JPH04152320A - Optical modulator made of linbo3 - Google Patents

Optical modulator made of linbo3

Info

Publication number
JPH04152320A
JPH04152320A JP27989390A JP27989390A JPH04152320A JP H04152320 A JPH04152320 A JP H04152320A JP 27989390 A JP27989390 A JP 27989390A JP 27989390 A JP27989390 A JP 27989390A JP H04152320 A JPH04152320 A JP H04152320A
Authority
JP
Japan
Prior art keywords
substrate
modulation
electrode
frequency
optical modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27989390A
Other languages
Japanese (ja)
Other versions
JP2650483B2 (en
Inventor
Kiichi Yoshiara
喜市 吉新
Hidefusa Uchikawa
英興 内川
Katsuhiro Imada
勝大 今田
Takashi Mizuochi
隆司 水落
Tadayoshi Kitayama
北山 忠善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27989390A priority Critical patent/JP2650483B2/en
Publication of JPH04152320A publication Critical patent/JPH04152320A/en
Application granted granted Critical
Publication of JP2650483B2 publication Critical patent/JP2650483B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To lower a high-frequency surface resistance and a driving voltage by forming electrodes consisting of oxide superconducting films on an electrooptical crystal substrate which consists of an LiNbO3 single crystal of a (010) crystal bearing and has an optical waveguide. CONSTITUTION:The straight optical waveguide 3 consisting of Ti is provided on the surface of the electrooptical crystal substrate 1 consisting of the LiNbO3 single crystal of the (010) bearing. Further, the oxide superconducting layer formed by formulating the metallic Er, Ba and Cu of Y materials to a prescribed compsn. is formed on the substrate 1, by which the electrodes 2 are formed. There is no need for forming buffer layers and the matching of lattice constants is good if the LiNbO3 substrate 1 of the (010) crystal bearing is used in such a manner. The growth of an epitaxial thin film on the substrate is, therefore, possible. The presence of non-superconducting phases is decreased in this way and the high-frequency surface resistance is lowered. The driving voltage is thus lowered.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光通信における外部変調器に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an external modulator in optical communications.

[従来の技術] 光通信システムの伝送速度の高速化、大容量化にともな
い、光変調の高周波化が必要となり、高周波光変調方式
が検討されてきている。この方式は、大別して半導体レ
ーザーによる直接変調方式とLiNbO3などの電気光
学結晶を用いた光変調器による外部変調方式に分けられ
る。半導体レーザーによる直接変調方式は、発信レーザ
ー光自体を高周波変調し、変調レーザー光を取り出す方
式で、その周波数限界は現在のところ十数GHzまで伸
びて来てはいるが、周波数チャーピングという本質的に
避けられない問題がある。周波数チャーピングは、強度
変調の際に周波数が広がる現象で、高周波域でとくに問
題となる。この点で周波数チャーピングのない外部変調
方式が見直されつつある。
[Prior Art] As the transmission speed and capacity of optical communication systems increase, it becomes necessary to increase the frequency of optical modulation, and high-frequency optical modulation systems are being studied. This method can be roughly divided into a direct modulation method using a semiconductor laser and an external modulation method using an optical modulator using an electro-optic crystal such as LiNbO3. The direct modulation method using a semiconductor laser is a method of high-frequency modulating the emitted laser light itself and extracting the modulated laser light.The frequency limit has currently been extended to more than 10 GHz, but the essential problem of frequency chirping is There are unavoidable problems. Frequency chirping is a phenomenon in which the frequency spreads during intensity modulation, and is particularly problematic in high frequency ranges. In this regard, external modulation methods without frequency chirping are being reconsidered.

外部変調方式による光変調は、電気光学結晶基板内に光
導波路を設け、その近傍の電極により有効な光波と電場
の相互作用(電気光学効果)を利用して位相変調するも
のである。そのため、電気光学効果の大きな材料はど、
光変調効率も高くなるが、この大きな電気光学効果を有
する材料としては、LiNbO3などの酸化物誘電体材
料や、ガリウムひ素などの化合物半導体材料などがあり
、高効率(高い電気光学定数)、光導波路形成の容易さ
などの点からLINb03光変調器が広く検討されてい
る。このLINb03単結晶を使用した光変調素子の構
成は、高能率化のためにプッシュプル動作を行うばあい
、結晶の電気光学定数から、第5〜6図に示す2種類か
考えられる。第5〜6図において、(1)および(LA
)は電気光学結晶基板、(2)は電極、(3)は光導波
路、(4)はバッファ層を示す。第5図は、(001)
結晶方位のLlbOs単結晶を基板とし、光導波路(3
)、バッファ層(4)(S102)および電極(2)を
形成したもので、第6図は、(OlO>方位のLiNb
O3単結晶を基板とし、光導波路(3)および電極(2
)を形成したものである。また、電場はどちらのばあい
もZ方向に印加(図中の矢印方向)され、光波の進行方
向と直角となる。この2種類の構成を比較したばあい、
まず変調効率は、同一電極間隔、電極幅、電極長を仮定
し各構成における光波と変調波の界分布の差異を無視す
ると必要な変調電圧はほぼ等しい。しかし、(010)
方位L+Nb0aの電極構成において、集中定数では電
極容量が(001)方位に比べて増加するため、変調帯
域は狭くなる。進行波形では、帯域は電極長によって決
まるため両者の帯域は等しいが特性インピーダンスが低
くなり、必要な変調電力が増加する。どちらのばあいも
(001)方位のL+NbO3の方か高能率となる。そ
のため、従来(001)方位のL iN b Os基板
が使用されてきた。
Optical modulation using the external modulation method involves providing an optical waveguide within an electro-optic crystal substrate, and performing phase modulation using an effective interaction between a light wave and an electric field (electro-optic effect) using an electrode in the vicinity of the optical waveguide. Therefore, materials with large electro-optic effects are
The light modulation efficiency also increases, and materials with this large electro-optic effect include oxide dielectric materials such as LiNbO3 and compound semiconductor materials such as gallium arsenide, which have high efficiency (high electro-optic constant) and light guide. The LINb03 optical modulator has been widely studied from the viewpoint of ease of wave path formation. When a push-pull operation is performed to improve efficiency, there are two possible configurations of an optical modulation element using this LINb03 single crystal, as shown in FIGS. 5 and 6, based on the electro-optical constants of the crystal. In Figures 5-6, (1) and (LA
) indicates an electro-optic crystal substrate, (2) an electrode, (3) an optical waveguide, and (4) a buffer layer. Figure 5 shows (001)
An optical waveguide (3
), a buffer layer (4) (S102) and an electrode (2) are formed, and FIG.
An optical waveguide (3) and an electrode (2) are formed using an O3 single crystal as a substrate.
). Further, in both cases, the electric field is applied in the Z direction (in the direction of the arrow in the figure), and is perpendicular to the traveling direction of the light wave. When comparing these two types of configurations,
First, regarding the modulation efficiency, assuming the same electrode spacing, electrode width, and electrode length, and ignoring differences in field distribution of light waves and modulated waves in each configuration, the required modulation voltage is approximately equal. However, (010)
In the electrode configuration with the orientation L+Nb0a, the electrode capacitance increases in the lumped constant compared to the (001) orientation, so the modulation band becomes narrower. In the case of a traveling waveform, since the band is determined by the electrode length, the two bands are equal, but the characteristic impedance becomes low and the required modulation power increases. In either case, the (001) orientation of L+NbO3 has higher efficiency. Therefore, a (001) oriented LiN b Os substrate has conventionally been used.

この(ooB方位のI−r N b Oa光変調器には
、電極構造の違いから、進行波形と共振形の2種類があ
り、それぞれ一長一短があった。すなわち、進行波形電
極構造の光変調器は、帯域幅は広くとれるか、動作電圧
が数十ボルト前後と高くなり、たとえば、電極長8.2
 mm、電極間隔15μ■、波長1.3μ■の変調器で
、17Gt(zの周波数で1ラジアンの位相変調をする
のに、1.7 Vの駆動電圧が必要であった。一方、共
振形の光変調器は、電極部で高周波が共振する電極構造
により損失を低下させることにより、帯域幅は狭いが進
行波では難しい高周波帯での光変調を低い動作電圧で行
うことができる。たとえば、電極長18rAIll、電
極間隔50μlの共振電極変調器において、17CII
Zの周波数で1ラジアンの位相変調をするのに、5.2
V程度の駆動電圧で動作できた。そのため、共振電極形
の光変調器の方が、進行波形に比べて、低電圧・低電力
動作に成功している。
There are two types of I-r N b Oa optical modulators in the (ooB direction), a traveling wave type and a resonant type, due to differences in electrode structure, and each type has advantages and disadvantages. For example, the bandwidth can be wide, or the operating voltage can be as high as around several tens of volts, and for example, if the electrode length is 8.2
A drive voltage of 1.7 V was required to perform phase modulation of 1 radian at a frequency of 17 Gt (z) using a modulator with an electrode spacing of 15 μι and a wavelength of 1.3 μι. The optical modulator has a narrow bandwidth but can perform optical modulation in a high frequency band, which is difficult to do with traveling waves, at a low operating voltage by reducing loss by using an electrode structure that resonates high frequencies in the electrode part.For example, In a resonant electrode modulator with an electrode length of 18 r AIll and an electrode spacing of 50 μl, 17 CII
To perform phase modulation of 1 radian at the frequency of Z, 5.2
It was possible to operate with a driving voltage of about V. Therefore, resonant electrode type optical modulators are more successful in operating at low voltage and power than traveling wave type optical modulators.

しかし、共振電極形の光変調器においてさえも、現在ま
でに報告されている低動作電圧・変調効率は、いまた満
足できるレベルには達していない。
However, even in resonant electrode type optical modulators, the low operating voltage and modulation efficiency reported to date still do not reach a satisfactory level.

そこで、−層の変調効率の向上のため、本発明者らは、
光変調器の電極をAIから、超電導材料に変えて電極部
での損失を減らす試みを行っている。
Therefore, in order to improve the modulation efficiency of the − layer, the present inventors
Attempts are being made to reduce loss in the electrodes by changing the electrodes of the optical modulator from AI to superconducting materials.

しかし、ジャーナル オブ アプライド フィジックス
の63巻4591頁にもあるように、(001)方位の
LiNbO3基板上に形成したYBa2Cu30.酸化
物超電導膜は格子定数のミスマツチから多結晶膜となり
、そのため高周波表面抵抗は期待されたほど低くはなら
なかった。
However, as stated in Journal of Applied Physics, Vol. 63, page 4591, YBa2Cu30. The oxide superconducting film becomes a polycrystalline film due to a mismatch in lattice constants, and as a result, the high-frequency surface resistance was not as low as expected.

[発明が解決しようとする課題] 以上、従来例で説明してきたように(001)方位のL
INbO3光変調器の問題点は、共振電極形の構造を採
用したばあいにも、駆動電圧が高いため、実用・普及を
図るためには、回路のQ値を高め変調効率を上げること
が必要である。本発明は、このLINbO3光変調器に
おいて、その高Q化と変調効率の向上を目的として、よ
り低電圧で駆動しうるものを提案することである。
[Problem to be solved by the invention] As explained above in the conventional example, the L of the (001) direction
The problem with the INbO3 optical modulator is that even if it uses a resonant electrode structure, the driving voltage is high, so in order to put it into practical use and popularize it, it is necessary to increase the Q value of the circuit and increase the modulation efficiency. It is. The purpose of the present invention is to propose a LINbO3 optical modulator that can be driven at a lower voltage for the purpose of increasing Q and improving modulation efficiency.

[課題を解決するための手段] 本発明は、(010)結晶方位のL I N b 03
単結晶からなる光導波路を有する電気光学結晶基板と、
該電気光学結晶基板上に形成された酸化物超電導膜から
なる電極とからなることを特徴とする光変調器に関する
[Means for Solving the Problems] The present invention provides L I N b 03 with (010) crystal orientation.
an electro-optic crystal substrate having an optical waveguide made of a single crystal;
The present invention relates to an optical modulator comprising an electrode made of an oxide superconducting film formed on the electro-optic crystal substrate.

[作 用j (001)方位のL+Nb0a基板を使用したばあい、
バッファ層を形成する必要が生しる。しかし、酸化物超
電導材料は酸化物バッファ層と反応しやすく、膜の劣化
を招きやすい。また格・予定数のマツチングも悪いため
、膜質はエピタキシャルではなく多結晶となるため。高
周波表面抵抗もあまり低くならない。一方、(020)
方位のL r N b 03基板を使用すると、バッフ
ァ層を形成する必要がないだけでなく、格子定数のマツ
チングがよいため、基板上にエピタキシャル薄膜成長さ
せることができる。そのため、非超電導相の存在も少な
く高周波表面抵抗が充分低い薄膜かえられる。
[Effect j When using an L+Nb0a substrate with (001) orientation,
It becomes necessary to form a buffer layer. However, oxide superconducting materials tend to react with the oxide buffer layer, leading to film deterioration. Also, because the matching of case and planned number is poor, the film quality is polycrystalline rather than epitaxial. The high frequency surface resistance also does not become very low. On the other hand, (020)
Using an L r N b 03 oriented substrate not only eliminates the need to form a buffer layer, but also allows epitaxial thin film growth on the substrate due to good lattice constant matching. Therefore, the presence of non-superconducting phases is small and a thin film with sufficiently low high-frequency surface resistance can be obtained.

第2図に、77にでのA1とErBa2Cu30 、の
表面抵抗と周波数の関係を示す。図中、実線はE r 
Ba 2 Cu30 yの理論値、−点鎖線は(001
)方位の1.1NbO基板上の計Ba2Cu30.の計
測値、二点鎖線は(010)方位のL iN b O3
基板上のErBa2Cu30 、の計測値、点線はA1
電極の計測値を示す。第2図から、(oio)方位の1
、iN b O3基板上のErBa2Cu3o、の表面
抵抗か理論値に近いことかあきらかである。
FIG. 2 shows the relationship between surface resistance and frequency of A1 and ErBa2Cu30 at 77. In the figure, the solid line is E r
Theoretical value of Ba 2 Cu30 y, - dotted chain line is (001
) orientation on a 1.1NbO substrate with a total of Ba2Cu30. The measured value, the two-dot chain line is L iN b O3 in the (010) direction
Measured value of ErBa2Cu30 on the substrate, dotted line is A1
Shows the measured values of the electrodes. From Figure 2, (oio) direction 1
It is clear that the surface resistance of ErBa2Cu3o on the iN b O3 substrate is close to the theoretical value.

これにより、電極を超電導化した光変調器の変調効率は
、変調電力で数十分の−から数百分の−へ、また変調電
圧も数分の−から数十分の−へと大幅に向上した。この
向上は、光変調器の電極構造により異なり、共振電極構
造の方が進行波形よりも大きくなった。
As a result, the modulation efficiency of optical modulators with superconducting electrodes has been significantly increased from several tens of minutes to several hundreds of modulation power, and the modulation voltage has also been significantly increased from several minutes to several tens of minutes. Improved. This improvement differed depending on the electrode structure of the optical modulator, and was larger for the resonant electrode structure than for the traveling waveform.

[実施例] 以下、図面を参照しながら本発明を説明するか、本発明
はかかる図面により限定されるものではない。
[Example] The present invention will be described below with reference to the drawings, but the present invention is not limited by the drawings.

第1図は本発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

第1図において、(1)は電気光学結晶基板、(2)は
超電導電極、(3)は光導波路である。
In FIG. 1, (1) is an electro-optic crystal substrate, (2) is a superconducting electrode, and (3) is an optical waveguide.

電気光学結晶基板(1)は、電界により屈折率が変化す
る特性を有すればよく、その形状およびサイズにとくに
制限はない。その材料は前記特性に鑑み、LiTa0 
 、BaTiO3、ZnO1(Pb、La)(Zr、T
j)Os 、Ba2NaNb5015なとの電気光学効
果を有する結晶材料およびそれらのセラミックスなどを
用いる。
The electro-optic crystal substrate (1) only needs to have the property that its refractive index changes depending on an electric field, and its shape and size are not particularly limited. In view of the above characteristics, the material is LiTa0
, BaTiO3, ZnO1 (Pb, La) (Zr, T
j) Crystal materials having an electro-optic effect such as Os, Ba2NaNb5015, and ceramics thereof are used.

超電導電極(2)は超電導膜からなる。The superconducting electrode (2) is made of a superconducting film.

超電導膜は信号を効率良く伝送させることの点より低い
表面抵抗特性を有するのか好ましい。
It is preferable that the superconducting film has low surface resistance characteristics in order to efficiently transmit signals.

そのため、銅系、ニッケル系、バナジウム系、ビスマス
系、チタン系なとの超電導酸化物を用いるのが好ましい
。その具体例としては、E「〜Ba−Cu−〇系、Bj
−8r−Cs−Cu−0系、Tj−Ba−Ca−Cu−
0系などの超電導性酸化物かあげられる。
Therefore, it is preferable to use a copper-based, nickel-based, vanadium-based, bismuth-based, or titanium-based superconducting oxide. Specific examples include E"~Ba-Cu-〇 system, Bj
-8r-Cs-Cu-0 system, Tj-Ba-Ca-Cu-
Examples include superconducting oxides such as 0 series.

超電導膜の膜厚は、信号電界の侵入長の点より500オ
ングストロ一ム以上の厚さとするのが好ましい。
The thickness of the superconducting film is preferably 500 angstroms or more in view of the penetration depth of the signal electric field.

超電導膜の形成方法としては、CVD法、スパッタ法、
蒸着法、ゾル−ゲル法、スクリーン印刷法なとかあげら
れる。
Methods for forming superconducting films include CVD method, sputtering method,
Examples include vapor deposition method, sol-gel method, and screen printing method.

その他の構成は、従来の光変調器と同様であり、とくに
限定はない。
The other configurations are similar to conventional optical modulators and are not particularly limited.

以下、実施例に基づいて本発明を具体的に説明するが、
本発明はかかる実施例に限定されるものではない。
Hereinafter, the present invention will be specifically explained based on Examples.
The present invention is not limited to such embodiments.

実施例1 (010)方位のL+NbO3の単結晶基板を用いて電
気光学結晶基板([)を作製した。えられた電気光学結
晶基板の表面に、幅6μm、長さ18mmの直線光導波
路(3)を、Tiの電子線蒸着法により、膜厚35nm
で形成した。しかるのち、アルゴン雰囲気中で1050
℃、7時間熱処理してTiをL+NbO3中に拡散させ
て光導波路とした。
Example 1 An electro-optic crystal substrate ([) was fabricated using an L+NbO3 single crystal substrate with a (010) orientation. A linear optical waveguide (3) with a width of 6 μm and a length of 18 mm was formed on the surface of the obtained electro-optic crystal substrate by a Ti electron beam evaporation method to a film thickness of 35 nm.
It was formed with After that, 1050℃ in an argon atmosphere.
C. for 7 hours to diffuse Ti into L+NbO3 to form an optical waveguide.

超電導電極(2)をICB法(イオンクラスタービーム
法)により形成した。使用した超電導材料は、成膜の容
易さの点から、Y系材料の E r B a 2 Cu 30 、を選択して、金属
Er、 Ba、 Cuをl・23の組成になるようにそ
れぞれの蒸着速度を制御し、蒸着条件は電気光学結晶基
板(1)の温度を640℃、真空度10””Torrオ
ーダー、加速電圧2kV、蒸着時間05時間として、膜
厚03μmの酸化物超電導層を形成した。えられた超電
導膜の超電導転移温度Tcは89にであった。また、高
周波表面抵抗は77K、l OG Hzで10−5オー
ムであった。第2図にこの表面抵抗の測定結果を、二点
鎖線で示す。
A superconducting electrode (2) was formed by the ICB method (ion cluster beam method). The superconducting material used was the Y-based material Er Ba 2 Cu 30 from the viewpoint of ease of film formation, and the metals Er, Ba, and Cu were each mixed to have a composition of 1.23. The evaporation rate was controlled, and the evaporation conditions were: the temperature of the electro-optic crystal substrate (1) was 640°C, the degree of vacuum was on the order of 10'' Torr, the accelerating voltage was 2 kV, and the evaporation time was 05 hours to form an oxide superconducting layer with a thickness of 03 μm. did. The superconducting transition temperature Tc of the obtained superconducting film was 89. Also, the high frequency surface resistance was 10-5 ohms at 77K, lOG Hz. The measurement results of this surface resistance are shown in FIG. 2 by the two-dot chain line.

ついて、えられた超電導膜を所望の周波数で共振する電
極の形に加工した。その電極加工は、写真製版技術を用
い、レジスト塗布、露光、現像、パターンエツチングす
ることにより行った。
The resulting superconducting film was then processed into an electrode that resonates at a desired frequency. The electrode processing was performed by applying a resist, exposing, developing, and pattern etching using photolithography technology.

このようにして作製した光変調器の77Kにおける光変
調特性を第3図に実線で示す。
The optical modulation characteristics of the optical modulator manufactured in this way at 77K are shown by the solid line in FIG.

図中、16GHzから18 G Hz変調周波数特性(
17,2G Hz )において、1ラジアンの位相変調
に必要な動作電圧は、■、8Vと充分低く、良好な光伝
導特性も確認した。
In the figure, 16 GHz to 18 GHz modulation frequency characteristics (
At 17.2 GHz), the operating voltage required for 1 radian phase modulation was sufficiently low at 8 V, and good photoconductive properties were also confirmed.

比較例1 単結晶基板の方位を(001)としたほかは、実施例1
と同様にして光変調器を作製した。えられた光変調器の
超電導膜の超電導転移温度Tcは80にであり、実施例
1の89にと比較して劣っていた。
Comparative Example 1 Same as Example 1 except that the orientation of the single crystal substrate was (001).
An optical modulator was fabricated in the same manner as above. The superconducting transition temperature Tc of the superconducting film of the obtained optical modulator was 80, which was inferior to 89 in Example 1.

また、高周波表面抵抗は77に、 10Gt(zて2×
lロー3オームと実施例1と比べてかなり大きな表面抵
抗を示した。第2図にこの表面抵抗の測定結果を一点鎖
線で示す。
In addition, the high frequency surface resistance is 77, 10Gt (z 2 ×
It exhibited a considerably larger surface resistance than Example 1, i.e., 3 ohms. In FIG. 2, the measurement results of this surface resistance are shown by the dashed-dotted line.

比較例2 電子ビーム蒸着法により室温にて、実施例1と同一形状
のA1電極を膜厚1.8μMで成膜し、従来の光変調器
を作製した。えられた光変調器の特性を実施例1と同一
条件にて測定した。その結果、1ラジアンの位相変調に
必要な駆動電圧は7Vであった。えられた光変調器の光
変調特性を第3図に点線で示す。
Comparative Example 2 A conventional optical modulator was manufactured by forming an A1 electrode having the same shape as in Example 1 to a thickness of 1.8 μM at room temperature by electron beam evaporation. The characteristics of the obtained optical modulator were measured under the same conditions as in Example 1. As a result, the driving voltage required for phase modulation of 1 radian was 7V. The optical modulation characteristics of the obtained optical modulator are shown by dotted lines in FIG.

第3図より、実施例1の光変調器は比較例2のものに比
べて、1/3から1/4の低電圧化が実現できたことか
わかる。
From FIG. 3, it can be seen that the optical modulator of Example 1 was able to achieve a voltage reduction of 1/3 to 1/4 compared to that of Comparative Example 2.

実施例2 電極構造を進行波形電極としたほかは、実施例1と同様
にして光変調器を作製した。えられた光変調器の17G
Hzにおける1ラジアンの位相変調に必要な駆動電圧は
9vてあった。また、えれられた光変調器の変調電圧と
周波数の関係を第4図に実線で示す。
Example 2 An optical modulator was produced in the same manner as in Example 1 except that the electrode structure was a traveling wave electrode. 17G of the obtained optical modulator
The drive voltage required for 1 radian of phase modulation at Hz was 9 volts. Furthermore, the relationship between the modulation voltage and frequency of the obtained optical modulator is shown by a solid line in FIG.

比較例3 電極をAI電極としたほかは、実施例2と同様にして光
変調器を作製した。えられた光変調器の17GHzにお
ける1ラジアンの位相変調に必要な駆動電圧は20Vて
あった。また、えれられた光変調器の変調電圧と周波数
の関係を第4図にを点線で示す。
Comparative Example 3 An optical modulator was produced in the same manner as in Example 2, except that the electrodes were AI electrodes. The driving voltage required for phase modulation of 1 radian at 17 GHz of the obtained optical modulator was 20 V. Furthermore, the relationship between the modulation voltage and frequency of the obtained optical modulator is shown by the dotted line in FIG.

第4図より、実施例2の光変調器の駆動電圧は比較例3
のそれよりも1/2以下に低減されているのがわかる。
From FIG. 4, it can be seen that the driving voltage of the optical modulator of Example 2 is the same as that of Comparative Example 3.
It can be seen that it is reduced to less than 1/2 of that of .

[発明の効果] 以上説明したように、本発明の光変調器によれば光導波
路を有する(010)結晶方位の単結晶基板に酸化物超
電導体で電極を形成することにより、光変調器の駆動電
圧の低減化か達成できるという効果を奏する。
[Effects of the Invention] As explained above, according to the optical modulator of the present invention, by forming electrodes of an oxide superconductor on a (010) crystal orientation single crystal substrate having an optical waveguide, the optical modulator can be improved. This has the effect that driving voltage can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は表面抵抗
と周波数の関係を示すグラフ、第3図は実施例]と比較
例2との変調深さと周波数の関係を示すグラフ、第4図
は実施例2と比較例3との変調深さと周波数の関係を示
すグラフ、第5図は(001)結晶方位のl−IN b
 O3単結晶を基板とじ光導波路、バッファ層(Sin
、、 ’)および電極を形成してなる光変調器、第6図
は(010)方位のL iN b O3単結晶を基板と
し光導波路および電極を形成してなる光変調器である。 (図面の主要符号) (1):電気光学結晶基板 (2):電 極 (3):光導波路 代  理  人     大  岩  増  雄弁 1:電気光学結晶基板 2:電極 6:光導波路 牙2図 :理論値 一一−−−: ht主電 極−−−:実施例1 一−−:比較例1 波 数 (Hz) 才 3回 ’ (010)LiNbO3 :Af1 周 波 数((3Hz) 才4 國 変調周波数(GH2) 才5図 ′A′6圏
FIG. 1 is a cross-sectional view of an example of the present invention, FIG. 2 is a graph showing the relationship between surface resistance and frequency, and FIG. 3 is a graph showing the relationship between modulation depth and frequency between Example 2 and Comparative Example 2. , FIG. 4 is a graph showing the relationship between modulation depth and frequency in Example 2 and Comparative Example 3, and FIG. 5 is a graph showing the relationship between modulation depth and frequency in Example 2 and Comparative Example 3.
O3 single crystal is bonded to the substrate, optical waveguide, buffer layer (Sin
,, ') and electrodes, FIG. 6 shows an optical modulator in which an optical waveguide and electrodes are formed using a (010) oriented LiN b O3 single crystal as a substrate. (Main symbols in the drawings) (1): Electro-optic crystal substrate (2): Electrode (3): Optical waveguide representative Masu Oiwa 1: Electro-optic crystal substrate 2: Electrode 6: Optical waveguide fan 2 Diagram: Theoretical value 11---: ht main electrode---: Example 1 1---: Comparative example 1 Wave number (Hz) 3 times' (010) LiNbO3 :Af1 Frequency ((3Hz) 4 years National modulation frequency ( GH2) Age 5 'A' 6 area

Claims (1)

【特許請求の範囲】[Claims] (1)(010)結晶方位のLiNbO_3単結晶から
なる光導波路を有する電気光学結晶基板と、該電気光学
結晶基板上に形成された酸化物超電導膜からなる電極と
からなることを特徴とする光変調器。
(1) An optical device comprising an electro-optic crystal substrate having an optical waveguide made of a LiNbO_3 single crystal with a (010) crystal orientation, and an electrode made of an oxide superconducting film formed on the electro-optic crystal substrate. modulator.
JP27989390A 1990-10-16 1990-10-16 LiNbO 3 Lower optical modulator Expired - Lifetime JP2650483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27989390A JP2650483B2 (en) 1990-10-16 1990-10-16 LiNbO 3 Lower optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27989390A JP2650483B2 (en) 1990-10-16 1990-10-16 LiNbO 3 Lower optical modulator

Publications (2)

Publication Number Publication Date
JPH04152320A true JPH04152320A (en) 1992-05-26
JP2650483B2 JP2650483B2 (en) 1997-09-03

Family

ID=17617396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27989390A Expired - Lifetime JP2650483B2 (en) 1990-10-16 1990-10-16 LiNbO 3 Lower optical modulator

Country Status (1)

Country Link
JP (1) JP2650483B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020029A (en) * 2011-07-11 2013-01-31 Sumitomo Osaka Cement Co Ltd Wafer having inspection electrode and method for measuring refractive index of the electrode
CN108761851A (en) * 2018-08-09 2018-11-06 中国电子科技集团公司第二十六研究所 A kind of polarization maintaining optical fibre high speed electro-optical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020029A (en) * 2011-07-11 2013-01-31 Sumitomo Osaka Cement Co Ltd Wafer having inspection electrode and method for measuring refractive index of the electrode
CN108761851A (en) * 2018-08-09 2018-11-06 中国电子科技集团公司第二十六研究所 A kind of polarization maintaining optical fibre high speed electro-optical device

Also Published As

Publication number Publication date
JP2650483B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
JP2713087B2 (en) Waveguide optical device
JPH08122722A (en) Waveguide type optical device
JPH1039266A (en) Optical control device
JPH09197358A (en) Waveguide type optical device
US7856156B2 (en) Lithium niobate modulator having a doped semiconductor structure for the mitigation of DC bias drift
CN111443426B (en) Slow wave matching structure film type electro-optical modulator
JP3548042B2 (en) Waveguide type optical device
JPH04152320A (en) Optical modulator made of linbo3
US6885780B2 (en) Suppression of high frequency resonance in an electro-optical modulator
JP3049245B2 (en) Waveguide type optical modulator
JPH08166566A (en) Optical control device
US6980705B2 (en) Optical waveguide device
Yoshida et al. A traveling-wave-type LiNbO/sub 3/optical modulator with superconducting electrodes
JPH0651254A (en) Light control device
JP2868046B2 (en) Light modulator
Rozan et al. Design and fabrication of coplanar YBCO structures on lithium niobate substrates
JP2773492B2 (en) Traveling wave electrode type waveguide optical device
JPH04152319A (en) Optical modulator
JP2941970B2 (en) Resonant electrode type optical modulator
CN111812867B (en) Photonic crystal electro-optic modulator and manufacturing method thereof
JP2924316B2 (en) Light modulation element
Kawano Effects of ridge depth on characteristics of shielded velocity-matched (SVM) Ti: LiNbO/sub 3/optical modulators with ridge structures
JPH04214525A (en) Optical modulator
JPH11316359A (en) Optical control device
JPH065345B2 (en) High speed optical modulator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 14