JP3548042B2 - Waveguide type optical device - Google Patents

Waveguide type optical device Download PDF

Info

Publication number
JP3548042B2
JP3548042B2 JP07382999A JP7382999A JP3548042B2 JP 3548042 B2 JP3548042 B2 JP 3548042B2 JP 07382999 A JP07382999 A JP 07382999A JP 7382999 A JP7382999 A JP 7382999A JP 3548042 B2 JP3548042 B2 JP 3548042B2
Authority
JP
Japan
Prior art keywords
substrate
section
optical device
frequency
signal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07382999A
Other languages
Japanese (ja)
Other versions
JP2000267056A (en
Inventor
臣一 下津
哲 及川
努 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP07382999A priority Critical patent/JP3548042B2/en
Publication of JP2000267056A publication Critical patent/JP2000267056A/en
Application granted granted Critical
Publication of JP3548042B2 publication Critical patent/JP3548042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、40GHz以上の広帯域で使用できる導波路型光デバイスに関するものである。
【0002】
【従来の技術】
現在、通信容量が飛躍的に増大しており、アナログ領域では、キャリア周波数が、マイクロ波帯(数GHz)からミリ波帯(30GHz以上)へと高周波化が進んでいる。このため、40GHz以上の広帯域で使用できる高速導波路型光デバイスが要請されている。
導波路型光デバイスとしては、電気光学効果を有する材質からなる基板上に、接地電極、信号電極および光導波路を形成し、信号電極にマイクロ波信号電圧を印加し、光導波路を伝搬する光波を変調する光デバイスが知られている。
こうした光デバイスにおいては、特定の周波数において、いわゆる「ロスディップ」と呼ばれる、伝送特性が劣化する問題があった。こうした光デバイスの使用可能な周波数帯域は、ロスディップの生ずる最低周波数(以下、ロスディップ周波数と呼ぶ)以下に制限される。
【0003】
導波路型光デバイスにおいて、ロスディップ周波数を高周波側へとシフトさせる方法は、例えば、特許第2669097号公報に開示されている。この公報によれば、導波路型光デバイスにおいて、外部電源と進行波型信号電極との接続部分で、基板の断面方向に誘電体共振器を形成し、その共振周波数においては、マイクロ波電力のうちのほとんどが基板側に漏洩し、このため光波に変調がかからないという問題があった。そして、このロスディップ周波数fcが、
fc=co/(2Nmd)
で与えられることを実験的に見いだしたと記載されている(coは、真空中の光速、Nmはマイクロ波の実効屈折率、dは長方形の基板断面における対角線の長さである)。そして、この発明の課題は、ロスディップ周波数を10GHz帯にシフトさせることであった。この結果、光導波路と垂直な基板断面の最も長くなる長さ(通常は対角線の長さ)dと、この方向へのマイクロ波の実効屈折率Nmとの積Nmdを、0.8mmより大きく、11mmよりも小さくすることによって、共振ピークの周波数を10GHz以上へとシフトさせることに成功したとされている。
【0004】
【発明が解決しようとする課題】
しかし、基板の断面方向の対角線の長さdを小さくすることにより、ロスディップ周波数を高周波側にシフトさせる方法には、限界がある。即ち、前記特許公報において想定されている周波数帯よりも高周波帯で光デバイスを使用する場合には、基板の寸法が取り扱い不可能なほどに小さくなるという問題がある。
【0005】
例えば、基板の材料としてニオブ酸リチウム単結晶を使用し、基板の厚さを0.5mmとする。マイクロ波の実効屈折率Nmは、Z軸方向(基板断面の厚さ方向)では5.36であり、X、Y軸方向では6.59である。これらのデータを前提とし、上記の数式から、ロスディップ周波数を試算してみると、図1のグラフのように、ロスディップ周波数が10GHzの場合、dは2.3mm、20GHzの場合、dは1.2mm、30GHzの場合,dは0.8mmとなり、また、d=0.6mmとして試算すると、ロスディップ周波数は40GHzとなるが、その場合の基板の幅は0.4mmとなる。
【0006】
これらの結果から判るように、ロスディップ周波数を40GHz以上にシフトさせるためには、基板の厚み、幅を更に小さくし、即ち、基板の幅、もしくは厚さを0.4mm以下にする必要があり、基板の強度、作業性等を考慮した場合、現実的ではないことが判明した。
【0007】
本発明の課題は、導波路型の光デバイスにおいて、40GHz以上の周波数領域に、ロスディップ周波数をシフトさせることによって、40GHz以上の広帯域で実質的に使用可能な導波路型光デバイスを提供することである。
【0008】
【課題を解決するための手段】
本発明は、40GHz以上の広帯域で使用するための導波路型光デバイスであって、電気光学効果を有する材質を含む基板と、この基板に形成されている光導波路と、光導波路を伝搬する光波を制御するために基板上に設けられている進行波型の信号電極と、少なくとも一つの接地電極とを備えており、信号電極が、入力部、作用部および出力部を備えており、入力部と作用部との間の曲部および出力部と作用部との間の曲部の少なくとも一方の幅方向の中心線が、75μm以上の曲率半径(以下、「中心線曲率半径」と言う)を有することを特徴とする。
【0009】
本発明者は、ロスディップの発生原因である、信号電極に印加されたマイクロ波信号の基板への放射ポイントについて、鋭意研究を重ねた結果、信号電極の入力部または出力部と作用部との間に構成されている曲部において、基板内にマイクロ波信号の一部が放射されることを確認した。この基板内への放射によって、マイクロ波信号と、本来の光変調には望ましくない基板モードとが結合を起こす。即ち、信号電極から基板内へと漏れだしたマイクロ波信号が、基板モードを励振し、共振現象を生じさせ、ロスディップを発生させるわけである。
【0010】
そこで、信号電極の入力部と作用部との間の曲部と、出力部と作用部との間の曲部との少なくとも一方の中心線曲率半径を大きくすることによって、その曲部から基板内に放射するマイクロ波信号の放射量を抑制し、これによって共振現象を発生させるエネルギーの漏出を抑制し、ロスディップ周波数を高周波側へとシフトさせることに成功した。
【0011】
また、本発明者が見いだしたところでは、前記信号電極の入力部と作用部との間の曲部におけるマイクロ波信号の漏出エネルギーの方が、出力部と作用部との間の曲部におけるマイクロ波信号の漏出エネルギーよりも大きく、この結果、入力部と作用部との間の曲部の中心線曲率半径を75μm以上とすることが、ロスディップ周波数を40GHz以上の高周波側へとシフトさせる上で、より一層効果的であった。
【0012】
特に好ましくは、入力部と作用部との間の曲部および出力部と作用部との間の曲部の両方が、75μm以上の中心線曲率半径を有している。また、本発明において、入力部と作用部との間の曲部および出力部と作用部との間の曲部との少なくとも一方の中心線曲率半径は、100μm以上とすることが特に好ましい。
【0013】
なお、入力部と作用部との間の曲部と出力部と作用部との間の曲部との一方の中心線曲率半径を75μm以上とし、他方の中心線曲率半径を75μm未満とした場合には、他方の中心線曲率半径は50μm以上とすることが特に好ましい。
【0014】
本発明においては、信号電極の少なくとも一方の側に接地電極を設けるが、特に好ましくは、いわゆる対称型の接地電極配置(進行波型の信号電極の両側に、少なくとも一対の接地電極が設けられているもの)を採用する。このように、信号電極を挟んで接地電極を対称に配置することによって、信号電極から出力されるマイクロ波は、信号電極の左右に配置された接地電極に印加されやすくなるので、マイクロ波の基板側への放射を、より一層抑圧できる。
【0015】
基板の材質としては、ニオブ酸リチウム、タンタル酸リチウム、ニオブ酸リチウム−タンタル酸リチウム固溶体等の電気光学結晶が特に好ましい。光導波路の形成方法としては、チタン拡散法等の内拡散法やプロトン交換法を利用できる。また、本発明の導波路型光デバイスは、光変調器、光位相変調器、偏波スクランブラ、光スイッチング素子、光コンピューター用の光論理素子等として好適に使用できる。
【0016】
図2(a)は、本発明の導波路型光デバイスの一例を示す平面図であり、図2(b)は、図2(a)のI−I線断面図である。光デバイス11は、いわゆるマッハツェンダー型の変調器である。基板1の主面には、例えばチタン拡散光導波路3が形成されている。光導波路3は、入力部3a、分岐部分3b、3cおよび出力部3dからなる。また、基板1の主面に、一対の接地電極4、5と、一対の接地電極に挟まれた信号電極2とが設けられている。各接地電極4、5と信号電極2との間は、絶縁領域である。
【0017】
本例の光デバイスにおいては、動作速度を一層向上させる目的で、いわゆるコプレナーウエーブガイド型(CPW)の形態を有する接地電極および信号電極を使用している。信号電極2は,入力部2a、作用部2b、出力部2c、入力側の曲部2dおよび出力側の曲部2eからなる。7は信号電極の幅方向の中心線である。本発明に従い、曲部2dと2eとの少なくとも一方の中心線曲率半径Rを、75μm以上とする。
【0018】
【実施例】
図2に示すような光デバイス11を製造した。Zカットのニオブ酸リチウムのウエハー上に、フォトリソグラフィー法によって、チタンをパターニングし、熱拡散法によってチタンを拡散させ、光導波路3を形成した。この際の条件は、チタンの厚さを800オングストロームとし、拡散温度を1000℃とし、拡散時間を20時間とした。基板1の主面に、SiO2の絶縁バッファー層を形成した(厚さ0.5−2μm)。次いで、これらの上に厚さ15−30μmの金属メッキからなる電極2、4、5を形成した。次いでウエハーを切断し、光デバイス11を作製した。ただし、基板1の長さは60mmとし、厚さは0.5mmとし、幅は0.8mmとした。
【0019】
各光デバイスにおいて、入力部2aと作用部2bとの間の曲部2d、および出力部2cと作用部2bとの間の曲部2eの中心線曲率半径Rを、表1に示すように変更した。
【0020】
各光デバイスと測定器との間を高周波ケーブルで接続した。測定器から、周波数が徐々に変わるスイープ信号を出力し、0−75GHzの各周波数における伝送特性を測定し、ロスディップ周波数を確認した。この結果を表1に示す。また、図3には、入力部2aと作用部2bとの間の曲部2dと、出力部2cと作用部2bとの間の曲部2eとの中心線曲率半径Rを50μmとしたときの、周波数と光伝送特性との測定結果を示し(比較例1)、図4には、曲部2eの中心線曲率半径Rを50μmとし、曲部2dの中心線曲率半径Rを75μmとしたときの、周波数と光伝送特性との測定結果を示す(実施例1)。
【0021】
【表1】

Figure 0003548042
【0022】
以上のように、本発明に従い、信号電極の入力部と作用部との間の曲部の中心線曲率半径を75μm以上とすることによって、ロスディップ周波数が著しく高周波側へとシフトし、特に40GHz以上の高周波領域へとシフトさせることができた。
【0023】
【発明の効果】
本発明によれば、導波路型の光デバイスにおいて、40GHz以上の周波数領域に、ロスディップが発生する最小周波数をシフトさせることによって、40GHz以上の広帯域で実質的に使用可能な導波路型光デバイスを提供できる。
【図面の簡単な説明】
【図1】特願平2−52021号公報に基づく、基板断面の対角線の長さdとロスディップ周波数の計算値との関係を示すグラフである。
【図2】本発明の実施例に係る光デバイス11を示す平面図、及びそのI−I線断面図である。
【図3】図2の光デバイスにおいて、信号電極2の曲部2eと曲部2dとの中心線曲率半径Rを50μmとしたときの、周波数と光伝送特性との測定結果およびロスディップ周波数を示すグラフである。
【図4】図2の光デバイスにおいて、信号電極2の曲部2eの中心線曲率半径Rを50μmとし、曲部2dの中心線曲率半径Rを75μmとしたときの、周波数と光伝送特性との測定結果およびロスディップ周波数を示すグラフである。
【符号の説明】
1 基板、2 信号電極、2a 入力部、2b 作用部、2c 出力部、2d 入力部2aと作用部2bとの間の曲部、2e 出力部2cと作用部2bとの間の曲部、3 光導波路、4、5 接地電極、7 信号電極の幅方向の中心線、11
導波路型光デバイス、R 中心線曲率半径[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a waveguide type optical device that can be used in a wide band of 40 GHz or more.
[0002]
[Prior art]
At present, communication capacity is increasing dramatically, and in the analog domain, the carrier frequency is increasing from a microwave band (several GHz) to a millimeter wave band (30 GHz or more). Therefore, there is a demand for a high-speed waveguide type optical device that can be used in a wide band of 40 GHz or more.
As a waveguide type optical device, a ground electrode, a signal electrode, and an optical waveguide are formed on a substrate made of a material having an electro-optic effect, a microwave signal voltage is applied to the signal electrode, and a light wave propagating through the optical waveguide is formed. Modulating optical devices are known.
In such an optical device, there is a problem that transmission characteristics are deteriorated at a specific frequency, so-called “loss dip”. The usable frequency band of such an optical device is limited to the lowest frequency at which a loss dip occurs (hereinafter, referred to as a loss dip frequency).
[0003]
A method of shifting the loss dip frequency to a higher frequency side in a waveguide type optical device is disclosed in, for example, Japanese Patent No. 2669097. According to this publication, in a waveguide-type optical device, a dielectric resonator is formed in a cross-sectional direction of a substrate at a connection portion between an external power supply and a traveling-wave signal electrode, and at a resonance frequency, a microwave power Most of them leaked to the substrate side, and there was a problem that the light wave was not modulated. And this loss dip frequency fc is
fc = co / (2Nmd)
(Co is the speed of light in vacuum, Nm is the effective refractive index of the microwave, and d is the length of the diagonal line in the cross section of the rectangular substrate). An object of the present invention is to shift the loss dip frequency to the 10 GHz band. As a result, the product Nmd of the longest length (usually the length of the diagonal line) d of the substrate cross section perpendicular to the optical waveguide and the effective refractive index Nm of the microwave in this direction is larger than 0.8 mm, It is said that by making the diameter smaller than 11 mm, the frequency of the resonance peak was successfully shifted to 10 GHz or more.
[0004]
[Problems to be solved by the invention]
However, there is a limit in a method of shifting the loss dip frequency to a higher frequency side by reducing the length d of the diagonal line in the cross-sectional direction of the substrate. That is, when the optical device is used in a higher frequency band than the frequency band assumed in the above-mentioned patent publication, there is a problem that the dimensions of the substrate become too small to handle.
[0005]
For example, a single crystal of lithium niobate is used as the material of the substrate, and the thickness of the substrate is 0.5 mm. The effective refractive index Nm of the microwave is 5.36 in the Z-axis direction (the thickness direction of the substrate cross section) and 6.59 in the X and Y-axis directions. Assuming these data, a trial calculation of the loss dip frequency from the above equation shows that d is 2.3 mm when the loss dip frequency is 10 GHz and d when the loss dip frequency is 20 GHz as shown in the graph of FIG. In the case of 1.2 mm and 30 GHz, d is 0.8 mm, and when d = 0.6 mm is estimated, the loss dip frequency is 40 GHz, and in this case, the width of the substrate is 0.4 mm.
[0006]
As can be seen from these results, in order to shift the loss dip frequency to 40 GHz or more, it is necessary to further reduce the thickness and width of the substrate, that is, to reduce the width or thickness of the substrate to 0.4 mm or less. In consideration of the strength of the substrate, workability, etc., it was found that this was not practical.
[0007]
An object of the present invention is to provide a waveguide type optical device which can be used substantially in a wide band of 40 GHz or more by shifting a loss dip frequency to a frequency region of 40 GHz or more in a waveguide type optical device. It is.
[0008]
[Means for Solving the Problems]
The present invention relates to a waveguide type optical device for use in a wide band of 40 GHz or more, comprising a substrate including a material having an electro-optic effect, an optical waveguide formed on the substrate, and an optical wave propagating through the optical waveguide. A traveling-wave-type signal electrode provided on the substrate to control the power supply, and at least one ground electrode. The signal electrode includes an input unit, an operation unit, and an output unit. The center line in the width direction of at least one of the curved portion between the curved portion and the acting portion and the curved portion between the output portion and the acting portion has a radius of curvature of 75 μm or more (hereinafter referred to as “center line radius of curvature”). It is characterized by having.
[0009]
The inventor of the present invention has conducted intensive studies on the radiation point of the microwave signal applied to the signal electrode to the substrate, which is the cause of the occurrence of loss dip, and as a result, the input portion or the output portion of the signal electrode and the working portion It was confirmed that a part of the microwave signal was radiated into the substrate in the curved portion formed therebetween. This radiation into the substrate causes a coupling between the microwave signal and a substrate mode that is undesirable for the original light modulation. That is, the microwave signal that has leaked into the substrate from the signal electrode excites the substrate mode, causing a resonance phenomenon and causing a loss dip.
[0010]
Therefore, by increasing the center line radius of curvature of at least one of a curved portion between the input portion and the acting portion of the signal electrode and a curved portion between the output portion and the acting portion, the curved portion is moved from the curved portion into the substrate. The amount of radiation of microwave signals radiated to the antenna is suppressed, thereby suppressing the leakage of energy that causes the resonance phenomenon, and succeeding in shifting the loss dip frequency to higher frequencies.
[0011]
Further, the present inventor has found that the leakage energy of the microwave signal in the curved portion between the input portion and the working portion of the signal electrode is higher than that in the curved portion between the output portion and the working portion. It is larger than the leakage energy of the wave signal. As a result, when the radius of curvature of the center line of the curved portion between the input portion and the acting portion is set to 75 μm or more, the loss dip frequency is shifted to a high frequency side of 40 GHz or more. And it was even more effective.
[0012]
Particularly preferably, both the curved portion between the input portion and the acting portion and the curved portion between the output portion and the acting portion have a centerline radius of curvature of 75 μm or more. In the present invention, it is particularly preferable that the center line radius of curvature of at least one of the curved portion between the input portion and the acting portion and the curved portion between the output portion and the acting portion is 100 μm or more.
[0013]
In the case where the radius of curvature of one center line of the curved portion between the input portion and the acting portion and the curved portion between the output portion and the acting portion is 75 μm or more, and the radius of the other center line is less than 75 μm. It is particularly preferable that the radius of curvature of the other center line be 50 μm or more.
[0014]
In the present invention, the ground electrode is provided on at least one side of the signal electrode. Particularly preferably, a so-called symmetrical ground electrode arrangement (at least one pair of ground electrodes is provided on both sides of the traveling wave signal electrode). ). By arranging the ground electrode symmetrically with the signal electrode interposed therebetween, the microwave output from the signal electrode can be easily applied to the ground electrodes disposed on the left and right of the signal electrode. The radiation to the side can be further suppressed.
[0015]
As the material of the substrate, an electro-optic crystal such as lithium niobate, lithium tantalate, or a lithium niobate-lithium tantalate solid solution is particularly preferable. As a method for forming the optical waveguide, an internal diffusion method such as a titanium diffusion method or a proton exchange method can be used. Further, the waveguide type optical device of the present invention can be suitably used as an optical modulator, an optical phase modulator, a polarization scrambler, an optical switching element, an optical logic element for an optical computer, and the like.
[0016]
FIG. 2A is a plan view showing an example of the waveguide type optical device of the present invention, and FIG. 2B is a cross-sectional view taken along line II of FIG. 2A. The optical device 11 is a so-called Mach-Zehnder type modulator. On the main surface of the substrate 1, for example, a titanium diffused optical waveguide 3 is formed. The optical waveguide 3 includes an input section 3a, branch sections 3b and 3c, and an output section 3d. A pair of ground electrodes 4 and 5 and a signal electrode 2 sandwiched between the pair of ground electrodes are provided on the main surface of the substrate 1. An insulating region is provided between each of the ground electrodes 4 and 5 and the signal electrode 2.
[0017]
In the optical device of this example, a ground electrode and a signal electrode having a so-called coplanar wave guide (CPW) form are used in order to further improve the operation speed. The signal electrode 2 includes an input section 2a, an action section 2b, an output section 2c, a curved section 2d on the input side, and a curved section 2e on the output side. Reference numeral 7 denotes a center line in the width direction of the signal electrode. According to the present invention, the center line radius of curvature R of at least one of the curved portions 2d and 2e is set to 75 μm or more.
[0018]
【Example】
The optical device 11 as shown in FIG. 2 was manufactured. On a Z-cut lithium niobate wafer, titanium was patterned by a photolithography method, and titanium was diffused by a thermal diffusion method to form an optical waveguide 3. The conditions at this time were that the thickness of titanium was 800 Å, the diffusion temperature was 1000 ° C., and the diffusion time was 20 hours. An insulating buffer layer of SiO 2 was formed on the main surface of the substrate 1 (thickness: 0.5 to 2 μm). Next, electrodes 2, 4, and 5 made of metal plating having a thickness of 15 to 30 μm were formed on these. Next, the wafer was cut to produce an optical device 11. However, the length of the substrate 1 was 60 mm, the thickness was 0.5 mm, and the width was 0.8 mm.
[0019]
In each optical device, the center line radius of curvature R of the curved portion 2d between the input portion 2a and the acting portion 2b and the curved portion 2e between the output portion 2c and the acting portion 2b are changed as shown in Table 1. did.
[0020]
Each optical device and the measuring instrument were connected by a high-frequency cable. A sweep signal whose frequency gradually changed was output from the measuring instrument, the transmission characteristics at each frequency of 0 to 75 GHz were measured, and the loss dip frequency was confirmed. Table 1 shows the results. FIG. 3 shows a case where the center line curvature radius R of the curved portion 2d between the input portion 2a and the acting portion 2b and the curved portion 2e between the output portion 2c and the acting portion 2b is 50 μm. 4 shows the measurement results of the frequency and the optical transmission characteristics (Comparative Example 1). FIG. 4 shows a case where the center line radius of curvature R of the curved portion 2e is 50 μm and the center line radius of curvature R of the curved portion 2d is 75 μm. 5 shows the measurement results of the frequency and the optical transmission characteristics of the first embodiment (Example 1).
[0021]
[Table 1]
Figure 0003548042
[0022]
As described above, according to the present invention, by setting the center line radius of curvature of the curved portion between the input portion and the operating portion of the signal electrode to be 75 μm or more, the loss dip frequency is remarkably shifted to the high frequency side, and particularly, 40 GHz. It was possible to shift to the above high frequency region.
[0023]
【The invention's effect】
According to the present invention, in a waveguide type optical device, a waveguide type optical device which can be substantially used in a wide band of 40 GHz or more by shifting a minimum frequency at which a loss dip occurs to a frequency region of 40 GHz or more. Can be provided.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a length d of a diagonal line of a substrate cross section and a calculated value of a loss dip frequency based on Japanese Patent Application No. 2-52021.
FIG. 2 is a plan view showing an optical device 11 according to an embodiment of the present invention, and a cross-sectional view taken along the line II.
FIG. 3 shows a measurement result of a frequency and an optical transmission characteristic and a loss dip frequency when a center line radius of curvature R between a curved portion 2e and a curved portion 2d of the signal electrode 2 is 50 μm in the optical device of FIG. It is a graph shown.
FIG. 4 shows the frequency and optical transmission characteristics of the optical device of FIG. 2 when the radius R of the center line of the curved portion 2e of the signal electrode 2 is 50 μm and the radius R of the central line of the curved portion 2d is 75 μm. 5 is a graph showing the measurement results and the loss dip frequency.
[Explanation of symbols]
Reference Signs List 1 substrate, 2 signal electrode, 2a input section, 2b action section, 2c output section, 2d curve section between input section 2a and action section 2b, 2e curve section between output section 2c and action section 2b, 3 Optical waveguides, 4, 5 ground electrodes, 7 center lines in the width direction of signal electrodes, 11
Waveguide type optical device, R centerline radius of curvature

Claims (2)

40GHz以上の広帯域で使用するための導波路型光デバイスであって、
電気光学効果を有する材質を含む基板と、この基板に形成されている光導波路と、光導波路を伝搬する光波を制御するために基板上に設けられている進行波型の信号電極と、少なくとも一つの接地電極とを備えており、前記信号電極が、入力部、作用部および出力部を備えており、入力部と作用部との間の曲部および出力部と作用部との間の曲部の少なくとも一方の幅方向の中心線が、75μm以上の曲率半径を有することを特徴とする、導波路型光デバイス。
A waveguide type optical device for use in a wide band of 40 GHz or more,
A substrate including a material having an electro-optic effect, an optical waveguide formed on the substrate, and a traveling-wave signal electrode provided on the substrate for controlling a light wave propagating through the optical waveguide; And the signal electrode has an input section, an action section, and an output section, and a curve section between the input section and the action section and a curve section between the output section and the action section. Wherein at least one of the center lines in the width direction has a radius of curvature of 75 μm or more.
前記信号電極の入力部と作用部との間の曲部の幅方向の中心線が、75μm以上の曲率半径を有することを特徴とする、請求項1記載の導波路型光デバイス。2. The waveguide type optical device according to claim 1, wherein a center line in a width direction of the curved portion between the input portion and the acting portion of the signal electrode has a radius of curvature of 75 [mu] m or more.
JP07382999A 1999-03-18 1999-03-18 Waveguide type optical device Expired - Lifetime JP3548042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07382999A JP3548042B2 (en) 1999-03-18 1999-03-18 Waveguide type optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07382999A JP3548042B2 (en) 1999-03-18 1999-03-18 Waveguide type optical device

Publications (2)

Publication Number Publication Date
JP2000267056A JP2000267056A (en) 2000-09-29
JP3548042B2 true JP3548042B2 (en) 2004-07-28

Family

ID=13529434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07382999A Expired - Lifetime JP3548042B2 (en) 1999-03-18 1999-03-18 Waveguide type optical device

Country Status (1)

Country Link
JP (1) JP3548042B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665134B2 (en) 2005-08-08 2011-04-06 独立行政法人情報通信研究機構 Fourth harmonic generation system using optical carrier suppressed double sideband modulator
JP4759665B2 (en) 2005-08-10 2011-08-31 独立行政法人情報通信研究機構 Reciprocating frequency modulation system
JP4696264B2 (en) 2005-08-24 2011-06-08 独立行政法人情報通信研究機構 Optical FSK / SSB modulator with intensity balance function
JP4631006B2 (en) 2005-08-24 2011-02-16 独立行政法人情報通信研究機構 Automatic adjustment system for FSK modulator
JP4552032B2 (en) 2005-08-31 2010-09-29 独立行政法人情報通信研究機構 Optical amplitude modulation system capable of eliminating higher-order components
JP4547552B2 (en) 2005-08-31 2010-09-22 独立行政法人情報通信研究機構 DSB-SC modulation system capable of erasing carriers and secondary components
JP4465458B2 (en) 2005-09-20 2010-05-19 独立行政法人情報通信研究機構 Phase control optical FSK modulator
JP4771067B2 (en) 2005-12-01 2011-09-14 独立行政法人情報通信研究機構 Optical switch system by optical interference
JP4771216B2 (en) 2006-03-15 2011-09-14 独立行政法人情報通信研究機構 Ultra-flat optical frequency comb signal generator
JP4882042B2 (en) 2006-06-23 2012-02-22 独立行政法人情報通信研究機構 Ultrafast optical frequency sweep technology
JP5299859B2 (en) 2008-01-28 2013-09-25 独立行政法人情報通信研究機構 Ultra-flat optical frequency comb signal generator

Also Published As

Publication number Publication date
JP2000267056A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
US7088875B2 (en) Optical modulator
US6721085B2 (en) Optical modulator and design method therefor
JPH05196902A (en) Traveling-wave optical modulator
KR950000406B1 (en) Electro-optic modulator and optical signal modulating method
JP2005037547A (en) Optical modulator
JP3548042B2 (en) Waveguide type optical device
US20020106141A1 (en) Low-loss electrode designs for high-speed optical modulators
CN114153085B (en) Thin film lithium niobate adjustable high linearity electro-optic modulator integrated chip
US8406576B2 (en) Optical modulator and optical transmitter
JP2806425B2 (en) Waveguide type optical device
JPH09197358A (en) Waveguide type optical device
EP1369741B1 (en) Resonant electro-optical modulator for optical short pulse generation
US5801871A (en) Wide band and low driving voltage optical modulator with improved connector package
JP2007079249A (en) Optical modulator
JP3559170B2 (en) Waveguide type optical device
JP4926423B2 (en) Light modulator
JPH0764034A (en) Travelling wave type optical modulator
JP3067760B1 (en) Waveguide type optical device
JP2007334124A (en) Optical modulator
JP2871645B2 (en) Waveguide type optical device
JP2007025369A (en) Optical modulator
JP5075055B2 (en) Light modulator
JPH10142567A (en) Waveguide type optical device
JPH11237593A (en) Optical modulator
JP5447306B2 (en) Light control element

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

EXPY Cancellation because of completion of term