JPH04153546A - Fuel characteristic judging device - Google Patents

Fuel characteristic judging device

Info

Publication number
JPH04153546A
JPH04153546A JP27754490A JP27754490A JPH04153546A JP H04153546 A JPH04153546 A JP H04153546A JP 27754490 A JP27754490 A JP 27754490A JP 27754490 A JP27754490 A JP 27754490A JP H04153546 A JPH04153546 A JP H04153546A
Authority
JP
Japan
Prior art keywords
fuel
physical property
model
mixed
fractional distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27754490A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwano
浩 岩野
Hatsuo Nagaishi
初雄 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP27754490A priority Critical patent/JPH04153546A/en
Publication of JPH04153546A publication Critical patent/JPH04153546A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correctly judge the fuel characteristic such as fractional distillation point by representing the composition of the inspected fuel by a mixed fuel model consisting of at least four kinds of single component fuel having different fractional distillation point. CONSTITUTION:A means 102 sets the ratio of each fuel component of a mixed fuel model consisting of at least four kinds of single component fuel having different fractional distillation point. A means 103 calculates the saturated vapor pressure of the mixed fuel model based on the set of the means 102, and a means 104 calculates the physical property value equal to that of the inspected fuel in the mixed fuel model based on the calculation result of the means 103. Then, a means 105 compares the detection value of the physical property value by the means 101 and the calculation value of the physical property value by the means 104, and a means 106 corrects the mixing ratio of each single component fuel so that the comparison result accords. Accordingly, the fuel properties such as fractional distillation point can be judged correctly, and the control precision in the fuel feed quantity control under the use of the fuel behavior model can be improved drastically.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガソリン等の炭化水素系燃料の分留性状等を判
定するのに適した燃料性状判定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fuel property determining device suitable for determining the fractional distillation properties of hydrocarbon fuel such as gasoline.

(従来の技術) 内m機関の燃料供給量を高精度で制御することを目的と
して、吸気管壁面部への燃料付着量及び吸気管内での燃
料蒸発量を状態変数として機関シリングに流入する燃料
の挙動を記述した燃料帯動モデルを設定し、燃料のオク
タン価等によって代表させた燃料性状及び運転条件に基
づいて前記状態変数を推定したうえで燃料挙動モデルに
よる演算式を実行することにより燃料供給量を決定する
ようにした燃料噴射量制御装置が提案されている(特開
平1−271623号参照)。
(Prior art) In order to control the amount of fuel supplied to an internal engine with high precision, the amount of fuel adhering to the wall of the intake pipe and the amount of fuel evaporating within the intake pipe are used as state variables to control the amount of fuel flowing into the engine cylinder. After setting up a fuel band movement model that describes the behavior of A fuel injection amount control device that determines the amount of fuel injection has been proposed (see Japanese Patent Laid-Open No. 1-271623).

(発明が解決しようとする課題) ところで、このように燃料の挙動モデルから必要燃料量
を求めるものにおいては、燃料状態量を算出するにあた
って吸気系における実際の燃料付着量及び気化量に影響
を及ぼす燃料の分留性状を正確に判定しておく必要があ
る。
(Problem to be Solved by the Invention) By the way, when calculating the required amount of fuel from a fuel behavior model as described above, calculation of the fuel state amount may affect the actual amount of fuel deposited and vaporized in the intake system. It is necessary to accurately determine the fractionation properties of fuel.

しかしながら、従来のものにあってはこの燃料性状をオ
クタン価や比重検出値のみによって代表させるなど燃料
性状についての検出精度が低かったため最終的に得られ
る燃料供給量の制御精度にも自ずと限界があり、特に過
渡時において必要炉料量とのずれが生じて運転性や排気
エミッションが悪化する欠点があった。
However, with conventional methods, the accuracy of detecting fuel properties was low, such as by representing the fuel properties only by the detected octane number and specific gravity, so there was a natural limit to the control accuracy of the final fuel supply amount. Particularly during transient periods, a deviation from the required amount of furnace material occurs, resulting in deterioration of operability and exhaust emissions.

本発明はこのような問題点に着目してなされたもので、
4種類以上の単一成分燃料からなる燃料モデルにより被
検燃料の組成を代表させることにより燃料性状を判定す
ることを目的としている。
The present invention was made by focusing on these problems.
The purpose is to determine the fuel properties by representing the composition of the test fuel using a fuel model consisting of four or more types of single component fuel.

(!!題を解決するための手段) 上記目的を達成するために本発明では、第1図に示した
ように、被検燃料の所定の物性値を検出する手段101
と、互いに分留点が異なるi(ただし、i≧4)種類の
単一燃料成分からなる混合燃料モデルの各燃料成分の割
合を設定する手段102と、前記設定に基づく混合燃料
モデルの飽和蒸気圧を演算する手段]03と、前記演算
結果に基づき混合燃料モデルについて前記被験燃料と同
一の物性値を演算する手段104と、前記物性値の検出
値と演算値とを比較する手段105と、前記比較結果が
一致するように各単一燃料成分の混合割合を修正する手
段106とを備えた。
(Means for Solving the Problem) In order to achieve the above object, the present invention uses a means 101 for detecting predetermined physical property values of the test fuel, as shown in FIG.
means 102 for setting the ratio of each fuel component of a mixed fuel model consisting of i types of single fuel components having different fractionation points (i≧4); and saturated steam of the mixed fuel model based on the settings. means for calculating the pressure] 03; means 104 for calculating the same physical property values as the test fuel for the mixed fuel model based on the calculation results; and means 105 for comparing the detected values of the physical property values with the calculated values; and means 106 for modifying the mixing ratio of each single fuel component so that the comparison results match.

(作用) 互いに分留点が異なる4種類以上の燃料を任意の割合′
Ch混合した混合燃料モデルを形成するとき、その混合
燃料モデルにおける所定の物性値、例乏ば分留量や飽和
蒸気圧が、ガソリン等の被検燃料についての物性値と一
致する場合、その混合燃料モデルの分留特性を始めとす
る燃料性状は被検燃料のそれとよく一致する。
(Function) Four or more types of fuel with different fractionation points in any proportion'
When forming a Ch mixed fuel model, if the predetermined physical property values in the mixed fuel model, such as fractional distillation amount and saturated vapor pressure, match the physical property values of the test fuel such as gasoline, the mixture The fuel properties including fractionation characteristics of the fuel model match well with those of the tested fuel.

従って、上記本発明の構成に基づき、例えば燃料挙動モ
デルを使用した燃料供給量制御において制御精度を大き
く左右する燃料気化量を正確に知ることが可能になる。
Therefore, based on the configuration of the present invention, it is possible to accurately know the fuel vaporization amount, which greatly influences control accuracy, for example, in fuel supply amount control using a fuel behavior model.

(実施例) 以下、4種類の単一成分燃料からなる燃料モデルを使用
した分留量の比較から燃料性状を判定する例につき第2
図に示した流れ図を参照しながら説明する。
(Example) Below is a second example of determining fuel properties from a comparison of fractionation amounts using a fuel model consisting of four types of single component fuels.
This will be explained with reference to the flowchart shown in the figure.

この場合、まず4種類の互いに分留点が異なる単一成分
燃料を任意の体積割合で混合した燃料モデルを設定し、
その成分毎の飽和蒸気圧Pv(i)を次の式から演算す
る。なお、iは単一成分燃料の種類を示しており、この
場合i=1〜4である。
In this case, first, a fuel model is set in which four types of single-component fuels with different fractionation points are mixed at an arbitrary volume ratio,
The saturated vapor pressure Pv(i) of each component is calculated from the following equation. Note that i indicates the type of single-component fuel, and in this case, i=1 to 4.

Pvい)”Po−expfK(i)<1/Tfv(i)
  1/T)1・・(1) ただし、Po  :雰囲気圧力、 Tfν(1):各成分の沸、克 K(i)  :各成分毎の定数 である。
Pv)”Po-expfK(i)<1/Tfv(i)
1/T)1...(1) where Po: atmospheric pressure, Tfν(1): boiling point of each component, and K(i): constant for each component.

次に、このようにして求めた各成分毎の飽和蒸気圧に基
づき、次の式から混合燃料全体の飽和蒸気圧Pvを演算
する。
Next, based on the saturated vapor pressure of each component obtained in this way, the saturated vapor pressure Pv of the entire mixed fuel is calculated from the following equation.

Pv=ΣPv(i) −Rx(i)         
 =12)を瓢畜 ただし、Rx(i)は各成分のモル分率である。
Pv=ΣPv(i) −Rx(i)
=12) where Rx(i) is the molar fraction of each component.

このようにして任意の混合燃料モデルについて飽和蒸気
圧Pvを求めたならば、次ぎはこれに基づき、周知の状
態方程式から分留量Vを演算し、予め検出しでおいたガ
ソリン等の被検燃料についての分留量Voと比較する。
Once the saturated vapor pressure Pv has been determined for any mixed fuel model in this way, the next step is to calculate the fractional distillation amount V from the well-known equation of state based on this, and Compare with the fractional distillation amount Vo for fuel.

この比較において■がVoと一致しなかった場合は、V
 = V oとなるまで、初めに戻って燃料モデルにお
ける各成分の混合割合を異なる割合に設定しなおし、分
留量■を演算するという処理を繰り返す。
In this comparison, if ■ does not match Vo, V
=V o The process of returning to the beginning, resetting the mixing ratio of each component in the fuel model to a different ratio, and calculating the fractional distillation amount ■ is repeated.

これにより分留量の演算値Vと検出値vOとが致した場
合には、必要に応じて被検燃料の他の物性値、例えば比
重、比熱、粘性係数、熱伝導率、拡散係数等も算出して
処理を終了する。
As a result, if the calculated value V of the fractionation amount and the detected value vO match, other physical property values of the test fuel such as specific gravity, specific heat, viscosity coefficient, thermal conductivity, diffusion coefficient, etc. Calculate and end the process.

このようにして、4種類あるいはそれ以上の単一成分燃
料からなる混合燃料モデルの物性値(この場合分留量)
が被検燃料と一致するように混合割合を設定すると、そ
の混合割合による燃料モデルの分留性状を初めとする燃
料性状は被検燃料のそれと非常に良く一致する8 第3図〜第5図はその評価結果を示す分留特性線図であ
り、図中の実線はガソリンの実際の分留特性を、プロッ
トした1党は上記本発明による計算結果を示している。
In this way, the physical property values (in this case, the fractional distillation amount) of a mixed fuel model consisting of four or more single component fuels are determined.
If the mixing ratio is set so that the ratio matches that of the test fuel, the fuel properties including the fractionation properties of the fuel model based on that mixing ratio will match those of the test fuel very well8. is a fractionation characteristic diagram showing the evaluation results, where the solid line in the figure shows the actual fractionation characteristics of gasoline, and the plotted line shows the calculation results according to the present invention.

第3図は市場における標準的なガソリン、第4図は最も
軽質なガソリン、15図は最も重質なガソリンについて
の評価結果であるが、いずれの場合も計算値が実際の分
留特性と良く一致していることがわかる。
Figure 3 shows the evaluation results for standard gasoline on the market, Figure 4 shows the evaluation results for the lightest gasoline, and Figure 15 shows the evaluation results for the heaviest gasoline. In each case, the calculated values are close to the actual fractionation characteristics. It can be seen that they match.

なお、第6図は1種類の単一成分燃料をモデルとした場
合、第7図は2種類の単一成分燃料の混合燃料をモデル
とした場合の評価結果を示しているが、何れも計算結果
が必ずしも実際値に一致せず、十分な精度が得られない
。このことから、本出願人は単一成分燃料の種類を4種
類以上に設定した。
Note that Figure 6 shows the evaluation results when one type of single-component fuel is used as a model, and Figure 7 shows the evaluation results when a mixed fuel of two types of single-component fuel is used as a model. The results do not necessarily match the actual values and do not have sufficient accuracy. For this reason, the applicant has set the number of types of single component fuel to four or more.

(発明の効果) 以上説明した通り本発明によれば、互いに分留、αが異
なる4種類以上の単一成分燃料からなる混合燃料モデル
により被検燃料の組成及び燃料性状を正確に代表させる
ことができるので、例えば燃料挙動モデルを使用した燃
料供給量制御において制御精度を大幅に改善できるとい
う効果が得られる。
(Effects of the Invention) As explained above, according to the present invention, the composition and fuel properties of the test fuel can be accurately represented by a mixed fuel model consisting of four or more single component fuels with different fractional distillations and α. Therefore, it is possible to significantly improve control accuracy in fuel supply amount control using a fuel behavior model, for example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例による演算処理内容を示す流れ図、第3図
〜第7図はそれぞれ実際の分留特性とその計算値との関
係を示した特性線図である。 101・・・被検燃料の物性値検出手段、102・・・
燃料モデルの混合割合設定手段、103・・・飽和蒸気
圧演算手段、 104・・・燃料モデルの物性値演算手段、105・・
・物性値比較手段、 106・・−混合割合修正手段。 第1 図 第2 図 DISTILRTC〜0し /
Fig. 1 is a block diagram showing the configuration of the present invention, Fig. 2 is a flow chart showing the contents of calculation processing according to an embodiment of the present invention, and Figs. 3 to 7 show actual fractional characteristics and their calculated values, respectively. It is a characteristic line diagram showing the relationship between. 101... Physical property value detection means of test fuel, 102...
Mixing ratio setting means for fuel model, 103...Saturated vapor pressure calculation means, 104...Physical property value calculation means for fuel model, 105...
・Physical property value comparison means, 106...-Mixing ratio correction means. Figure 1 Figure 2 DISTILRTC ~ 0/

Claims (1)

【特許請求の範囲】[Claims] 被検燃料の所定の物性値を検出する手段と、互いに分留
点が異なるi(ただし、i≧4)種類の単一燃料成分か
らなる混合燃料モデルの各燃料成分の割合を設定する手
段と、前記設定に基づく混合燃料モデルの飽和蒸気圧を
演算する手段と、前記演算結果に基づいて混合燃料モデ
ルについて前記被験燃料と同一の物性値を演算する手段
と、前記物性値の検出値と演算値とを比較する手段と、
前記比較結果が一致するように各単一燃料成分の混合割
合を修正する手段とを備えたことを特徴とする燃料性状
判定装置。
means for detecting a predetermined physical property value of the test fuel; and means for setting the ratio of each fuel component in a mixed fuel model consisting of i types (where i≧4) of single fuel components having different fractionation points. , means for calculating the saturated vapor pressure of the mixed fuel model based on the settings, means for calculating the same physical property values as the test fuel for the mixed fuel model based on the calculation results, and calculating the detected values of the physical property values. a means of comparing the values;
A fuel property determination device comprising: means for modifying the mixing ratio of each single fuel component so that the comparison results match.
JP27754490A 1990-10-16 1990-10-16 Fuel characteristic judging device Pending JPH04153546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27754490A JPH04153546A (en) 1990-10-16 1990-10-16 Fuel characteristic judging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27754490A JPH04153546A (en) 1990-10-16 1990-10-16 Fuel characteristic judging device

Publications (1)

Publication Number Publication Date
JPH04153546A true JPH04153546A (en) 1992-05-27

Family

ID=17585022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27754490A Pending JPH04153546A (en) 1990-10-16 1990-10-16 Fuel characteristic judging device

Country Status (1)

Country Link
JP (1) JPH04153546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194353B2 (en) 2011-01-18 2015-11-24 Toyota Jidosha Kabushiki Kaisha Fuel injection control system for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194353B2 (en) 2011-01-18 2015-11-24 Toyota Jidosha Kabushiki Kaisha Fuel injection control system for internal combustion engine
DE112011104735B4 (en) 2011-01-18 2018-05-09 Toyota Jidosha Kabushiki Kaisha Fuel injection control system for an internal combustion engine

Similar Documents

Publication Publication Date Title
US7077105B2 (en) Spark ignition internal combustion engine
EP2084510B1 (en) Method and apparatus for determining the gas composition in a tank
EP0490393B1 (en) Apparatus for controlling variation in torque of internal combustion engine
CN105793547B (en) Fuel character estimating device
EP0984148B1 (en) Fuel metering system and method
EP0546579B1 (en) Electronic injection fuel delivery control system
DE4414727A1 (en) Control method and control unit for internal combustion engines
Morganti et al. Design and analysis of a modified CFR engine for the octane rating of liquefied petroleum gases (LPG)
Müller General air fuel ratio and EGR definitions and their calculation from emissions
JPH04153546A (en) Fuel characteristic judging device
US6412472B1 (en) Method for correcting ignition advance of an internal combustion
Maloney An event-based transient fuel compensator with physically based parameters
US6615803B2 (en) Fuel injection control apparatus, control method, and control program of internal combustion engine
KR20150139860A (en) Method for identifying fuel mixtures
de Melo et al. In cylinder pressure curve and combustion parameters variability with ethanol addition
Stradling et al. Effect of octane on the performance of two gasoline direct injection passenger cars
US20190017449A1 (en) Method for calculating a residual gas mass in a cylinder of an internal combustion engine and controller
US8126633B2 (en) Method for operating an internal combustion engine
JPH04153545A (en) Fuel characteristic judging device for internal combustion engine
CA1172731A (en) Method for improving fuel control in an internal combustion engine
US8733158B2 (en) Method and device for determining the composition of a fuel mixture
Kim et al. Experimental and numerical study on the effect of nitric oxide on autoignition and knock in a direct-injection spark-ignition engine
Yates et al. An accurate determination of the cetane number value of GTL diesel
KR20180123438A (en) Method and control device for operating a gas engine
Throop et al. The effect of EGR system response time on NOx feedgas emissions during engine transients