JP2941970B2 - Resonant electrode type optical modulator - Google Patents

Resonant electrode type optical modulator

Info

Publication number
JP2941970B2
JP2941970B2 JP3017778A JP1777891A JP2941970B2 JP 2941970 B2 JP2941970 B2 JP 2941970B2 JP 3017778 A JP3017778 A JP 3017778A JP 1777891 A JP1777891 A JP 1777891A JP 2941970 B2 JP2941970 B2 JP 2941970B2
Authority
JP
Japan
Prior art keywords
electrode
optical modulator
superconducting
modulation
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3017778A
Other languages
Japanese (ja)
Other versions
JPH04305616A (en
Inventor
喜市 吉新
英興 内川
勝大 今田
隆司 水落
忠善 北山
真 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3017778A priority Critical patent/JP2941970B2/en
Publication of JPH04305616A publication Critical patent/JPH04305616A/en
Application granted granted Critical
Publication of JP2941970B2 publication Critical patent/JP2941970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高速光通信における外部
変調器、とくに共振電極形の光変調器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an external modulator for high-speed optical communication, and more particularly to an optical modulator of a resonance electrode type.

【0002】[0002]

【従来の技術】光通信システムの伝送速度の高速化にと
もない、光変調の高周波化が問題となり、高周波光変調
の方式が検討されてきている。高周波光変調の方式は大
別して半導体レーザーによる直接変調方式と LiNbO3
変調器に代表される外部変調方式とに分けられる。半導
体レーザーの直接変調方式はレーザー発振自体を高周波
変調し、変調レーザー光を取り出す方式で、その周波数
限界は現在のところ十数GHz まで伸びてきてはいるが、
この直接変調方式には周波数チャーピングという本質的
に避けられない問題点がある。この周波数チャーピング
は強度変調のときに周波数が広がる現象で、高周波域で
とくに問題となるため、周波数チャーピングのない外部
変調方式の方が望ましい。以下、外部変調方式による光
変調器の代表例であるLiNbO3 光変調器について説明す
る。
2. Description of the Related Art As the transmission speed of an optical communication system increases, the frequency of optical modulation becomes higher, and a high-frequency optical modulation method is being studied. High-frequency optical modulation methods are roughly classified into a direct modulation method using a semiconductor laser and an external modulation method represented by a LiNbO 3 optical modulator. The direct modulation method of a semiconductor laser modulates the laser oscillation itself at a high frequency and extracts the modulated laser light. The frequency limit has been extended to more than ten GHz at present,
This direct modulation scheme has an inherent unavoidable problem of frequency chirping. This frequency chirping is a phenomenon in which the frequency is spread in the case of intensity modulation, and is particularly problematic in a high frequency range. Therefore, an external modulation method without frequency chirping is more desirable. Hereinafter, a LiNbO 3 optical modulator, which is a representative example of the optical modulator based on the external modulation method, will be described.

【0003】従来、外部変調方式の LiNbO3 光変調器に
は電極構造の違いから進行波形と共振形の2種類があ
り、それぞれ一長一短がある。すなわち進行波形電極構
造の光変調器は帯域幅は広くとれるが動作電圧が数十V
前後と高くなり、たとえば電極長8.2mm 、電極間隔15μ
m、波長1.3 μmの変調器で、17GHzの周波数で1rad位
相変調するのに17Vp-pの電圧が必要である。一方、共振
形電極構造の光変調器を用いると、帯域幅は狭いが進行
波では難しい高周波帯の低い動作電圧での光変調が可能
となる。たとえば電極長18mm、電極間隔50μmの共振電
極光変調器において、17GHz の周波数で1rad 位相変調
するのに5.2Vp-p 程度の電圧で動作可能である。このよ
うに、共振電極形の光変調器の方が進行波形に比べて低
電圧・低電力動作に成功している。
Conventionally, there are two types of external modulation type LiNbO 3 optical modulators, a traveling waveform and a resonance type, due to differences in electrode structure, and each has advantages and disadvantages. That is, the optical modulator having the traveling waveform electrode structure can have a wide bandwidth, but the operating voltage is several tens of volts.
Higher and lower, for example, electrode length 8.2mm, electrode spacing 15μ
A modulator having a wavelength of 1.3 μm and a wavelength of 17 μm requires a voltage of 17 Vp-p to perform 1 rad phase modulation at a frequency of 17 GHz. On the other hand, when an optical modulator having a resonant electrode structure is used, optical modulation can be performed at a low operating voltage in a high-frequency band, which has a narrow bandwidth but is difficult for traveling waves. For example, a resonant electrode optical modulator having an electrode length of 18 mm and an electrode spacing of 50 μm can operate at a voltage of about 5.2 Vp-p to perform 1 rad phase modulation at a frequency of 17 GHz. As described above, the optical modulator of the resonance electrode type has succeeded in lower voltage and lower power operation than the traveling waveform.

【0004】しかし、前記共振電極形の光変調器におい
てさえも、現在までに報告されている低動作電圧・変調
効率ではまだ満足できるレベルには達していない。具体
的には1989年12月8日付の日刊工業新聞に掲載されてい
るように、変調用電極を共振器とし回路のQにより変換
効率を高め、17GHz領域で72mWと進行波電極形の1/10
の低電力で変調した報告がある。しかし、この報告でも
動作電圧は5V程度を要するため、専用の高電圧駆動用
のGaAsドライバーが必要であること、高電圧動作のため
その信頼性が低いといった問題がある。
[0004] However, even the above-mentioned optical modulator of the resonance electrode type has not yet reached a satisfactory level with the low operating voltage and modulation efficiency reported to date. More specifically, as described in the Nikkan Kogyo Shimbun on December 8, 1989, the conversion efficiency was increased by using a modulation electrode as a resonator and the Q of the circuit was increased. Ten
There is a report of modulation at low power. However, even in this report, since the operating voltage requires about 5 V, there is a problem that a dedicated GaAs driver for high voltage driving is required, and the reliability is low due to the high voltage operation.

【0005】[0005]

【発明が解決しようとする課題】以上のように、従来の
電気光学結晶を利用した光変調器の問題点は、共振電極
形の構造を採用したばあいにも駆動電圧が高いことであ
り、実用・普及をはかるためには回路のQ値を高め変調
効率を上げることが必要である。
As described above, the problem of the optical modulator using the conventional electro-optic crystal is that the driving voltage is high even when the resonant electrode type structure is employed. For practical use and spread, it is necessary to increase the Q value of the circuit and increase the modulation efficiency.

【0006】そのためには LiNbO3 基板上に優れた超電
導特性(低損失、高Q)を有する酸化物超電導薄膜を形
成し、それで電極を構成し、低損失低動作電圧化を図る
ことが考えられる。LiNbO3 単結晶基板上に酸化物超電
導薄膜を形成する方法としては、蒸着法、スパッタ法、
CVD(Chemical Vapar Deposition)法などの方法がある。
しかし、いずれの方法においても成膜時に基板温度を60
0 〜900 ℃という高温で数時間保持する必要があるた
め、 LiNbO3 基板と酸化物超電導薄膜構成元素とが相互
拡散し、酸化物超電導薄膜が劣化するという問題があ
る。この酸化物超電導薄膜の劣化は、周波数の低い領域
での超電導特性(Tc、Jc)に対する影響は小さいもの
の、高周波領域における特性(表面抵抗)が膜の劣化に
敏感であるためその特性の大きな低下につながり、光変
調器としての変調効率が大幅に低下する。
For this purpose, it is conceivable to form an oxide superconducting thin film having excellent superconducting characteristics (low loss, high Q) on a LiNbO 3 substrate, to form an electrode therefrom, and to achieve a low loss and low operating voltage. . Methods for forming an oxide superconducting thin film on a LiNbO 3 single crystal substrate include a vapor deposition method, a sputtering method,
There is a method such as a CVD (Chemical Vapar Deposition) method.
However, in any method, the substrate temperature is set to 60 at the time of film formation.
Since it is necessary to hold the film at a high temperature of 0 to 900 ° C. for several hours, there is a problem that the LiNbO 3 substrate and the constituent elements of the oxide superconducting thin film are interdiffused and the oxide superconducting thin film is deteriorated. This deterioration of the oxide superconducting thin film has a small effect on the superconducting characteristics (Tc, Jc) in the low frequency region, but the characteristics (surface resistance) in the high frequency region are sensitive to the film deterioration, so the characteristics are greatly reduced. And the modulation efficiency as an optical modulator is greatly reduced.

【0007】本発明の目的は、前記の共振電極構造の光
変調器において、その高Q化と変調効率向上にあり、よ
り低電圧で駆動しうるものを提供することである。
It is an object of the present invention to provide an optical modulator having the above-described resonant electrode structure, which has a high Q and an improved modulation efficiency and can be driven at a lower voltage.

【0008】[0008]

【課題を解決するための手段】本発明は、電極を酸化物
超電導材料で形成し、少なくとも該電極と電気光学結晶
基板との間に酸化物超電導材料と反応しにくい酸化物層
を形成したことを特徴とする共振電極形光変調器に関す
る。
According to the present invention, an electrode is formed of an oxide superconducting material, and an oxide layer which does not easily react with the oxide superconducting material is formed at least between the electrode and the electro-optic crystal substrate. The present invention relates to a resonant electrode type optical modulator characterized by the following.

【0009】[0009]

【作用】電気光学結晶基板と酸化物超電導電極(酸化物
超電導材料により形成された電極)との間に酸化物超電
導材料と反応しにくい酸化物を膜状に形成することによ
り、酸化物超電導材料の構成元素が LiNbO3 と拡散反応
して電極の超電導特性が劣化するのを防止する。
The oxide superconducting material is formed between the electro-optic crystal substrate and the oxide superconducting electrode (electrode formed of the oxide superconducting material) by forming an oxide that does not easily react with the oxide superconducting material into a film. Prevents the superconducting properties of the electrode from deteriorating due to the diffusion reaction of the constituent elements with LiNbO 3 .

【0010】また、電気光学結晶基板と酸化物超電導電
極との間に形成される膜が、電気光学結晶内の光導波路
よりも低い屈折率を有するばあいは、光導波路内の光が
導波路外へ漏れることなく保存されたまま通過して行く
ことになる。
Further, when the film formed between the electro-optic crystal substrate and the oxide superconducting electrode has a lower refractive index than the optical waveguide in the electro-optic crystal, the light in the optical waveguide is guided by the waveguide. It will pass through without being leaked outside while being preserved.

【0011】さらに、酸化物超電導電極部分を共振形構
造にすることにより周波数帯域は制限されるが、導体損
失の低減化と共振特性(Q値)の向上の2つのメリット
から光変調器を低電圧化することができ、進行波形電極
光変調器に比べて大幅に変調効率が向上する。
Further, the frequency band is restricted by forming the oxide superconducting electrode portion into a resonance type structure. However, the optical modulator is reduced due to two advantages of reducing conductor loss and improving resonance characteristics (Q value). The voltage can be increased, and the modulation efficiency is greatly improved as compared with the traveling waveform electrode optical modulator.

【0012】[0012]

【実施例】本発明の光変調器における電極は酸化物超電
導材料からなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The electrodes in the optical modulator of the present invention are made of an oxide superconducting material.

【0013】前記酸化物超電導材料にとくに限定はない
が、高周波信号を超電導電極に印加するため、高周波で
の表面抵抗が低いほど、また冷却系の点からそのTc(臨
界温度)は77K以上が好ましい。
The oxide superconducting material is not particularly limited. However, since a high-frequency signal is applied to the superconducting electrode, the surface resistance at high frequency is lower, and the Tc (critical temperature) is 77 K or more from the viewpoint of a cooling system. preferable.

【0014】このような超電導材料の具体例としては、
たとえばErBa2Cu3 y どのY系、Bi−Sr−
Ca−Cu−O系、Tl−Ba−Ca−Cu−O系の材
料などがあげられる。これらのうちでは、成膜の容易さ
の点からはErBa2Cu3yが好ましい。
Specific examples of such a superconducting material include:
For example ErBa 2 Cu 3 O y as any Y-based, Bi-Sr-
Examples thereof include Ca-Cu-O-based materials and Tl-Ba-Ca-Cu-O-based materials. Among them, ErBa 2 Cu 3 O y is preferable from the viewpoint of easy film formation.

【0015】前記超電導材料からなる電極は、光変調効
率を上げるため、所望の周波数で共振することが望まし
い。そのため、少なくとも所望の周波数を波長に換算
し、それをλとしたときに、λ/2の長さで光導波路と
平行に電極形成することが好ましい。
It is desirable that the electrode made of the superconducting material resonates at a desired frequency in order to increase the light modulation efficiency. Therefore, it is preferable that at least a desired frequency is converted into a wavelength, and that is λ, the electrode is formed in parallel with the optical waveguide with a length of λ / 2.

【0016】本発明で用いられる電気光学結晶基板は、
電気光学効果を有する結晶およびセラミックスであれば
とくに限定されない。電気光学結晶基板の具体例として
は、たとえば LiNbO3、LiTaO3、BaTiO3、ZnO、α-Quar
tz などがあげられる。
The electro-optic crystal substrate used in the present invention comprises:
There is no particular limitation on crystals and ceramics having an electro-optic effect. Specific examples of the electro-optic crystal substrate include, for example, LiNbO 3 , LiTaO 3 , BaTiO 3 , ZnO, α-Quar
tz.

【0017】また、前記電気光学結晶基板には、チタン
拡散、外拡散またはイオン交換によって基板の光屈折率
と異なる屈折率を有する光導波路が形成されている。た
だし、外拡散、プロトン交換の光導波路は基板の異常屈
折率のみを上昇させるため、光波の伝搬は2軸の偏光に
限られる。そのため、直交ニコル形光変調は不可能であ
るが、チタン拡散に比べ光損傷の影響が小さく、大きな
強度の光波を伝搬できる。
Further, an optical waveguide having a refractive index different from that of the substrate is formed on the electro-optic crystal substrate by titanium diffusion, external diffusion or ion exchange. However, since the optical waveguide of the external diffusion and the proton exchange raises only the extraordinary refractive index of the substrate, the propagation of the light wave is limited to biaxial polarization. For this reason, orthogonal Nicol-type light modulation is impossible, but the influence of optical damage is smaller than that of titanium diffusion, and a light wave of high intensity can be propagated.

【0018】本発明の光変調器には、前記酸化物超電導
材料と反応しにくい酸化物層が、少なくとも電気光学結
晶基板と酸化物超電導電極との間に形成されている。
In the optical modulator according to the present invention, an oxide layer that does not easily react with the oxide superconducting material is formed at least between the electro-optic crystal substrate and the oxide superconducting electrode.

【0019】前記酸化物層としては、前記超電導材料と
反応しにくい材料からなる層であればとくに限定はな
い。前記反応しにくいとは、超電導材料のTc,Jc(臨界
電流密度)、抵抗-温度特性およびとくに表面抵抗−周
波数特性を低下させないことをいう。さらに、屈折率が
電気光学結晶内の光導波路よりも低いもの(概ね2.1 以
下が目安となる)が、光が導波路外へ漏れることなく保
存されたまま通過するという点から好ましい。
The oxide layer is not particularly limited as long as it is a layer made of a material that does not easily react with the superconducting material. The term “not easily reacted” means that the Tc, Jc (critical current density), resistance-temperature characteristics, and particularly, surface resistance-frequency characteristics of the superconducting material are not reduced. Further, a material having a refractive index lower than that of the optical waveguide in the electro-optic crystal (approximately 2.1 or less is a guide) is preferable because light passes through the waveguide without leaking out of the waveguide.

【0020】前記酸化物層を構成する酸化物の具体例と
しては、たとえばSrTiO3、ZrO2、Y23、Mg
O、LaGaO3、LaAlO3、YAlO3、Y2BaC
uO5、NdGa 3 の材料などがあげられる。
Specific examples of the oxide constituting the oxide layer include, for example, SrTiO 3 , ZrO 2 , Y 2 O 3 , Mg
O, LaGaO 3 , LaAlO 3 , YAlO 3 , Y 2 BaC
such as uO 5, NdGa O 3 based material and the like.

【0021】前記酸化物層は、高周波信号を電極に印加
する必要から、比誘電率が低いほど、また厚さも薄いほ
ど高周波電界による誘電損が少なくなる。そのため、比
誘電率は本発明の超電導光変調器の動作温度で40以下が
好ましく、厚さも1μm以下であることが好ましい。
Since the oxide layer needs to apply a high-frequency signal to the electrode, the dielectric loss due to the high-frequency electric field decreases as the relative dielectric constant decreases and as the thickness decreases. Therefore, the relative permittivity is preferably 40 or less at the operating temperature of the superconducting light modulator of the present invention, and the thickness is also preferably 1 μm or less.

【0022】本発明の光変調器は、たとえばつぎのよう
にして製造することができる。
The optical modulator of the present invention can be manufactured, for example, as follows.

【0023】まず、電気光学結晶基板に光導波路を形成
し、ついでICB(クラスターイオンビーム)法、EB蒸着
法、スパッタ法、レーザーアブレーション法、CVD法な
どにより酸化物層を形成し、さらにその上にICB法、EB
蒸着法、スパッタ法、レーザーアブレーション法、CVD
法、ゾル−ゲル法などにより酸化物超電導薄膜を形成す
る。ついで、該薄膜を通常の写真製版技術を用いて所望
の周波数で共振する形の電極に加工することにより、本
発明の光変調器が製造される。
First, an optical waveguide is formed on an electro-optic crystal substrate, and then an oxide layer is formed by an ICB (cluster ion beam) method, an EB vapor deposition method, a sputtering method, a laser ablation method, a CVD method, and the like. ICB method, EB
Vapor deposition, sputtering, laser ablation, CVD
An oxide superconducting thin film is formed by a sol-gel method or the like. Then, the optical modulator of the present invention is manufactured by processing the thin film into an electrode that resonates at a desired frequency by using a normal photoengraving technique.

【0024】[実施例1〜2および比較例1]図1に示
す断面を有する3台の光変調器A-1(実施例1)、B-1
(実施例2)、C-1(比較例1)を作製した。図中、1
は電気光学結晶基板、2は光導波路、3は酸化物層、4
は超電導電極である。
[Examples 1 and 2 and Comparative Example 1] Three optical modulators A-1 (Example 1) and B-1 having a cross section shown in FIG.
(Example 2) and C-1 (Comparative Example 1) were produced. In the figure, 1
Is an electro-optic crystal substrate, 2 is an optical waveguide, 3 is an oxide layer, 4
Is a superconducting electrode.

【0025】まずZ-cut した LiNbO 3 単結晶基板(素子
長18mm)に、金属Tiの電子線蒸着により膜厚35nmの光導
波路を形成した。
First, Z-cut LiNbO ThreeSingle crystal substrate (element
18mm in length) and a 35nm-thick light guide by electron beam evaporation of metallic Ti
A wave path was formed.

【0026】ついで、ICB法により、それぞれAl、Mg、S
r、Tiの金属をるつぼで溶融し、酸素またはオゾンを導
入しながら、基板温度670 ℃、真空度 10-4Torrオーダ
ー、加速電圧2kV、蒸着時間2〜4時間の条件で蒸着
し、膜厚 0.1 〜0.2 μmの表1に示す絶縁酸化物層を
形成した。形成された酸化物層の種類、格子定数、比誘
電率および膜厚を表1に示す。なお Al2O3 は酸化物超
電導電極と反応する材料である。また、これらの光屈折
率はSrTiO3 が2.29、MgO が1.7、Al2O3 が1.75となる。
したがって、MgO、Al2O3は導波路の屈折率よりも低いた
め、導波路上に直接形成できる。SrTiO3は屈折率が大き
く導波路上に直接形成すると光散乱が大きくなるので、
他の低屈折薄膜をSrTiO3と導波路上に形成するのが望ま
しい。
Next, Al, Mg, S
r, Ti metal is melted in a crucible and, while introducing oxygen or ozone, deposited under the conditions of a substrate temperature of 670 ° C., a degree of vacuum of 10 −4 Torr, an acceleration voltage of 2 kV, and a deposition time of 2 to 4 hours. An insulating oxide layer having a thickness of 0.1 to 0.2 μm as shown in Table 1 was formed. Table 1 shows the type, lattice constant, relative permittivity, and film thickness of the formed oxide layer. Note that Al 2 O 3 is a material that reacts with the oxide superconducting electrode. The light refractive indices are 2.29 for SrTiO 3 , 1.7 for MgO, and 1.75 for Al 2 O 3 .
Therefore, MgO and Al 2 O 3 can be formed directly on the waveguide because they are lower than the refractive index of the waveguide. Since SrTiO 3 has a large refractive index and increases light scattering when formed directly on a waveguide,
It is desirable to form another low refractive index thin film on the SrTiO 3 and the waveguide.

【0027】[0027]

【表1】 ついで酸化物層上に、金属Er、Ba、Cuを1/2/3の組
成になるようにそれぞれの蒸着速度を制御して、表2に
示す基板温度で前記と同様のICB 法によりErBa2Cu3Oy
からなる酸化物超電導薄膜を形成した。表2に、前記酸
化物層上に形成されたErBa2Cu3Oy 超電導薄膜のTc(超
電導転移温度)および膜厚を示す。
[Table 1] Next, on the oxide layer, the deposition rates of metals Er, Ba, and Cu were controlled so as to have a composition of 1/2/3, and at the substrate temperature shown in Table 2, ErBa 2 was obtained by the same ICB method as described above. Cu 3 O y
An oxide superconducting thin film was formed. Table 2 shows the Tc (superconducting transition temperature) and the film thickness of the ErBa 2 Cu 3 O y superconducting thin film formed on the oxide layer.

【0028】[0028]

【表2】 ついでこのようにして形成した超電導薄膜を、写真製版
技術を用い、レジスト塗布・露光・現像・パターンエッ
チングすることにより、所望の周波数で共振する電極の
形に加工し、3台の光変調器A-1 、B-1 、C-1 を作製し
た。
[Table 2] Then, the superconducting thin film formed in this manner is processed into a shape of an electrode that resonates at a desired frequency by applying resist, exposing, developing, and pattern-etching using photolithography technology. -1, B-1 and C-1 were prepared.

【0029】このようにしてえられた本発明の共振電極
形 LiNbO3 光変調器の構成を図2に示す。 図中、3は
酸化物層、4は超電導電極、5は変調信号源、6は光フ
ァイバーを示す。超電導共振電極は、両端を短絡したコ
プレナ線路を光導波路上に設定し、変調信号は電極中央
から給電用コプレナ線路で入力する。また、E/O相互
作用を長くするため、17GHz が第二高調波となるように
共振器長を設定するとともに、電極コプレナ線路の高イ
ンピーダンス化を図るため中心電極を5μmと光導波路
幅よりも細くして、電極間隔は50μmと広げた。
FIG. 2 shows the configuration of the thus-obtained resonant electrode type LiNbO 3 optical modulator of the present invention. In the figure, 3 indicates an oxide layer, 4 indicates a superconducting electrode, 5 indicates a modulation signal source, and 6 indicates an optical fiber. In the superconducting resonance electrode, a coplanar line having both ends short-circuited is set on the optical waveguide, and a modulation signal is input from the center of the electrode by a power supply coplanar line. Also, to lengthen the E / O interaction, the resonator length is set so that 17 GHz is the second harmonic, and the center electrode is 5 μm, which is larger than the width of the optical waveguide, in order to increase the impedance of the electrode coplanar line. The electrodes were narrowed and the electrode interval was widened to 50 μm.

【0030】ついで、前記光変調器A-1 、B-1 およびC-
1の77K における光変調特性を測定した。
Next, the optical modulators A-1, B-1 and C-
The optical modulation characteristics of 1 at 77K were measured.

【0031】その結果、 A-1(実施例1)は酸化物層材
料のSrTiO3の比誘電率が高く誘電損失が大きかったが、
電極の超電導特性がよいため変調器としての変調効率は
向上していた。一方、B-1(実施例2)は電極の超電導
特性はA-1 よりも若干わるかったが、比誘電率が9.1と
低く、誘電損失もあまり問題にならないレベルであった
ため、変調効率は高く、最も良好な特性を示した。B-1
は16GHz から18GHz 変調周波数特性(17.2GHz)におい
て、1rad 位相を変調するのに必要な動作電圧は1.5Vと
充分低く、さらにTMモード光およびTEモード光ともに良
好な光伝送特性も確認した。図3にB-1の変調電圧と周
波数との関係を示す。また、C-1(比較例1)は比誘電
率は低いが超電導電極と酸化物層との反応性が高く、良
好な超電導特性はえられなかった。
As a result, although A-1 (Example 1) had a high relative dielectric constant of SrTiO 3 as an oxide layer material and a large dielectric loss,
The modulation efficiency as a modulator was improved because of the good superconducting properties of the electrodes. On the other hand, the superconducting property of the electrode B-1 (Example 2) was slightly different from that of the electrode A-1, but the relative dielectric constant was low at 9.1 and the dielectric loss was at a level that did not cause much problem. , And showed the best characteristics. B-1
In the 16 GHz to 18 GHz modulation frequency characteristic (17.2 GHz), the operating voltage required to modulate 1 rad phase was sufficiently low at 1.5 V, and good optical transmission characteristics for both TM mode light and TE mode light were confirmed. FIG. 3 shows the relationship between the modulation voltage and the frequency of B-1. C-1 (Comparative Example 1) had a low relative dielectric constant, but had high reactivity between the superconducting electrode and the oxide layer, so that good superconducting properties could not be obtained.

【0032】[比較例2]前記実施例で形成した超電導
電極のかわりに同じ形状で厚さ1.8 μmの従来のAl電極
をEB(electron Beam) 蒸着法により室温で成膜・形成し
た。
Comparative Example 2 A conventional Al electrode having the same shape and a thickness of 1.8 μm was formed and formed at room temperature by an EB (electron beam) evaporation method instead of the superconducting electrode formed in the above embodiment.

【0033】えられた光変調器D-1の変調周波数特性を
測定したところ、17.2GHzにおいて1rad 位相を変調す
るのに必要な動作電圧は5.2Vであった。図3に変調電圧
と周波数との関係を示す。
When the modulation frequency characteristic of the obtained optical modulator D-1 was measured, the operating voltage required to modulate the 1 rad phase at 17.2 GHz was 5.2 V. FIG. 3 shows the relationship between the modulation voltage and the frequency.

【0034】図3から、電極を超電導化した本発明の光
変調器は、Alの電極を使用した光変調器と比べて 1/3〜
1/4 という低い電圧で駆動させうることがわかる。
From FIG. 3, it can be seen that the optical modulator of the present invention in which the electrodes are made superconducting is 1/3 to 1/3 in comparison with the optical modulator using the Al electrode.
It can be seen that it can be driven with a voltage as low as 1/4.

【0035】[比較例3]酸化物層を形成しないほかは
実施例2と全く同様にして光変調器E-1を作製した。
Comparative Example 3 An optical modulator E-1 was manufactured in exactly the same manner as in Example 2 except that no oxide layer was formed.

【0036】えられた光変調器の超電導電極の超電導特
性は、酸化物層を形成したものと比べて低下していた。
この超電導電極の抵抗の温度特性は半導体的で、Tcも酸
化物層を設けたものよりも数十K 低いものであった。こ
の超電導特性の低下は、X線分析から、ErBa2Cu3Oy
電導電極と LiNbO3 基板との反応が成膜中に生じたため
あることを確認した。また、この光変調器で光伝送を調
べたところ、TMモード光は伝送しなかったためTEモード
光しか使えず、光変調器としての機能は著しく低いもの
であった。
The superconducting characteristics of the superconducting electrode of the obtained optical modulator were lower than those obtained by forming an oxide layer.
The temperature characteristics of the resistance of this superconducting electrode were semiconductor-like, and Tc was several tens of K lower than that of the superconducting electrode provided with the oxide layer. X-ray analysis confirmed that the decrease in the superconducting properties was due to the reaction between the ErBa 2 Cu 3 O y superconducting electrode and the LiNbO 3 substrate during film formation. Further, when the optical transmission was examined using this optical modulator, it was found that the TM mode light was not transmitted, so that only the TE mode light could be used, and the function as the optical modulator was extremely low.

【0037】前記実施例では、酸化物層として MgO ま
たは SrTiO3 を使用したが、Y2O3、LaGaO3、LaAlO3、YA
lO3、ZrO2、NdGaO3 でも同じ効果がえられることを前記
実施例と同様の実験から確認した。
In the above embodiment, MgO or SrTiO 3 was used for the oxide layer, but Y 2 O 3 , LaGaO 3 , LaAlO 3 ,
It was confirmed from the same experiment as in the above example that the same effect was obtained with lO 3 , ZrO 2 , and NdGaO 3 .

【0038】[実施例3〜4および比較例4]z-cutし
たLiTaO3 単結晶基板上に、幅6μm、長さ18mmの銅拡
散光導波路を銅蒸着とそののちの熱拡散により形成し
た。ただし、LiTaO3結晶のキュリー温度は銅元素の拡散
温度よりも低いことから、光導波路形成に際しては、基
板表面に銅を蒸着後、基板表面から垂直下向きに電界を
印加し、キュリー温度よりも低い温度で基板を保持し、
銅元素の拡散を行なった。
Examples 3 to 4 and Comparative Example 4 A copper-diffused optical waveguide having a width of 6 μm and a length of 18 mm was formed on a z-cut LiTaO 3 single crystal substrate by copper vapor deposition and subsequent heat diffusion. However, since the Curie temperature of the LiTaO 3 crystal is lower than the diffusion temperature of the copper element, when forming an optical waveguide, after depositing copper on the substrate surface, an electric field is applied vertically downward from the substrate surface and lower than the Curie temperature. Hold the substrate at the temperature,
Copper element diffusion was performed.

【0039】つぎに、酸化物層と酸化物超電導電極を実
施例1〜2および比較例1と同様にして形成し、光変調
器A-2、B-2、C-2を作製し、特性評価を行なったとこ
ろ、それぞれ光変調器A-1、B-1、C-1(実施例1〜2、
比較例1)と同様の結果がえられた。
Next, an oxide layer and an oxide superconducting electrode were formed in the same manner as in Examples 1 and 2 and Comparative Example 1, and optical modulators A-2, B-2 and C-2 were fabricated. When the evaluation was performed, the optical modulators A-1, B-1, and C-1 (Examples 1 and 2,
The same results as in Comparative Example 1) were obtained.

【0040】[比較例5]前記実施例で形成した超電導
電極のかわりに同じ形状で厚さ1.8μmの従来のAl電極
をEB(electron Beam) 蒸着法により室温で成膜・形成し
た。
Comparative Example 5 A conventional Al electrode having the same shape and a thickness of 1.8 μm was formed and formed at room temperature by an EB (electron beam) evaporation method instead of the superconducting electrode formed in the above embodiment.

【0041】えられた光変調器D-2の変調周波数特性を
測定したところ、17.2GHzにおいて1rad 位相を変調す
るのに必要な動作電圧は6.8Vであった。図4に変調電圧
と周波数との関係を示す。
When the modulation frequency characteristic of the obtained optical modulator D-2 was measured, the operating voltage required to modulate the 1 rad phase at 17.2 GHz was 6.8 V. FIG. 4 shows the relationship between the modulation voltage and the frequency.

【0042】図4から、電極を超電導化した本発明の光
変調器は、Alの電極を使用した光変調器と比べて1/3 〜
1/4 という低い電圧で駆動させうることがわかる。
FIG. 4 shows that the optical modulator of the present invention in which the electrodes are made superconducting is one-third or less of the optical modulator using the Al electrode.
It can be seen that it can be driven with a voltage as low as 1/4.

【0043】[0043]

【発明の効果】本発明の光変調器は電極が酸化物超電導
材料で形成されており、高効率で低電圧動作が可能であ
る。また酸化物超電導材料と反応しにくい酸化物層が少
なくとも電気光学結晶基板と酸化物超電導電極との間に
形成されているので、酸化物超電導材料の高周波特性を
劣化させることなく、電極形成することが可能である。
According to the optical modulator of the present invention, electrodes are formed of an oxide superconducting material, and high-efficiency and low-voltage operation is possible. In addition, since an oxide layer that does not easily react with the oxide superconducting material is formed at least between the electro-optic crystal substrate and the oxide superconducting electrode, it is necessary to form electrodes without deteriorating the high-frequency characteristics of the oxide superconducting material. Is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光変調器を模式的に示す断面図であ
る。
FIG. 1 is a cross-sectional view schematically showing an optical modulator according to the present invention.

【図2】実施例で製造した本発明の光変調器の構成を示
す平面図である。
FIG. 2 is a plan view illustrating a configuration of an optical modulator according to the present invention manufactured in an example.

【図3】光変調器の変調電圧と周波数との関係を示すグ
ラフである。
FIG. 3 is a graph showing a relationship between a modulation voltage and a frequency of an optical modulator.

【図4】光変調器の変調電圧と周波数との関係を示すグ
ラフである。
FIG. 4 is a graph showing a relationship between a modulation voltage and a frequency of an optical modulator.

【符号の説明】[Explanation of symbols]

1 電気光学結晶基板 2 光導波路 3 酸化物層 4 超電導電極 5 変調信号源 6 光ファイバー DESCRIPTION OF SYMBOLS 1 Electro-optic crystal substrate 2 Optical waveguide 3 Oxide layer 4 Superconducting electrode 5 Modulation signal source 6 Optical fiber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水落 隆司 鎌倉市大船五丁目1番1号 三菱電機株 式会社 通信システム研究所内 (72)発明者 北山 忠善 鎌倉市大船五丁目1番1号 三菱電機株 式会社 通信システム研究所内 (72)発明者 宇都宮 真 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 材料研究所内 (56)参考文献 特開 平1−284826(JP,A) 特開 平2−237082(JP,A) (58)調査した分野(Int.Cl.6,DB名) G02F 1/03 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takashi Mizuochi 5-1-1 Ofuna, Kamakura-shi Mitsubishi Electric Corporation Communication Systems Laboratory (72) Inventor Tadashi Kitayama 5-1-1 Ofuna, Kamakura-shi Mitsubishi Electric (72) Inventor Makoto Utsunomiya 8-1-1, Tsukaguchi-Honmachi, Amagasaki-shi Mitsubishi Materials Corporation Materials Research Laboratory (56) References JP-A-1-284826 (JP, A) JP Hei 2-237082 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) G02F 1/03 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電極を酸化物超電導材料で形成し、少な
くとも該電極と電気光学結晶基板との間に酸化物超電導
材料と反応しにくい酸化物層を形成したことを特徴とす
る共振電極形光変調器。
1. A resonant electrode type light, wherein an electrode is formed of an oxide superconducting material, and an oxide layer hardly reacting with the oxide superconducting material is formed between at least the electrode and the electro-optic crystal substrate. Modulator.
【請求項2】 前記酸化物層が電気光学結晶内の光導波
路よりも低い屈折率を有する請求項1記載の共振電極形
光変調器。
2. The optical modulator according to claim 1, wherein the oxide layer has a lower refractive index than an optical waveguide in the electro-optic crystal.
JP3017778A 1991-02-08 1991-02-08 Resonant electrode type optical modulator Expired - Lifetime JP2941970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3017778A JP2941970B2 (en) 1991-02-08 1991-02-08 Resonant electrode type optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3017778A JP2941970B2 (en) 1991-02-08 1991-02-08 Resonant electrode type optical modulator

Publications (2)

Publication Number Publication Date
JPH04305616A JPH04305616A (en) 1992-10-28
JP2941970B2 true JP2941970B2 (en) 1999-08-30

Family

ID=11953180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3017778A Expired - Lifetime JP2941970B2 (en) 1991-02-08 1991-02-08 Resonant electrode type optical modulator

Country Status (1)

Country Link
JP (1) JP2941970B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729183B2 (en) * 2011-07-11 2015-06-03 住友大阪セメント株式会社 Wafer with inspection electrode and method for measuring refractive index of electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02237082A (en) * 1988-04-30 1990-09-19 Sumitomo Electric Ind Ltd Semiconductor substrate provided with superconductor thin film and manufacture thereof
JP2568627B2 (en) * 1988-05-12 1997-01-08 松下電器産業株式会社 Light modulation element

Also Published As

Publication number Publication date
JPH04305616A (en) 1992-10-28

Similar Documents

Publication Publication Date Title
JPH02289821A (en) Optical control element
US11460751B2 (en) Optical modulator
EP0576685B1 (en) Waveguide type light directional coupler
JP2941970B2 (en) Resonant electrode type optical modulator
Nunomura et al. Second harmonic generation in a sputtered LiNbO3 film on MgO
JPH0764034A (en) Travelling wave type optical modulator
US6980705B2 (en) Optical waveguide device
JP2650483B2 (en) LiNbO 3 Lower optical modulator
US4898440A (en) Optical waveguide device
JP2868046B2 (en) Light modulator
EP0704742A2 (en) Optical control device and method for making the same
Rozan et al. Design and fabrication of coplanar YBCO structures on lithium niobate substrates
JP2924316B2 (en) Light modulation element
JPH04152319A (en) Optical modulator
JPH01284826A (en) Optical modulating element
JPH04214525A (en) Optical modulator
JP2730465B2 (en) Light control device and manufacturing method thereof
JP2003234532A (en) Semiconductor device and method of manufacturing the same
JP2669097B2 (en) High-speed optical waveguide device
JP2764473B2 (en) How to make an optical waveguide
JPH065345B2 (en) High speed optical modulator
JPH04214527A (en) Manufacture of optical modulator
JPH10256812A (en) High frequency transmission line and high frequency device
JPH05127027A (en) Electrode for optical modulator
JPH0760226B2 (en) Light modulator