JPH04153545A - Fuel characteristic judging device for internal combustion engine - Google Patents

Fuel characteristic judging device for internal combustion engine

Info

Publication number
JPH04153545A
JPH04153545A JP27754390A JP27754390A JPH04153545A JP H04153545 A JPH04153545 A JP H04153545A JP 27754390 A JP27754390 A JP 27754390A JP 27754390 A JP27754390 A JP 27754390A JP H04153545 A JPH04153545 A JP H04153545A
Authority
JP
Japan
Prior art keywords
fuel
ignition timing
component
vapor pressure
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27754390A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwano
浩 岩野
Hatsuo Nagaishi
初雄 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP27754390A priority Critical patent/JPH04153545A/en
Publication of JPH04153545A publication Critical patent/JPH04153545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing Of Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To correctly judge the fuel characteristics such as fractional distillation property by representing the composition of the inspected fuel by a fuel model which consists of at least four kinds of single component fuel having different fractional distillation point. CONSTITUTION:An ignition timing controller 101 for carrying cut MBT control by correcting the previously set fundamental ignition timing is provided. A fuel temperature detecting means 102A detects the temperature T of the inspected fuel, and a fuel vapor pressure detecting means 102B detects the vapor pressure Pv, and a fuel specific gravity detecting means 102C detects the specific gravity rhol. A calculating means 103 calculates the composition of each fuel component of the fuel model which consists of at least four kinds of single component fuel having different fractional distillation point by a prescribed calculation equation on the basis of the ignition timing correction quantity to MBT and each detection value. Accordingly, the fuel characteristic such as fractional distillation property can be correctly judged, and the control precision in the fuel injection control and ignition timing control can be improved drastically.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガソリン等の炭化水素系燃料の分留性状等を判
定するのに適した内m1g!関の燃料性状判定装置に関
する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is suitable for determining the fractional properties of hydrocarbon fuels such as gasoline. The present invention relates to a fuel property determination device.

(従来の技術) 内燃機関の燃料供給量を高精度で制御することを目的と
して、吸ス管壁面部への燃料付着量及び吸気管内での燃
料蒸発量を状態変数として機関シリングに流入する燃料
の挙動を記述した燃料挙動モデルを設定し、燃料のオク
タン価等によって代表させた燃料性状及び運転条件に基
づいて前記状態変数を推定したうえで燃料帯動モデルに
よる演算式を実行することにより燃料供給量を決定する
ようにした燃料噴射1制御装置が提案されている(特開
平1−271623号参照)。
(Prior art) In order to control the amount of fuel supplied to an internal combustion engine with high precision, the amount of fuel adhering to the intake pipe wall and the amount of fuel evaporating within the intake pipe are used as state variables to control the amount of fuel flowing into the engine cylinder. After setting a fuel behavior model that describes the behavior of A fuel injection 1 control device that determines the amount of fuel has been proposed (see Japanese Patent Laid-Open No. 1-271623).

(発明が解決しようとする課題) ところで、このように燃料の挙動モデルから必要燃料量
を求めるものにおいては、燃料状態量を算出するにあた
って吸気系における実際の燃料付着量及び気化量に影響
を及ぼす燃料の分留性状を正確に判定しておく必要があ
る。
(Problem to be Solved by the Invention) By the way, when calculating the required amount of fuel from a fuel behavior model as described above, calculation of the fuel state amount may affect the actual amount of fuel deposited and vaporized in the intake system. It is necessary to accurately determine the fractionation properties of fuel.

しかしながら、従来のものにあってはこの燃料性状をオ
クタン価や比重検出値のみによって代表させるなど燃料
性状についての検出精度が低かったため最終的に得られ
る燃料供給量の制御精度にも自ずと限界があり、特に過
渡時において必要燃料量とのずれが生じて運転性や排気
エミッションが悪化する欠点があった。
However, with conventional methods, the accuracy of detecting fuel properties was low, such as by representing the fuel properties only by the detected octane number and specific gravity, so there was a natural limit to the control accuracy of the final fuel supply amount. Particularly during transient periods, a deviation from the required amount of fuel occurs, resulting in deterioration of drivability and exhaust emissions.

本発明はこのような問題点に着目してなされたもので、
互いに分留魚の異なる4種類以上の単一成分燃料からな
る燃料モデルにより被検燃料の組成を代表させることに
より燃料性状を判定することを目的としている。
The present invention was made by focusing on these problems.
The purpose is to determine the fuel properties by representing the composition of the test fuel using a fuel model consisting of four or more types of single-component fuels with different fractions.

(課題を解決するための手段及び作用)上記目的を達成
するために本発明では、第1図に示したように、予め設
定された基本、α火時期を補正してMBT制御を行う点
火時期制御装置101を備えた内燃機関を前提として、
被検燃料Fの温度T1蒸気圧Pv、比重ρtを検出する
手段102A〜102Cと、前記MBTへの、α火時期
補正量ΔAdvと前記各検出値に基づき、n(ただし、
n≧4)種類以上の単一燃料成分からなる燃料モデルの
各燃料成分の組成を演算する手段103とを設ける。
(Means and Effects for Solving the Problems) In order to achieve the above object, the present invention, as shown in FIG. Assuming an internal combustion engine equipped with a control device 101,
Means 102A to 102C for detecting the temperature T1 vapor pressure Pv and specific gravity ρt of the test fuel F, and the α spark timing correction amount ΔAdv to the MBT and the detected values n (however,
n≧4) means 103 for calculating the composition of each fuel component of a fuel model consisting of more than one type of single fuel component.

以下、上記演算手段103による演算内容を処理の流れ
を示した制御ブロック図(第2図)を参照しながら説明
する。
Hereinafter, the contents of the calculation by the calculation means 103 will be explained with reference to a control block diagram (FIG. 2) showing the flow of processing.

本発明では、まず第2図のブロックAにて性状の判定対
象となる燃料の温度T、蒸気圧Pv、比重ρtを検出す
る。なお、これらの値は燃料タンクに温度センサ、比重
計、圧力センサを取り付けることにより各々検出するこ
とがでトる。
In the present invention, first, in block A of FIG. 2, the temperature T, vapor pressure Pv, and specific gravity ρt of the fuel whose properties are to be determined are detected. Note that these values can be detected by attaching a temperature sensor, a hydrometer, and a pressure sensor to the fuel tank.

次に、上記検出値に基づき、ブロックBとCにて互いに
分留、αが異なる4種類以上(ここでは1=1〜4の4
種類)の単一成分燃料からなる燃料モデルの飽和蒸気圧
Pvと燃料密度ρEについて、以下のように該燃料モチ
゛ルの各燃料成分の混合体積割合Rv(i)とのrR係
式を立てる。
Next, based on the above detected values, blocks B and C are divided into four or more types with different α (here, 1=1 to 4).
For the saturated vapor pressure Pv and fuel density ρE of a fuel model consisting of a single component fuel of type 1), an rR relation between the mixed volume ratio Rv(i) of each fuel component of the fuel model is established as follows.

Pv  =  、ΣK (i> ・P v(i) ・R
v(i)  −(1)ただしく】)または(2)式にお
いて、K(i)   :各燃料成分毎の定数 Pv(i)  :各燃料成分の飽和蒸気圧ρj(i) 
 :各燃料成分の密度 である6 なお、各燃料成分の飽和蒸気圧Pv(i)とρj(i)
は次の演算式から算出する6 Pv(i)=Po−explK+(i)(1/Tfv(
i)  1/7N・・・(1゛) ρj(i)= K 2<i)・< I  T / K 
x(り)13 −・・(2゛)ただしく】゛)または(
2゛)式において、T fv(i)   :各燃料成分
の沸点K 、、K 、、K 、:各燃料成分毎の定数で
ある。
Pv = , ΣK (i> ・P v(i) ・R
v(i) - (1) as specified]) or (2), where K(i): constant Pv(i) for each fuel component: saturated vapor pressure ρj(i) of each fuel component
: Density of each fuel component 6 In addition, the saturated vapor pressure Pv(i) and ρj(i) of each fuel component
is calculated from the following formula 6 Pv(i)=Po-explK+(i)(1/Tfv(
i) 1/7N...(1゛) ρj(i)=K 2<i)・<IT/K
x(ri)13 -...(2゛)just】゛) or (
In Equation 2'), T fv(i) : boiling point K of each fuel component, , K , , K , : constant for each fuel component.

一方、ブロックDではMBT点火時期への補正量jAd
vが読み込まれる。一般に内燃機関の点火時期Iよある
環境条件下での定常運転時の最適点火時期が基本点火時
期として設定されており、MBT制御ではこれを燃焼圧
力センサ等の信号に基づき、実際の運転環境下でノッキ
ングを発生しない範囲内で最大トルクが得られるような
点火時期(M B T )に補正するようにしている。
On the other hand, in block D, the correction amount jAd to the MBT ignition timing
v is read. Generally, the ignition timing I of an internal combustion engine, which is the optimum ignition timing during steady operation under certain environmental conditions, is set as the basic ignition timing, and in MBT control, this is determined based on the signal from the combustion pressure sensor, etc. under the actual operating environment. The ignition timing (M B T ) is corrected so that maximum torque can be obtained within a range that does not cause knocking.

n記ΔAdvはこのときの7慨人時期補正量である。ΔAdv in n is the seven-person period correction amount at this time.

次に、ブロックEにて、次の(3)式に示すように、上
記点火時期補正量J A dvと体積割合Rv(i)と
の関係式が立てられる。
Next, in block E, a relational expression between the ignition timing correction amount J A dv and the volume ratio Rv(i) is established as shown in the following equation (3).

J A dv=  Σ、aAdv(i)・Rv(i) 
   ’ −(3)瓢ま ただし、(3)式においてJA’dv(i)は各燃料成
分のオクタン価に応じて予め定めた点火時期補正係数で
ある。
J A dv = Σ, aAdv(i)・Rv(i)
'-(3) However, in equation (3), JA'dv(i) is an ignition timing correction coefficient predetermined according to the octane number of each fuel component.

また、ブロックFでは次の演算式により各燃料成分の混
合割合の合計を1とする関係式を立てる。
In addition, in block F, a relational expression is established in which the sum of the mixing ratios of each fuel component is set to 1 using the following arithmetic expression.

1  = ΣRv(i)         ・・・(4
)界丁 最後に、ブロックGにて上記各ブロックB、C。
1 = ΣRv(i) ... (4
) Finally, in block G, each of the above blocks B and C.

E、Fにて立てられた各式(1)〜(4)に基づいて、
4種類の単一成分燃料からなる混合燃料モデルの各成分
の混合割合Rv(i)が演算される。
Based on each formula (1) to (4) established in E and F,
The mixing ratio Rv(i) of each component of a mixed fuel model consisting of four types of single component fuels is calculated.

このようにして混合割合Rv(i)を算出すると、これ
により、内燃fIPi閏の吸気系統における燃料状態量
に強く影響する燃料の分留性状を初めとする種々の物性
値、例えば粘性、比重、熱伝導率、拡散係数などを求め
ることが可能になる。具体的には、吸気系統における燃
料挙動として、過渡時においては燃料中の比較的軽質な
成分の応答が速く、これにより過渡時の空燃比が強く影
響されるが、前述のようにして分留性状が明らかとなれ
ばその軽質分による影響度を予め知ることができるので
、燃料供給量や点火時期の制御精度を大幅に改善するこ
とが可能である。
When the mixture ratio Rv(i) is calculated in this way, various physical property values such as viscosity, specific gravity, It becomes possible to determine thermal conductivity, diffusion coefficient, etc. Specifically, regarding fuel behavior in the intake system, relatively light components in the fuel respond quickly during transient periods, which strongly influences the air-fuel ratio during transient periods. Once the properties are known, the influence of the light components can be known in advance, making it possible to significantly improve the control accuracy of fuel supply amount and ignition timing.

なお、本発明によれば〃ンリン燃料に限らず、軽油やメ
タノール混合ガソリンにおける各種成分割合を算出する
こともできる。
Note that, according to the present invention, it is also possible to calculate the proportions of various components not only in gasoline but also in light oil and methanol-mixed gasoline.

(発明の効果) 以上説明したとおり本発明によれば、互いに分留前の異
なる4種類以上の単一成分燃料からなる燃料モデルによ
り被検燃料の組成を代表させることにより分留性状など
燃料の性状を正確に判定できるようにしたので、燃料供
給量制御や点火時期制御の#御精度を大幅に改善できる
という効果が得られる。
(Effects of the Invention) As explained above, according to the present invention, the composition of the fuel to be tested is represented by a fuel model consisting of four or more different single component fuels before fractionation. Since the properties can be determined accurately, it is possible to significantly improve the accuracy of fuel supply amount control and ignition timing control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図、第2図はその
演算処理内容を示す制御ブロック図である。 101 ・・・点火時期制御手段、 ]02A・・・燃料温度検出手段、 102B・・・燃料蒸気圧検出手段、 102C・・・燃料比重検出手段、 103 ・・・燃料成分の体積割合を演算する手段。
FIG. 1 is a block diagram showing the configuration of the present invention, and FIG. 2 is a control block diagram showing the contents of the arithmetic processing. 101...Ignition timing control means, ]02A...Fuel temperature detection means, 102B...Fuel vapor pressure detection means, 102C...Fuel specific gravity detection means, 103...Calculates the volume ratio of fuel components means.

Claims (1)

【特許請求の範囲】 予め設定された基本点火時期を補正してMBT制御を行
う点火時期制御装置を備えた内燃機関において、被検燃
料の温度T、蒸気圧Pv、比重ρlを検出する手段と、
前記MBTへの点火時期補正量ΔAdvと前記各検出値
に基づき、次の(1)から(4)演算式により、互いに
分留点が異なるi(ただし、i≧4)種類の単一成分燃
料からなる燃料モデルの各燃料成分の組成を演算する手
段とを備えたことを特徴とする内燃機関の燃料性状判定
装置;▲数式、化学式、表等があります▼…(1) ▲数式、化学式、表等があります▼…(2) ▲数式、化学式、表等があります▼…(3) ▲数式、化学式、表等があります▼…(4) ただし、 K(i):各燃料成分毎の定数 Pv(i):各燃料成分の飽和蒸気圧 ρl(i):各燃料成分の密度 ΔAdv(i):各燃料成分のオクタン価に応じて予め
定めた点火時期補正係数。
[Scope of Claims] In an internal combustion engine equipped with an ignition timing control device that performs MBT control by correcting a preset basic ignition timing, means for detecting the temperature T, vapor pressure Pv, and specific gravity ρl of a test fuel; ,
Based on the ignition timing correction amount ΔAdv to the MBT and each of the detected values, the following equations (1) to (4) are used to calculate i (i≧4) types of single-component fuels that have different fractionation points from each other. A fuel property determination device for an internal combustion engine characterized by comprising means for calculating the composition of each fuel component of a fuel model consisting of: ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(1) There are tables, etc.▼…(2) ▲There are mathematical formulas, chemical formulas, tables, etc.▼…(3) ▲There are mathematical formulas, chemical formulas, tables, etc.▼…(4) However, K(i): Constant for each fuel component Pv(i): Saturated vapor pressure of each fuel component ρl(i): Density of each fuel component ΔAdv(i): Ignition timing correction coefficient predetermined according to the octane number of each fuel component.
JP27754390A 1990-10-16 1990-10-16 Fuel characteristic judging device for internal combustion engine Pending JPH04153545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27754390A JPH04153545A (en) 1990-10-16 1990-10-16 Fuel characteristic judging device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27754390A JPH04153545A (en) 1990-10-16 1990-10-16 Fuel characteristic judging device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH04153545A true JPH04153545A (en) 1992-05-27

Family

ID=17585012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27754390A Pending JPH04153545A (en) 1990-10-16 1990-10-16 Fuel characteristic judging device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH04153545A (en)

Similar Documents

Publication Publication Date Title
Schifter et al. Combustion and emissions behavior for ethanol–gasoline blends in a single cylinder engine
JP2005054610A (en) Internal combustion engine
JPH076430B2 (en) Fuel supply device for internal combustion engine
Cowley et al. The influence of composition and properties of diesel fuel on particulate emissions from heavy-duty engines
JP2887056B2 (en) Fuel property determination device for internal combustion engine
Yoon et al. Closed-loop control of spark advance and air-fuel ratio in SI engines using cylinder pressure
JPH06235347A (en) Fuel property detecting device for internal combustion engine
DE4414727A1 (en) Control method and control unit for internal combustion engines
Ishikawa et al. Measurement of rate of multiple-injection in CDI diesel engines
US4627404A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
US6412472B1 (en) Method for correcting ignition advance of an internal combustion
US6684851B1 (en) Method for determining a functioning parameter of an engine
JPH04153545A (en) Fuel characteristic judging device for internal combustion engine
CZ9801955A3 (en) Method for determining cyclic variations of combustion within a combustion machine
Onder et al. Model-based engine calibration for best fuel efficiency
de Melo et al. In cylinder pressure curve and combustion parameters variability with ethanol addition
Stradling et al. Effect of octane on the performance of two gasoline direct injection passenger cars
CA1172731A (en) Method for improving fuel control in an internal combustion engine
JP3780539B2 (en) Degradation detector for oxygen concentration sensor
CN114320626A (en) Mixer control method and system for natural gas engine
JPH04153546A (en) Fuel characteristic judging device
US6308683B1 (en) Cylinder air charge estimation assembly
JPH0494439A (en) Output display device for internal combustion engine
Moraal et al. Adaptive transient fuel compensation: Implementation and experimental results
Powell et al. Stoichiometric Air-Fuel ratio control analysis