透明導電
性薄膜を形成したところ、抵抗が高く、着色した透明導
電性薄膜が得られた。得られた薄膜の特性を表2に示
す。
Using the obtained sintered body as a target and forming a transparent conductive thin film by DC magnetron sputtering under the same conditions as in Example 1, a colored transparent conductive thin film having high resistance was obtained. Table 2 shows the properties of the obtained thin film.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】【The invention's effect】

以上述べたとおり、本発明の酸化亜鉛焼結体からなる
スパッタリングターゲットは、特に低温基板上に透明導
電膜を形成するスパッタリングターゲットとして極めて
優れた性能を有するものとなる。
As described above, the sputtering target formed of the zinc oxide sintered body of the present invention has extremely excellent performance as a sputtering target for forming a transparent conductive film on a low-temperature substrate.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】焼結粒子平均粒径が1μm以上10μm以
下、体積固有抵抗が10Ω・cm未満、密度が4.0g/cm3以上
5.0g/cm3未満である導電性酸化亜鉛焼結体からなること
を特徴とするスパッタリングターゲット。
1. The sintered particles have an average particle diameter of 1 μm or more and 10 μm or less, a volume resistivity of less than 10 Ω · cm, and a density of 4.0 g / cm 3 or more.
A sputtering target comprising a conductive zinc oxide sintered body of less than 5.0 g / cm 3 .
【請求項2】導電性酸化亜鉛焼結体が亜鉛と異種元素の
共沈酸化物からなることを特徴とする請求項1に記載の
スパッタリングターゲット。
2. The sputtering target according to claim 1, wherein the conductive zinc oxide sintered body is made of a coprecipitated oxide of zinc and a different element.
【請求項3】導電性酸化亜鉛焼結体が、(002)結晶配
向性が(101)結晶配向性より大きい導電性酸化亜鉛焼
結体であることを特徴とする請求項1または2に記載の
スパッタリングターゲット。
3. The conductive zinc oxide sintered body according to claim 1, wherein the conductive zinc oxide sintered body is a conductive zinc oxide sintered body having (002) crystal orientation larger than (101) crystal orientation. Sputtering target.
【請求項4】亜鉛と異種元素の酸化物前駆体の共沈物を
仮焼して共沈酸化物を得、該共沈酸化物を成型し、1300
℃以上で焼結することを特徴とする焼結粒子平均粒径が
1μm以上10μm以下、体積固有抵抗が10Ω・cm未満、
密度が4.0g/cm3以上5.0g/cm3未満の導電性酸化亜鉛焼結
体からなるスパッタリングターゲットの製法。
4. A coprecipitated oxide of zinc and an oxide precursor of a different element is calcined to obtain a coprecipitated oxide.
Characterized by sintering at a temperature of not less than 1 ° C .;
A method for producing a sputtering target comprising a conductive zinc oxide sintered body having a density of 4.0 g / cm 3 or more and less than 5.0 g / cm 3 .
JP21905890A 1990-08-22 1990-08-22 Sputtering target and manufacturing method thereof Expired - Fee Related JP3301755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21905890A JP3301755B2 (en) 1990-08-22 1990-08-22 Sputtering target and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21905890A JP3301755B2 (en) 1990-08-22 1990-08-22 Sputtering target and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04104937A JPH04104937A (en) 1992-04-07
JP3301755B2 true JP3301755B2 (en) 2002-07-15

Family

ID=16729610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21905890A Expired - Fee Related JP3301755B2 (en) 1990-08-22 1990-08-22 Sputtering target and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3301755B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318307B2 (en) 2012-01-30 2016-04-19 Ngk Insulators, Ltd. Zinc oxide sputtering target and method for producing same
US9824869B2 (en) 2013-03-25 2017-11-21 Ngk Insulators, Ltd. Zinc oxide sputtering target
US9919931B2 (en) 2013-03-25 2018-03-20 Ngk Insulators, Ltd. Zinc oxide sputtering target

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622075B2 (en) * 2000-10-03 2011-02-02 凸版印刷株式会社 Transparent conductive material and method for producing the same
JP4502493B2 (en) * 2000-10-10 2010-07-14 京セラ株式会社 Zinc oxide sintered body and method for producing the same
US20070071985A1 (en) * 2005-09-29 2007-03-29 Prabhat Kumar Sputtering target, low resistivity, transparent conductive film, method for producing such film and composition for use therein
JP5593612B2 (en) 2006-06-08 2014-09-24 住友金属鉱山株式会社 Oxide sintered body, target, transparent conductive film obtained using the same, and transparent conductive substrate
JP5018552B2 (en) * 2007-03-09 2012-09-05 三菱マテリアル株式会社 ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5082928B2 (en) * 2007-03-09 2012-11-28 三菱マテリアル株式会社 ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5169313B2 (en) * 2007-03-09 2013-03-27 三菱マテリアル株式会社 Method for producing ZnO vapor deposition material
JP5018553B2 (en) * 2007-03-09 2012-09-05 三菱マテリアル株式会社 ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP4962356B2 (en) * 2007-03-09 2012-06-27 三菱マテリアル株式会社 ZnO vapor deposition material and ZnO film formed thereby
JP5082927B2 (en) * 2007-03-09 2012-11-28 三菱マテリアル株式会社 Method for producing ZnO vapor deposition material
JP4962355B2 (en) * 2007-03-14 2012-06-27 三菱マテリアル株式会社 ZnO vapor deposition material and ZnO film formed thereby
JP5418752B2 (en) * 2007-09-27 2014-02-19 三菱マテリアル株式会社 ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5418750B2 (en) * 2007-09-27 2014-02-19 三菱マテリアル株式会社 ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
WO2009041694A1 (en) 2007-09-27 2009-04-02 Mitsubishi Materials Corporation ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM
JP5418751B2 (en) * 2007-09-27 2014-02-19 三菱マテリアル株式会社 ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5418749B2 (en) * 2007-09-27 2014-02-19 三菱マテリアル株式会社 ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5499453B2 (en) * 2007-09-27 2014-05-21 三菱マテリアル株式会社 ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5418747B2 (en) * 2007-09-27 2014-02-19 三菱マテリアル株式会社 ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5516838B2 (en) * 2007-09-27 2014-06-11 三菱マテリアル株式会社 Method for producing ZnO vapor deposition material
JP5418748B2 (en) * 2007-09-27 2014-02-19 三菱マテリアル株式会社 ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5388266B2 (en) * 2008-03-19 2014-01-15 国立大学法人岩手大学 ZnO-based target and manufacturing method thereof, conductive thin film manufacturing method, and conductive thin film
DE112012007295B3 (en) 2011-06-08 2022-02-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a sputtering target and method of manufacturing a semiconductor device
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
JP6141777B2 (en) 2013-02-28 2017-06-07 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318307B2 (en) 2012-01-30 2016-04-19 Ngk Insulators, Ltd. Zinc oxide sputtering target and method for producing same
US9824869B2 (en) 2013-03-25 2017-11-21 Ngk Insulators, Ltd. Zinc oxide sputtering target
US9919931B2 (en) 2013-03-25 2018-03-20 Ngk Insulators, Ltd. Zinc oxide sputtering target

Also Published As

Publication number Publication date
JPH04104937A (en) 1992-04-07

Similar Documents

Publication Publication Date Title
JP3301755B2 (en) Sputtering target and manufacturing method thereof
JP3128861B2 (en) Sputtering target and method for manufacturing the same
JP2805813B2 (en) Sputtering target and method for manufacturing the same
WO1994013851A1 (en) Transparent conductive film, transparent conductive base material, and conductive material
EP0486182A1 (en) Zinc oxide sintered body, and production and application thereof
JPH04219359A (en) Electrically conductive zinc oxide sintered compact
JPH06234565A (en) Target and its production
JPH0350148A (en) Zinc oxide sintered compact, production and its application
CN113956022A (en) Zinc-doped indium oxide powder, sputtering target material and preparation method thereof
He et al. Unipolar resistive switching properties of Pr-doped ZnO thin films
EP0354769B1 (en) Zinc oxide sintered body and preparation process thereof
Peiteado et al. Microstructural development of tin-doped ZnO bulk ceramics
JP3314388B2 (en) Method for producing indium hydroxide, indium oxide and ITO sintered body
JP2007284716A (en) Nickel nanowire and production method therefor
KR101740088B1 (en) Method for preparing antimony tin oxide nanoparticles
JP3128124B2 (en) Conductive metal oxide sintered body and use thereof
JPH0721831A (en) Manufacture of conductive oxide powder
Teixeira et al. Chemical synthesis and epitaxial growth methods for the preparation of ferroelectric ceramics and thin films
CN104928642A (en) Preparation method of molybdenum dioxide nanowire arrays
Yan et al. Resistive switching memory of single BiMnO 3+ δ nanorods
JPH0316954A (en) Oxide sintered product and preparation and use thereof
JP3058278B2 (en) Oxide sintered body and its use
JP2004022224A (en) Coating liquid and method for forming transparent conductive film, method of manufacturing thin film transistor for liquid crystal display, and liquid crystal display
Balaji et al. Preparation and characterization of CuSn, CuZr, SnZr and CuSnZr thin films deposited by SILAR method
Boshta et al. Effect of substrate on structural and transport properties of sprayed Fe: ZnO polycrystalline thin films

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees