JPH04152247A - Infrared ray spectrometer - Google Patents

Infrared ray spectrometer

Info

Publication number
JPH04152247A
JPH04152247A JP2277084A JP27708490A JPH04152247A JP H04152247 A JPH04152247 A JP H04152247A JP 2277084 A JP2277084 A JP 2277084A JP 27708490 A JP27708490 A JP 27708490A JP H04152247 A JPH04152247 A JP H04152247A
Authority
JP
Japan
Prior art keywords
infrared
light
gas
cell
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2277084A
Other languages
Japanese (ja)
Other versions
JP2855841B2 (en
Inventor
Kinji Harada
原田 謹爾
Muneki Ran
蘭 宗樹
Noriaki Tawaragi
俵木 紀明
Koichi Ishii
石井 浩市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP27708490A priority Critical patent/JP2855841B2/en
Publication of JPH04152247A publication Critical patent/JPH04152247A/en
Application granted granted Critical
Publication of JP2855841B2 publication Critical patent/JP2855841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To construct an analyzer in a small size and have a high certainty and high sensitivity analysis by furnishing a super-small light source which emits infrared rays into each cell, and providing a light chopper which shuts off intermittently the infrared rays after passing the cells. CONSTITUTION:A beam of light emitted from a super-small lamp 41 passes through infrared penetration films 42, 43, and only infrared rays are incident on a standard cell 30 and a measuring cell 31. The infrared rays projected on these cells 30, 31 are reflected by mirrors 44, 45, passed through the standard gas and the gas to be measured, respectively, led to filters 46, 47 by the mirrors 44, 45, and shut off and allowed to proceed by a light chopper 48. The beam of light having passed this chopper 48 is sensed by an infrared sensor 49, and a signal processing circuit 50 calculates the concentration of the gas measured on the basis of the difference in the penetration photo amount between the standard cell 30 and measuring cell 31. Thus analyzer is constructed small, and high sensitivity and high certainty analyses are made practicable.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は赤外線を用いた分析計の小形化に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> This invention relates to miniaturization of an analyzer using infrared rays.

〈従来技術〉 第5図は標準カスと測定カスにおける赤外線の吸収量の
差から測定ガスの濃度を測定する従来の赤外線分析計の
原理説明図である。赤外線光源1から放射された光は同
期モータ2により回転される光学セクタ3で断続光にさ
れた後分配セル4で2光束に分割されて、それぞれ標準
セル5、測定セル6に入る。標準セル5には通常g重ガ
スとして不活性ガス(N2等)が充填されており、この
セルでは入射した赤外線は特性吸収を受けない。
<Prior Art> FIG. 5 is a diagram illustrating the principle of a conventional infrared analyzer that measures the concentration of a measurement gas from the difference in the amount of infrared rays absorbed by a standard scum and a measurement scum. The light emitted from the infrared light source 1 is made into intermittent light by an optical sector 3 rotated by a synchronous motor 2, and then divided into two beams by a distribution cell 4, which enter a standard cell 5 and a measurement cell 6, respectively. The standard cell 5 is normally filled with an inert gas (N2, etc.) as a g-heavy gas, and the incident infrared rays are not characteristically absorbed in this cell.

一方、測定セル6では測定ガス中の成分・濃度に応じて
、特定の波長帯域で光は吸収される。この2つの光束の
強度差を検出すれば測定ガス成分の濃度を測定すること
ができる。ガス封入検出器7は測定成分ガスを一定濃度
に封入した部屋とこれに接続されたマイクロフローセン
サ8とからなり、ガスが封入された部屋に断続光が入射
すると、光束の中で封入されたガスの特性吸収波長の光
のみが吸収されて、密閉された部屋内のガスが断続的に
膨張する。膨脹力の大きさは、部屋に入射する測定カス
成分の特性波長領域の光量に依存する。
On the other hand, in the measurement cell 6, light is absorbed in a specific wavelength band depending on the components and concentrations in the measurement gas. By detecting the difference in intensity between these two luminous fluxes, the concentration of the measurement gas component can be measured. The gas-filled detector 7 consists of a chamber filled with gas to be measured at a constant concentration and a micro flow sensor 8 connected to the chamber. Only light at the gas's characteristic absorption wavelength is absorbed, causing the gas in the sealed room to expand intermittently. The magnitude of the expansion force depends on the amount of light in the characteristic wavelength range of the measurement waste component that enters the room.

この場合、両部屋の圧力差はマイクロフローセンサ8に
よりガス流量の変化として検出される。マイクロフロー
センサ8の電気出力は増幅器9で増幅後、同期整流回路
10で回転セクタ3の回転周期に同期して同期整流され
、平滑回路11.直流増幅回FI@12を経て濃度信号
が出力される。
In this case, the pressure difference between the two chambers is detected by the microflow sensor 8 as a change in gas flow rate. The electrical output of the micro flow sensor 8 is amplified by an amplifier 9, then synchronously rectified by a synchronous rectifier circuit 10 in synchronization with the rotation period of the rotating sector 3, and then passed through a smoothing circuit 11. A concentration signal is output via a DC amplification circuit FI@12.

〈発明が解決すべき課題〉 しかしながら上記の構成の装置は複数の機構部や電気回
路からなり、これら全体で1つのシステムを構成してい
るので、高感度ではあるが、素子サイズのガスセンサ等
に比べると非常に寸法が大きく、測定に要するサンプル
ガスの量も多いという欠点がある。一方、素子サイズの
ガスセンサ等は確度や感度が非常に悪いという問題があ
る。
<Problem to be solved by the invention> However, the device with the above configuration consists of multiple mechanical parts and electric circuits, and the whole constitutes one system, so although it is highly sensitive, it cannot be used as an element-sized gas sensor etc. The drawback is that it is very large in size and requires a large amount of sample gas for measurement. On the other hand, element-sized gas sensors and the like have a problem of extremely poor accuracy and sensitivity.

〈発明の目的〉 この発明は上記の課題を解決するためになされたもので
、高確度・高感度で、かつ素子サイズの赤外線分析計を
実現することを目的とする。
<Object of the Invention> The present invention was made to solve the above-mentioned problems, and its purpose is to realize an infrared analyzer with high accuracy, high sensitivity, and an element size.

く課題を解決する為の手段〉 本発明は標準ガスと測定カスにおける赤外線の吸収量の
差から測定ガスの濃度を測定する赤外線分析計に係るも
ので、その特徴とするところは標準ガスを流す標準セル
と、測定ガスを流す測定セルと、これらのセルに前記各
ガスを導入または排出するマイクロバルブと、前記各セ
ル内に赤外線を放射する超小型光源と、前記各セルを透
過した赤外線を断続する光チョッパと、この光チョッパ
を透過した赤外線を検出する超小型赤外センサとが、マ
イクロ加工技術を用いて基板上に形成された点にある。
Means for Solving the Problems> The present invention relates to an infrared analyzer that measures the concentration of a measurement gas from the difference in the amount of infrared rays absorbed by a standard gas and measurement waste. A standard cell, a measurement cell through which the measurement gas flows, a microvalve through which each of the gases is introduced into or discharged from these cells, an ultra-compact light source that emits infrared rays into each of the cells, and an infrared ray that passes through each of the cells. An intermittent optical chopper and an ultra-compact infrared sensor that detects infrared light transmitted through the optical chopper are formed on a substrate using microfabrication technology.

く作用〉 超小型の測定セルを用いているので微!の測定ガスで濃
度を測定でき、超小型の赤外センサで検出しているので
、高感度・高確度で測定することができる。
Effect〉 Ultra-small measurement cell is used, so it is very small! Since the concentration can be measured using the measurement gas and the detection is performed using an ultra-compact infrared sensor, the measurement can be performed with high sensitivity and accuracy.

〈実施例〉 第1図は本発明に係る赤外線分析計を示す分解構成斜視
図である9本装置の測定原理は第5図の場合と同様に、
標準ガスと測定ガスにおける赤外線の吸収量の差から測
定ガスの濃度を測定するものである。
<Example> Figure 1 is an exploded perspective view showing an infrared analyzer according to the present invention.9 The measurement principle of this device is the same as in Figure 5.
The concentration of the measured gas is measured from the difference in the amount of infrared absorption between the standard gas and the measured gas.

図において、21は上層シリコン基板、22は中間層ガ
ラス基板、23は下層シリコン基板である。基板21〜
23はサンドイッチ構造を形成し一互いに静電接合によ
り非常に強固に接着されており、内部を流れるガスが外
部に漏れないように構成されている。24.25は基板
21上に形成され、それぞれ標準ガス、測定ガスをセル
に導入するためのサンプリング用のマイクロバルブ、2
6゜27はこれらのマイクロバルブ24.25をそれぞ
れ駆動するバルブアクチュエータ、28.29は基板2
2上に形成され、それぞれ標準ガス、測定ガスを図の下
方に通過させる貫通孔、30.31はシリコンの異方性
エツチングによって基板23上に形成されたそれぞれ標
準セルと測定セル、32.33は基板22上に形成され
、それぞれ標準ガス、測定ガスを図の上方に濾過させる
貫通孔、34.35は基板21上に形成され、それぞれ
標準ガス、測定ガスをセルから排出するためのマイクロ
バルブ、36.37はこれらマイクロバルブ34.35
をそれぞれ駆動するバルブアクチュエータである。
In the figure, 21 is an upper silicon substrate, 22 is an intermediate glass substrate, and 23 is a lower silicon substrate. Substrate 21~
23 form a sandwich structure and are very firmly adhered to each other by electrostatic bonding, so that the gas flowing inside does not leak to the outside. 24 and 25 are formed on the substrate 21, and are sampling microvalves for introducing standard gas and measurement gas into the cell, respectively;
6゜27 is a valve actuator that drives each of these micro valves 24 and 25, and 28 and 29 is a substrate 2.
2, through holes through which the standard gas and measurement gas pass downward in the figure; 30. 31 are standard cells and measurement cells, respectively, formed on the substrate 23 by anisotropic etching of silicon; 32.33; 34 and 35 are through holes formed on the substrate 22 to filter the standard gas and measurement gas upward in the figure, and microvalves 34 and 35 are formed on the substrate 21 to discharge the standard gas and measurement gas from the cell, respectively. , 36.37 are these microvalves 34.35
These are valve actuators that drive the respective valves.

41は赤外線を含んだ光を放射する超小型ランプ(マイ
クロランプ)、42.43は超小型ランプ41から出射
した光のうち、赤外線のみを透過させる赤外透過膜、4
4.45はそれぞれ標準セル30.測定セル31の内壁
に金等を蒸着することにより形成された高精度のミラー
で、赤外透過膜42.43を通過した光がそれぞれ反射
される反射膜、46.47はミラー44.45で反射さ
れた赤外光がそれぞれ入射する波長選択用のフィルタ、
48はフィルタ46.47を透過した光が周期的に断続
される、静電気力等で動く回転型の超小型の光チョッパ
(マイクロチョッパ)、49は光チョッパ48を透過し
た赤外線を検出する焦電形やHg Cd T e等の超
小型赤外センサ、50は基板21上に形成され、赤外セ
ンサ49からの出力信号を測定データ化する信号処理回
路である。
41 is an ultra-compact lamp (micro lamp) that emits light containing infrared rays; 42.43 is an infrared transmitting film that transmits only infrared rays out of the light emitted from the ultra-compact lamp 41;
4.45 are standard cells 30. High-precision mirrors are formed by vapor-depositing gold or the like on the inner wall of the measurement cell 31, and 46 and 47 are mirrors 44 and 45 that reflect the light that has passed through the infrared transmitting films 42 and 43, respectively. wavelength selection filters into which each reflected infrared light enters;
48 is a rotating ultra-small optical chopper (micro chopper) that periodically interrupts the light that has passed through the filters 46 and 47, and is moved by electrostatic force, etc.; 49 is a pyroelectric device that detects the infrared rays that have passed through the optical chopper 48; An ultra-small infrared sensor 50 such as a type or Hg Cd Te is formed on the substrate 21 and is a signal processing circuit that converts an output signal from the infrared sensor 49 into measurement data.

上記各構成要素はIC製造の機紐加工技術もしくはそれ
に準じるマイクロ加工技術を用いて各基板上に形成され
る。
Each of the above-mentioned components is formed on each substrate using a machine string processing technique for IC manufacturing or a micro-processing technique similar thereto.

上記構成の装置の動作を第2図および第3図を用いて次
に説明する。なお第1図と同じ部分は同一の記号を付し
である。超小型ランプ41から放射された光は赤外透過
膜42.43を通過することにより赤外線のみがそれぞ
れ標準セル30.測定セル31に入射する。標準セル3
0.測定セル31に入射した赤外光62.63はそれぞ
れミラ44.45で反射されてそれぞれ標準ガス、測定
ガス中を通過し、再びミラー44.45でそれぞれフィ
ルタ46.47に導かれ、光チョッパ48で断続される
。光チョッパ48を通過した光は赤外センサ49により
検出され、標準セル30と測定セル31における透過光
量の差に基づき、信号処理回路50において測定ガスの
濃度が演算される。第2図において、61はマイクロバ
ルブ25と共に用いられるシールリングである。第3図
において、81は赤外線センサ49からの引出し$[i
である。
The operation of the apparatus having the above configuration will be explained next with reference to FIGS. 2 and 3. Note that the same parts as in FIG. 1 are given the same symbols. The light emitted from the micro lamp 41 passes through the infrared transmitting films 42 and 43, so that only the infrared rays are transmitted to the standard cells 30 and 30, respectively. The light enters the measurement cell 31. Standard cell 3
0. Infrared light 62.63 incident on the measurement cell 31 is reflected by mirrors 44.45, passes through the standard gas and measurement gas, and is guided again by the mirrors 44.45 to filters 46.47, and is then passed through the optical chopper. Intermittent at 48. The light that has passed through the optical chopper 48 is detected by an infrared sensor 49, and the concentration of the measurement gas is calculated in a signal processing circuit 50 based on the difference in the amount of transmitted light between the standard cell 30 and the measurement cell 31. In FIG. 2, 61 is a seal ring used together with the micro valve 25. In FIG. 3, 81 is the drawer $[i
It is.

第4図は第1図および第2図に示したマイクロランプ4
1の詳細を示す要部構成断面図である。
Figure 4 shows the micro lamp 4 shown in Figures 1 and 2.
FIG. 1 is a cross-sectional view of a main part configuration showing details of FIG.

なお第1図、第2図と同じ部分は同一の記号を付して説
明を省略する。72は基板21の一方の面(以下ランプ
形成面と呼ぶ)の表面近傍にマイクロマシニング技術で
形成した真空室、73は真空室72の内部に基板21に
よって両持ち梁状に支持されるように形成され赤外線放
射体でコーティングされたフィラメント、74は基板2
1のランプ形成面および真空室72上の構造部77(f
&述)を覆うように形成された反射放熱膜、75は真空
室72と隣接し基板21の他方の面(以下光放出面と呼
ぶ)側で厚みが小さくなるように加工された部分からな
る光放出部、76は基板21の光放出面上で光放出部7
5の周囲に形成された反射膜、77は真空室72を封じ
るためにその上部を覆う構造部である0反射放熱膜74
および反射I!!!76としてはAu等の金属膜を用い
ることができる。
Note that the same parts as in FIGS. 1 and 2 are given the same symbols, and the explanation will be omitted. 72 is a vacuum chamber formed by micromachining technology near one surface of the substrate 21 (hereinafter referred to as the lamp forming surface), and 73 is a vacuum chamber supported by the substrate 21 in the form of a double-sided beam inside the vacuum chamber 72. a filament formed and coated with an infrared emitter, 74 is the substrate 2;
1 on the lamp forming surface and the structure 77 (f
The reflective heat dissipating film 75 formed to cover the substrate 21 is adjacent to the vacuum chamber 72 and consists of a portion processed to have a smaller thickness on the other surface (hereinafter referred to as the light emitting surface) of the substrate 21. A light emitting section 76 is a light emitting section 7 on the light emitting surface of the substrate 21.
A reflective film 77 is formed around the vacuum chamber 72, and a reflective heat dissipating film 74 is a structural part that covers the top of the vacuum chamber 72 to seal it.
and reflection I! ! ! As 76, a metal film such as Au can be used.

第1図における基板21〜23の左右の長さの一例とし
て例えば10mmとすることができる。
An example of the left and right lengths of the substrates 21 to 23 in FIG. 1 may be, for example, 10 mm.

上記構成の装置の動作を次に説明する。フィラメント7
3の発光により第4図の上方に放射された光は反射放熱
膜74により下方に反射され、フィラメント73から直
接下方に放射された光と共に光放出部75から外部に出
射される。光放出部75では基板21が薄くなっている
ので、光の吸収・減衰は小さい0図の下側の反射M76
は光放出部75から斜めに放出された光や、図の下側の
構成物からの反射光を基板21に入光させずに反射させ
るので、効率の上昇を図ることができる。
The operation of the apparatus having the above configuration will be explained next. filament 7
The light emitted upward in FIG. 4 due to the light emission of No. 3 is reflected downward by the reflective heat dissipation film 74, and is emitted to the outside from the light emitting portion 75 together with the light emitted directly downward from the filament 73. In the light emitting part 75, since the substrate 21 is thin, absorption and attenuation of light is small.
Since the light obliquely emitted from the light emitting portion 75 and the reflected light from the components on the lower side of the figure are reflected without entering the substrate 21, efficiency can be improved.

また図の上方への放射光の一部が基板21により吸収さ
れること、およびフィラメント73からの熱伝導により
、基板21の温度が上昇すると、この熱は反射放熱膜7
4により高効率で放熱されるので、基板21の温度上昇
を抑制することができる。光の吸収を少なくするために
、真空室72を封じる構造部77も厚みを小さく形成し
である。
In addition, when the temperature of the substrate 21 rises due to a portion of the light radiated upward in the figure being absorbed by the substrate 21 and heat conduction from the filament 73, this heat is transferred to the reflective heat dissipation film 7.
4, heat is dissipated with high efficiency, so the temperature rise of the substrate 21 can be suppressed. In order to reduce light absorption, the structure 77 that seals the vacuum chamber 72 is also formed with a small thickness.

また光放出部をランプ形成面と反対側に形成することに
より、光放出面には凸部が存在しないので、放出光を利
用するための構造物を形成することが容易である。ここ
でマイクロランプ41では、基板としてシリコンを使用
しているので1.1μm以下の光の波長で吸収があり、
それ以上の波長で透過するので、そのままでも赤外線ラ
ンプを構成することができる。またシリコンに限らず、
光放出部に任意のセラミックを形成すると、効率よく赤
外光を放出する赤外線ランプを構成することができる。
Further, by forming the light emitting portion on the opposite side to the lamp forming surface, there is no convex portion on the light emitting surface, so it is easy to form a structure for utilizing the emitted light. Here, in the micro lamp 41, since silicon is used as the substrate, there is absorption at a wavelength of light of 1.1 μm or less.
Since it transmits at wavelengths longer than that, it can be used as is to form an infrared lamp. In addition to silicon,
By forming an arbitrary ceramic in the light emitting portion, an infrared lamp that efficiently emits infrared light can be constructed.

また第4図では基板21の光放出面において、マイクロ
加工技術により凹部を形成して光放出部75の部分の厚
みを小さくしているが、基板21全体を薄くすれば、こ
の加工は不要となる。
Furthermore, in FIG. 4, a concave portion is formed on the light emitting surface of the substrate 21 using micro processing technology to reduce the thickness of the light emitting portion 75, but if the entire substrate 21 is made thinner, this processing becomes unnecessary. Become.

このような構成の赤外線分析計によれば、単体では確度
や感度が悪いセンサ類をICのように集積・微細化する
ことにより、高感度・高確度で超小型の高性能赤外線分
析計を実現することができる。すなわち、例えば赤外セ
ンサ49として焦電形を用いた場合は超小型なので熱容
量が小さくなり、僅かな光量でも容易に温度上昇するの
で感度が良くなる。また超小型の測定セルを用いている
ので測定ガスのサンプル量も微小量で済む、結果として
従来のガスセンサと同等以下の大きさで従来の赤外線分
析計と同等以上の感度・確度を有する画期的な赤外線分
析計を実現することができる。
According to an infrared analyzer with this configuration, by integrating and miniaturizing sensors that have low accuracy and sensitivity on their own like an IC, an ultra-compact, high-performance infrared analyzer with high sensitivity and high accuracy can be realized. can do. That is, for example, when a pyroelectric sensor is used as the infrared sensor 49, it is ultra-small and has a small heat capacity, and even a small amount of light can easily raise the temperature, resulting in improved sensitivity. In addition, since it uses an ultra-small measurement cell, the amount of sample gas to be measured can be miniscule.As a result, it is a revolutionary product that is smaller in size than conventional gas sensors but has sensitivity and accuracy equal to or higher than conventional infrared analyzers. It is possible to realize a unique infrared analyzer.

またIC製造の微細加工技術を利用してそれ自身を小型
センサ部品にまとめあげることにより、量産化・低価格
化を実現することができる。
In addition, mass production and cost reduction can be achieved by integrating the sensor components into small sensor components using microfabrication technology used in IC manufacturing.

なお上記の実施例において、光チョッパ48としては圧
電アクチュエータや静電アクチュエータを用いたものに
限らず、電気光学素子等光学的なものを用いてもよい。
In the above embodiments, the optical chopper 48 is not limited to one using a piezoelectric actuator or an electrostatic actuator, but may be an optical one such as an electro-optical element.

またl1li準カスとしてはN2等の赤外線吸収のない
任意の不活性カスを使用することができる。
Further, as the l1li quasi-dregs, any inert dregs that does not absorb infrared rays, such as N2, can be used.

またフィルタ46.47を選択することにより、1μm
〜10μmの間の任意の波長の吸収を測定に利用するこ
とができる。
Also, by selecting filters 46 and 47, 1 μm
Absorption at any wavelength between ~10 μm can be used for measurements.

またマイクロランプ41は第4図の構成のものに限られ
ず、赤外線を含む光を放射し、マイクロ加工技術を用い
て実現できる任意の光源を用いることができる。
Further, the microlamp 41 is not limited to the configuration shown in FIG. 4, but any light source that emits light including infrared rays and can be realized using microprocessing technology can be used.

また赤外センサとしてマイクロ加工技術で形成した圧力
センサ等を用いて、従来のように熱膨張を検出してもよ
い。
Alternatively, thermal expansion may be detected in a conventional manner using a pressure sensor or the like formed by micro-processing technology as an infrared sensor.

またセル中の光路を反射膜で多重に反射する構造とする
ことにより、赤外吸収量を増大して、SZN比を向上す
ることができる。
Further, by creating a structure in which the optical path in the cell is multiple-reflected by a reflective film, the amount of infrared absorption can be increased and the SZN ratio can be improved.

また、測定セルを同一基板上に複数個形成し、各測定セ
ルに対し異なる波長フィルタや光センサを組込むことに
より、ガスクロマトグラフのような多成分分析をリアル
タイムで行うことができる。
Furthermore, by forming a plurality of measurement cells on the same substrate and incorporating different wavelength filters and optical sensors into each measurement cell, multi-component analysis like gas chromatography can be performed in real time.

〈発明の効果〉 以上述べたように本発明によれば、高確度・高感度で、
素子サイズの赤外線分析計を実現することかできる。
<Effects of the Invention> As described above, according to the present invention, with high accuracy and sensitivity,
It is possible to realize an element-sized infrared analyzer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る赤外線分析計の一実施例を示す分
解構成斜視図、第2図および第3図は第1図装置の動作
を示す要部構成断面図、第4図は第1図および第2図に
おけるマイクロランプ41の詳細を示す要部構成断面図
、第5図は従来の赤外線分析計を示す原理説明図である
。 21.22.23・・・基板、24.25.34゜5・
・・マイクロバルブ、 30・・・標準セル、 1・・・ 測定セル、 1・・・超小型光源、 48・・・光チョ ツバ 火−・−1/
FIG. 1 is an exploded perspective view showing an embodiment of the infrared analyzer according to the present invention, FIGS. 2 and 3 are sectional views showing the main parts of the apparatus shown in FIG. 1, and FIG. FIG. 5 is a sectional view showing the details of the main part of the microlamp 41 in FIG. 2 and FIG. 2, and FIG. 21.22.23...Substrate, 24.25.34°5.
...Micro valve, 30...Standard cell, 1...Measuring cell, 1...Ultra small light source, 48...Hikari chotsuba--1/

Claims (1)

【特許請求の範囲】  標準ガスと測定ガスにおける赤外線の吸収量の差から
測定ガスの濃度を測定する赤外線分析計において、 標準ガスを流す標準セルと、測定ガスを流す測定セルと
、これらのセルに前記各ガスを導入または排出するマイ
クロバルブと、前記各セル内に赤外線を放射する超小型
光源と、前記各セルを透過した赤外線を断続する光チョ
ッパと、この光チョッパを透過した赤外線を検出する超
小型赤外センサとが、マイクロ加工技術を用いて基板上
に形成されたことを特徴とする赤外線分析計。
[Scope of Claim] An infrared analyzer that measures the concentration of a measurement gas from the difference in the amount of infrared absorption between the standard gas and the measurement gas, comprising: a standard cell through which the standard gas flows, a measurement cell through which the measurement gas flows, and these cells. a microvalve that introduces or discharges each of the gases, an ultra-small light source that emits infrared rays into each of the cells, an optical chopper that cuts off the infrared rays that have passed through each of the cells, and a detection of the infrared rays that have passed through the optical chopper. An infrared analyzer characterized in that an ultra-compact infrared sensor is formed on a substrate using micro-processing technology.
JP27708490A 1990-10-16 1990-10-16 Infrared analyzer Expired - Lifetime JP2855841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27708490A JP2855841B2 (en) 1990-10-16 1990-10-16 Infrared analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27708490A JP2855841B2 (en) 1990-10-16 1990-10-16 Infrared analyzer

Publications (2)

Publication Number Publication Date
JPH04152247A true JPH04152247A (en) 1992-05-26
JP2855841B2 JP2855841B2 (en) 1999-02-10

Family

ID=17578558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27708490A Expired - Lifetime JP2855841B2 (en) 1990-10-16 1990-10-16 Infrared analyzer

Country Status (1)

Country Link
JP (1) JP2855841B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016268A (en) * 2012-07-10 2014-01-30 Asahi Kasei Electronics Co Ltd Gas sensor
JP2018505386A (en) * 2014-12-11 2018-02-22 インテル コーポレイション Synthetic jet delivery to a controlled flow sensor system
JP2019045497A (en) * 2017-08-31 2019-03-22 研能科技股▲ふん▼有限公司 Actuator and sensor module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016268A (en) * 2012-07-10 2014-01-30 Asahi Kasei Electronics Co Ltd Gas sensor
JP2018505386A (en) * 2014-12-11 2018-02-22 インテル コーポレイション Synthetic jet delivery to a controlled flow sensor system
JP2019045497A (en) * 2017-08-31 2019-03-22 研能科技股▲ふん▼有限公司 Actuator and sensor module

Also Published As

Publication number Publication date
JP2855841B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US7807972B2 (en) Radiation sensor with cap and optical elements
CN108226045B (en) Gas analyzer
US11686673B2 (en) NDIR detector device for detecting gases having an infrared absorption spectrum
JPH10239235A (en) Infrared ray gas analyzer
De Luca et al. Filterless non-dispersive infra-red gas detection: A proof of concept
US11486820B2 (en) Chemical sensor and method of forming the same
JP2010133946A (en) Method for manufacturing infrared sensor, infrared sensor and quantum-type infrared gas concentration meter
CN110907385A (en) NDIR infrared gas sensor
JPH04152247A (en) Infrared ray spectrometer
JPH0197841A (en) Absorptiometer
CN109342348A (en) A kind of binary channels infrared gas sensor
JP2009014465A (en) Infrared gas analyzer
JP2005337878A (en) Photoelectric fluid sensor
JP2006275632A (en) Spectroscopic gas sensor
CN203259470U (en) Monolithic integrated miniature infrared gas sensor
US11815452B2 (en) Gas sensor device and method of manufacturing the same
JP2020003215A (en) Flow cell
JP3909396B2 (en) Infrared gas analyzer
JPS6177728A (en) Thermocouple type infrared detecting element
JPS58113839A (en) Detector for dew point
JPH0529061B2 (en)
JP3735982B2 (en) Detector cell and optical measuring device
Wiegleb IR Absorption Photometer
JPH08271426A (en) Infrared gas analyzer
JP4132283B2 (en) Detector for infrared gas analyzer