JPH0415448B2 - - Google Patents

Info

Publication number
JPH0415448B2
JPH0415448B2 JP61253766A JP25376686A JPH0415448B2 JP H0415448 B2 JPH0415448 B2 JP H0415448B2 JP 61253766 A JP61253766 A JP 61253766A JP 25376686 A JP25376686 A JP 25376686A JP H0415448 B2 JPH0415448 B2 JP H0415448B2
Authority
JP
Japan
Prior art keywords
laser beam
light
transmitting
optical
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61253766A
Other languages
English (en)
Other versions
JPS63108317A (ja
Inventor
Tadashi Ariga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JUSEISHO TSUSHIN SOGO KENKYUSHOCHO
Original Assignee
JUSEISHO TSUSHIN SOGO KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JUSEISHO TSUSHIN SOGO KENKYUSHOCHO filed Critical JUSEISHO TSUSHIN SOGO KENKYUSHOCHO
Priority to JP61253766A priority Critical patent/JPS63108317A/ja
Publication of JPS63108317A publication Critical patent/JPS63108317A/ja
Publication of JPH0415448B2 publication Critical patent/JPH0415448B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Lenses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Description

【発明の詳細な説明】 (1) 発明の属する技術分野の説明 本発明は衛星間等宇宙の光通信やエネルギー伝
送用の光学装置に関するものである。
(2) 従来の技術の説明 従来の電波での宇宙通信の場合、電波のビーム
幅は一般にレーザビームより広く、電波ビームの
指向方向制御にはそれ程特殊な技術は必要として
いない。地上での通信で光フアイバーを用いた光
通信が主流になりつつあると同様、衛星間通信は
将来光が主流になることが世界的にも確実視され
ているが、用いるレーザ光のビーム幅を狭くしな
いといけないので極めて高精度のレーザビーム指
向方向制御技術を必要とする。また、エネルギー
伝送でも同様の高精度の技術が要求される。
従来、高精度のレーザビーム制御方法としては
米国の空軍等を中心に検討され衛星間光通信に使
用されようとしている方法があるが、この光学装
置は大略第1図のような構成になつている。まず
第1に、送受信同一望遠鏡で便利な反面、送・受
信が独立でないので同じ波長は用いられず異つた
波長を用いなければならない。第2に、送信の強
い光が受信側に及ぼす影響を常に心配しなければ
ならない。第3に、エネルギー伝送等著しく強い
ビームの伝送は不可能である。第4に、この方式
を宇宙通信に応用して半導体レーザ等で近接波長
を用いる場合、波長分離のためのアイソレータが
必要になるので送受信の電力はその分減少する。
第5に、望遠鏡部は簡単になるが内部に多くの光
学素子を必要とするので光学系の構造が複雑にな
りその分電力も損失する。第6に、送受信の分離
をビームスプリツタで行うため、可視と熱赤外等
使用光学材料の異なる二波長での送受信が不可
能。第7に、レーザの発振に起因するレーザビー
ム方向の変動が考慮されていない。第8に、送受
信とも同一のカセグレン式反射望遠鏡を用いてい
るが、反射望遠鏡を送信に用いる場合電波では問
題ないが、光の場合波長に比べ副鏡の口径が著し
く大きいので重要な問題が起こる。無限に遠い距
離では中心に強度の中心をもつ“フレネルの回折
パターン”になるものの、近中距離では特殊な回
折パターンとなり中心部の強度が零から有限の値
になることが距離とともに変化し何回か繰返され
(一般に数+Kmにも及び、ビームの拡がりの測
定や調整が非常に困難であり、近・中距離での使
用ができない。また、レーザビームの強度が最大
の中心部の光が副鏡でけられてエネルギーも損失
する。等々の欠点があつた。
(3) 発明の目的 本発明では上記の欠点を除去するために、光の
送受信を分離して別の望遠鏡で行うという異つた
基本方式を採用して、下記のように1枚の両面反
射鏡を用いるなど新しい発想によつて、参照光の
方向を基にレーザビームの送信方向を超高精度に
かつ簡単な構造で制御を行うことが可能なことが
特徴であつて、その目的は衛星間通信に必要な〜
10μradの拡り角のレーザビームを〜1μradの精度
で指向方向を制御しなければならないという技術
的な要請に応えることができることであり、さら
に光通信にとどまらず、エネルギー伝送等強力な
電磁波ビームも同精度で伝送可能にさせることで
ある。本発明は衛星を含めた一般の宇宙飛翔体に
適用できるが、ここでは衛星という言葉を用いる
ことにする。
(4) 発明の構成及び作用の説明 第2図は本発明の実施例であつて、1は参照
光(相手の飛翔体から放射される参照用の自然
光やレーザ光)受信望遠鏡対物レンズ、2は同
接眼レンズ、3はビームスプリツタ、4は結像
レンズ、5はCCD等の固体撮像素子(以下
CCDという)、6は両面反射鏡(二軸の回りに
回転する)、7は結像レンズ、8は四象限光検
出器、9はX−Yシフター、10はレーザ、1
1はアライメント兼用ビームスプリツタ(両面
平行)、12はレーザ光送信望遠鏡接眼レンズ、
13は同対物レンズ、14はコーナリフレク
タ、15は結像レンズ、16は四象限光検出器
(アライメント及びレーザ発振モニタ用)、17
は光学的バンドパスフイルタである。なお、本
光学装置はジンバル駆動によつて全体の光学軸
の方向制御ができるように固定されているもの
とする。
参照光は受信望遠鏡(1と2)から入り、3
のビームスプリツタで二つに分け、直進光は5
のCCDの撮像面で像を結び検出される。反射
光は6の両面反射鏡の一方の面で反射された
後、8の四象限光検出器に集光して検出され
る。2の凸レンズ使用故像は反転し、焦点の位
置が伸ばされる。8の零点の調整と光行差の補
正(後に詳述)は9のX−Yシフターで行う。
一方、送信レーザ光は10のレーザから出て、
11のアライメント兼用ビームスプリツタで反
射された後、6の両面反射鏡の他方の面で再度
反射され、12の接眼(凹)レンズを経て、1
3の送信望遠鏡で外部の空間へ放射される。送
信レーザビームの一部は11を透過後14のコ
ーナレフレクタで反射され、11で再反射され
た後16で検出され、光学軸のアライメントや
レーザ発振(特にビームの方向)のモニタを行
う。一般には背景光雑音が無視できないので、
これを除去するため受信側に17の光学的バン
ドパスフイルタを付ける。
6の両面反射鏡は第2図にも示したように、
紙面に垂直な軸と紙面に平行かつ鏡面に平行な
軸との二軸の回りに高精度でしかも速い応答速
度(100Hz以上:圧電効果等を用いて100Hz以上
の高速応答にすることは容易である。)で回転
できる機能をもつている。ただし回転範囲は小
さく(〜0.2°以内)でよい。8つの四象限光検
出器は、4個の検出器を4象限に並べた構造
(ピラミツド型の四角錐プリズム反射面を利用
して4個の検出器を横向にして離した等価構造
のものが一般に用いられる。)をしており、焦
点を少々ぼかして結像させ、各々の検出器に入
射した光強度から“重心”としてレーザビーム
スポツトの中心の位置を求めることができる。
第2図の送・受信光学系の光学軸が平行にな
るように調整(調整には恒星等からの平行光線
やオートコリメーシヨンの技術を用いる。)し
ておけば、ジンバルを駆動して装置全体を相手
飛翔体の方向に向け(捕そく)、参照レーザ光
のスポツト像の位置が5のCCD撮像面内の零
点に一致した時、送信レーザビームは正確に相
手に伝送される。衛星の姿勢変動等による送信
レーザビームのずれは、送受信系が一体となつ
ている故に、CCDで検出される参照光スポツ
ト像の位置のずれとなつて現れるので、ジンバ
ルを駆動させて一般の制御方法で高精度の追尾
が一応可能である。CCDは背景光雑音の影響
を少なくでき分解能も高く広視野がとれるので
初期捕そく及び追尾に適している。しかし、〜
1μradの精度となるとCCD−ジンバルシステム
では非常に難しく、高速応答も望めないので、
以下の述べるように四象限光検出器の信号をも
とに小型の内部平面鏡を駆動させて超高精度の
レーザビーム方向制御をCCD−ジンバルによ
る制御と併行して行う。
いま高速の姿勢変動やジンバルのジツター等
で送信レーザビームの方向がずれた場合、第2
図8の四象限光検出器に入射する参照光のスポ
ツト像の中心の位置は原点からずれる。そこで
この位置を原点に戻すように、即ち4個の検出
器での光強度が各々等しくなるように、6の反
射鏡を微調整(二つの軸の回りに微小回転させ
る。)する。すると、両面反射鏡の回転に連動
して送信レーザビームは反射方向が微小変化
し、送信望遠鏡から出る送信レーザビームの発
射方向は参照光の入射方向の変化に等しい角度
分だけ補正される。このためには参照光の入射
とレーザビームの発射の角度変化分が等しくな
るように本光学系の種々のパラメータを適当な
値に設定しておくことが必要であるが、これに
ついては後述する。短焦点の接眼レンズ12の
使用により、この焦点距離と13の送信望遠鏡
の対物レンズの焦点距離との比による倍率分だ
け6の両面反射鏡の回転角に対して縮小された
角度変化が得られ、高い指向角度精度が得られ
る仕組みになつている。
一般に宇宙に宇宙飛翔体は光速に対して無視
できない程高速に運動しているので、非常に狭
いビームを問題にする場合相手から放射される
参照光の方向にレーザビームを送信したのでは
正確にビームは当らず、相対速度分だけずらし
て“光行差”の補正を行つて伝送しなければな
らない。これを9のX−Yシフターにより8の
四象限光検出器の零点をずらすことによつて達
成する。また、6の反射鏡の微小回転を圧電効
果等を用いて行えば100Hz以上の高速応答が容
易に得られるので、レーザビームの高速・高精
度制御が可能となる。このようにして送信レー
ザビームは常に他の衛星に高精度で指向される
ことになり、8の四象限光検出器の位置信号と
6の両面反射鏡の回転角信号とを結合させたサ
ーボシステムを組むことにより、レーザビーム
の超高精度指向方向制御が実現される。
なお第2図を用いて送受信光学軸のアライメ
ントの方法を簡単に説明する。先ず平行光線
(レーザ等人工光か恒星の光)を1と13の両
望遠鏡から入射させ、8と16の四象限光検出
器で検出する。16での光が弱過ぎる場合は1
1をはずした方が良い。6の反射鏡(の角度)
を調整して16の中心で入射光を検出するよう
にした後、8の中心でも同時に検出できるよう
3のビームスプリツタを調整する。これで送受
信の光学系が平行に調整されたので、次はこれ
と平行にレーザビームを出してやればよい。1
1を取り付けた後(はずした場合)、14のコ
ーナリフレクタからの反射光は180°反対方向に
反射されるので、11のアライメント兼用ビー
ムスプリツタを調整して、16の中心で送信レ
ーザ光が検出されるようにする。これで先に平
行に調整された送受信光学軸と平行にレーザ光
ビームが送信されることになり、目的のアライ
メントは終了する。
参照光の方向のずれに等しい分だけ送信レー
ザビームの方向を変化させるためには光学装置
のパラメータをある条件に合うように定めなけ
ればならない。いま第2図の下端のようにx,
y,z軸(矢印の方向を正にとる)を定義す
る。z軸は光学軸と平行、y軸は紙面に垂直、
x軸は紙面に平行な軸である。したがつて、5
と8の撮像面は(x,y)座標で表わされる。
また以後回転角は反時計回りを正に定義する。
姿勢変動によつて、受信される参照光の見掛
けの方向が紙面に平行な成分として△θrだけ変
化したとすると、5のCCDでのスポツト像の
位置のずれのx方向成分△xcは、 △xc=fr△θrl1/fr ……(1) ただしfr及びfr′の各々は受信望遠鏡の対物レ
ンズ1及び接眼レンズ2の焦点距離である。四
象限光検出器(four quadrant detector)8で
の変化は受信望遠鏡の倍率mrを用い △xq=−mr△θrl2、mr=−fr/fr′ ……(2) となる。ここで、l1,l2は各々結像レンズ4,
7から5のCCD、8の四象限光検出器までの
距離を示す。6の両面反射鏡を△αだけ紙面と
平行に回転させてレーザビームの送信方向を△
θtだけ変えたとすると △θt=2 △α 1/mt} ……(3) mt=−ft/ft′ ここでft′,ftは各々接眼レンズ(eyepiece)
12及び対物レンズ13の焦点距離で、mtは
送信望遠鏡の倍率を意味する。ただし、(1)−(3)
式では凹レンズの焦点距離は負に定義してい
る。△αの回転による8での像のずれ△xq′は、
7と8の間の距離がl2であるので △xq′=−2 l2△α ……(4) レーザビーム方向の補正(制御)の条件は、 △θt=△θr′、 ……(5) △xq′=−△xq、 ……(6) である。(5)と(6)式が同時に満足されれば、6の
両面反射鏡の戻しの回転が(反対方向にならな
いので)レーザビームの方向を補正することに
なる。光行差を△θtaとすると、9のX−Yシ
フターで補正すべきシフト量△xqaは(3),(4)式
より求まり △xqa=−l2mt△θta、 ……(7) となる。(2),(3),(4),(5),(6)式より ft/ft′=−fr/fr′ 又は mr=−mt、 ……(8) が得られる。(8)が求めていた関係式である。紙
面に垂直な方向の回転成分(y座標の変化)に
ついても同様の関係が成立し、(8)式が導かれる
(8)式の物理的な意味は、送・受信望遠鏡の倍率
(対物レンズと接眼レンズの焦点距離の比。)が
等しく、かつ異符号(像が倒立と正立で反対。)
であることを示している。第2図では受信側で
倒立、送信側で正立となつているが、この逆で
もよい。いずれにしても(8)式を満足するように
パラメータを定めてやればよい。
例えば、現実的な数値として、 fr=90cm、 ft=100cm、 mt=20 にとると、mr=−20となり、fr′=4.5cm(凸レ
ンズ)、ft′=−5cm(凹レンズ)で(8)の条件を
満足する。いま、1μradの角度の精度を考え、
l2=10cmとすると △θr=△θt=1μrad であるので、(2)式より△xq=2μm、(3)式より
△α=10μrad、となり四象限光検出器8のス
ポツト像の位置の精度は2μm、両面反射鏡の回
転角度精度は10μradが要求されるが、いずれ
も容易に得られる精度である{例えば検出器8
でのスポツト像の直径を200μm(デフオーカス
にして像をぼかす。)とするとSN比約100
(20dB)でこの2μmの変位精度が得られる。原
理的にはこの直径を小さくして例えば20μmに
するとSN比約10dBで同精度が得られるはずで
あるが、現実にはスポツト像の直径を余り小さ
くすると直線性も悪くなり、光電面の感度むら
の問題も生じてサーボ系の精度は向上しない。}
両面反射鏡の回転時厚みのため(回転軸が反射
面と一致しないため。)に生ずる誤差はビーム
の微小平行移動となるだけであつて、角度の誤
差とはならない。光行差の補正については、例
えば20μrad(地表から見た静止衛星)の時には
(7)式より9のX−Yシフターを40μmシフトさ
せればよい。
(5) 効果の説明 以上のように本発明による光学システムを用い
れば、従来よりもコンパクトな光学系(送受信の
効率も良くなる)によつて相手飛翔体からの参照
光を基にして当該衛星から送信されるレーザビー
ムの指向方向を超高精度(〜1μrad以内)に制御
可能となり、衛星間通信等の宇宙通信に即利用で
きるのみならず、送受信系が独立しているので非
常に大きな強度のレーザビームを含む一般の電磁
波ビームも同様の精度で伝送でき、エネルギー伝
送等へも応用できるという利点がある。送受信を
独立させている効果は大きく、送受信同一の場合
のように送信ビームの一部が受信側に入り込む心
配がなく、相手飛翔体からの参照光としてはレー
ザビーコンのみならず微弱な光に対しても可能で
あり、太陽の反射光や赤外放射光をも利用でき
る。さらに、送受信いかなる波長でも使用でき、
同一波長で使用可能の利点があるのみならず、使
用材料を異にしなければならない波長でも送受信
に用いられるという利点があり、通信のみならず
種々の方面への応用が期待できる。
送信望遠鏡として屈折望遠鏡を用いれば、ビー
ムパターンが距離によつて変化しないので、ビー
ムの調整が容易になるとともに近距離の宇宙空間
での使用も可能となる。
(6) その他 ここでは第2図に示したようにレンズを用いた
送・受信望遠鏡を考えたが、反射鏡を用いても原
理的には全く変りはない。特に受信系は集光用の
対物レンズ(鏡)の口径が大きいほど参照光検出
のSN比が大きくなるので、参照光が弱い場合や
SN比を上げたい場合は反射望遠鏡を用いた方が
口径が大きくでき(レンズには限界がある。)有
利である。
レーザの発振によるレーザビームの方向の変動
がある場合は、16の出力を参照して11のビー
ムスプリツタの角度を制御(8の出力で6を制御
した方法と同様。)すればよい。
ジンバル装置としては、光学装置全体を動かす
か、送・受信望遠鏡の前に大型の外部平面鏡を置
いて動かすかの二通りの方法が考えられる。
【図面の簡単な説明】
第1図は先存技術の装置概略図、第2図は本発
明の装置ブロツク図である。第1図については、
a……送受信用(反射)望遠鏡対物鏡、b……同
接眼レンズ、c……二重構造反射鏡、d……反射
鏡、e……光学的バンドパスフイルタ、f……結
像レンズ、g……四象限光検出器(捕捉用)、h
……高精度追尾用反射鏡(AZ,EL)、i……二
色性ビームスプリツタ、j……四象限光検出器
(高精度追尾用)、k……光行差補正用反射鏡
(AZ,EL)、l……レーザである。 第2図については、1……参照光受信望遠鏡対
物レンズ、2……同接眼レンズ、3……ビームス
プリツタ、4……結像レンズ、5……CCD、6
……両面反射鏡、7……結像レンズ、8……四象
限光検出器、9……X−Yシフター、10……レ
ーザ、11……アライメント兼用ビームスプリツ
タ、12……レーザ光送信望遠鏡接眼レンズ、1
3……同対物レンズ、14……コーナリフレク
タ、15……結像レンズ、16……四象限光検出
器(アライメント及びレーザ発振モニタ用)、1
7……光学的バンドパスフイルタである。

Claims (1)

    【特許請求の範囲】
  1. 1 相手の飛翔体から放射される参照用の自然光
    やレーザ光(対象とするレーザビームと区別する
    ため以下参照光という)の受信と当該のレーザビ
    ームの送信とを別の光学アンテナ(望遠鏡)で行
    う第1の手段と、補そくのための装置全体の方向
    制御(CCD受光素子の信号を基にジンバルを駆
    動する)とレーザビームの高精度指向方向制御
    (四象限光検出器の信号を基に内部平面鏡を駆動
    する)とを併行して行う第2の手段と、受信及び
    送信望遠鏡の接眼部の短焦点レンズに各々凸、凹
    と反対の特性のものを使用する第3の手段と、光
    学的に不透明な1枚の平面鏡の両面を独立な反射
    面として用い各々受信した参照光と送信レーザビ
    ームの反射に用いる第4の手段と、第4の手段に
    用いる両面反射鏡の二軸の回転で参照光のスポツ
    ト像の位置と送信レーザビームの方向とを微小変
    化させる第5の手段と、送信用レーザが最初に反
    射する初段のレーザビーム反射鏡に微小透過型
    (大部分の光は反射するが一部の光は透過する)
    のビームスプリツタを用い、光学軸のアライメン
    トを同ビームスプリツタとコーナリフレクタを用
    いて行う第6の手段と、四象限光検出器を光学軸
    に垂直な平面内で微小平行移動(二次元的にシフ
    トさせる)させて光行差を補正する第7の手段と
    レーザの発振に起因するビーム方向の変動をも補
    正する(別の四象現光検出器の信号を基に同上ビ
    ームスプリツタを駆動して行う)第8の手段とを
    具備することを特徴とするレーザビームの超高精
    度方向制御方法。
JP61253766A 1986-10-27 1986-10-27 レ−ザビ−ムの超高精度方向制御方法 Granted JPS63108317A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61253766A JPS63108317A (ja) 1986-10-27 1986-10-27 レ−ザビ−ムの超高精度方向制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61253766A JPS63108317A (ja) 1986-10-27 1986-10-27 レ−ザビ−ムの超高精度方向制御方法

Publications (2)

Publication Number Publication Date
JPS63108317A JPS63108317A (ja) 1988-05-13
JPH0415448B2 true JPH0415448B2 (ja) 1992-03-18

Family

ID=17255841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61253766A Granted JPS63108317A (ja) 1986-10-27 1986-10-27 レ−ザビ−ムの超高精度方向制御方法

Country Status (1)

Country Link
JP (1) JPS63108317A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764082B1 (fr) * 1997-05-28 1999-08-13 Matra Marconi Space France Ensemble optique a deux telescopes
US6701093B1 (en) 1998-07-17 2004-03-02 Pentax Precision Co., Ltd. Integral transmitter-receiver optical communication apparatus and a crosstalk preventive device therefor
US7161667B2 (en) * 2005-05-06 2007-01-09 Kla-Tencor Technologies Corporation Wafer edge inspection

Also Published As

Publication number Publication date
JPS63108317A (ja) 1988-05-13

Similar Documents

Publication Publication Date Title
US5465170A (en) Alignment adjusting system for use in optical system of optical transceiver
US6347001B1 (en) Free-space laser communication system having six axes of movement
US8160452B1 (en) Rapid acquisition, pointing and tracking optical system for free space optical communications
EP2633364B1 (en) Apparatus, optical assembly, method for inspection or measurement of an object and method for manufacturing a structure
US4024392A (en) Gimballed active optical system
CN106443643B (zh) 一种用于高精度主被动探测系统的光轴监测方法及装置
US6462846B1 (en) Shared telescope optical communication terminal
US4087689A (en) Boresighting system for infrared optical receiver and transmitter
CN109891778B (zh) 组合成像与激光通信系统、方法和卫星
JP2000206243A (ja) 送受光軸の自動調整装置を備えたレ―ザレ―ダ
CN103297150A (zh) 一种量子通信精跟踪系统
CN114200687B (zh) 一种激光通信系统光学自标校装置及方法
US20060182448A1 (en) Apparatus and method for free space optical communications beam steering without gimbals
US8588617B2 (en) Optical transceiver assembly with transmission-direction control
CN112284352B (zh) 一种用于光学遥感卫星的稳像系统和方法
US20060180739A1 (en) Beam steering for optical target identification and tracking without gimbals or scanning mirrors
CN1777063B (zh) 卫星激光通信端机的捕获系统
CN106643689A (zh) 一种多模共光路位姿测量装置
CN115459847B (zh) 基于圆弧运动平台扫描的天基激光通信终端及扫描方法
US5349176A (en) Device for acquiring data from a light beam and a communication system including the device with dual sensor fastened on a stiff frame
JPH0415448B2 (ja)
AU2021313807B2 (en) Terminal for optical communication by laser signals
Wu et al. Research on MEMS fast steering mirror technology requirements for space optical communication system
CN118068349A (zh) 一种多波段单站光电定位测量装置
CN117834015A (zh) 一种空间激光通信终端

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term