JPH0415218B2 - - Google Patents

Info

Publication number
JPH0415218B2
JPH0415218B2 JP57008829A JP882982A JPH0415218B2 JP H0415218 B2 JPH0415218 B2 JP H0415218B2 JP 57008829 A JP57008829 A JP 57008829A JP 882982 A JP882982 A JP 882982A JP H0415218 B2 JPH0415218 B2 JP H0415218B2
Authority
JP
Japan
Prior art keywords
reaction
dinitro
diaminobenzophenone
catalyst
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57008829A
Other languages
Japanese (ja)
Other versions
JPS58126847A (en
Inventor
Keisaburo Yamaguchi
Kenichi Sugimoto
Yoshimitsu Tanabe
Saburo Kawashima
Teruhiro Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP57008829A priority Critical patent/JPS58126847A/en
Priority to US06/454,973 priority patent/US4556738A/en
Priority to NLAANVRAGE8300074,A priority patent/NL189406C/en
Priority to GB08300598A priority patent/GB2116168B/en
Priority to KR1019830000075A priority patent/KR860001857B1/en
Priority to CA000419346A priority patent/CA1182129A/en
Priority to DE3300821A priority patent/DE3300821C2/en
Priority to FR8300403A priority patent/FR2519631B1/en
Priority to CH137/83A priority patent/CH655304A5/en
Publication of JPS58126847A publication Critical patent/JPS58126847A/en
Publication of JPH0415218B2 publication Critical patent/JPH0415218B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、3,3′−ジアミノベンゾフエノンの
新規な製造方法に関する。さらに詳しくは、一般
式() (式中、Xはハロゲン原子を示す)で表わされる
ベンゾフエノン化合物を還元触媒および脱ハロゲ
ン化水素剤の存在下に接触還元、脱ハロゲン化さ
せることを特徴とする3,3′−ジアミノベンゾフ
エノンの製造方法に関する。 3,3′−ジアミノベンゾフエノンは、耐熱性高
分子単量体、農医薬および染料中間体等に有用で
あり、特に耐熱性のポリアミドやポリイミド樹脂
の原料となる重要な物質である。3,3′−ジアミ
ノベンゾフエノンは従来、ベンゾフエノンをニト
ロ化して得られる3,3′−ジニトロベンゾフエノ
ンを還元して製造する方法が公知である。 この方法では、ベンゾフエノンをニトロ化して
得られる反応生成物が異性体等を含む混合物であ
り、反応生成物から3,3′−ジニトロベンゾフエ
ノンを単離するには、多量の溶剤を使用し、再結
晶精製を繰り返し行なわなければならない〔E.
Barnattら、J.chem.Soc125 767(1924)〕。 このため3,3′−ジニトロベンゾフエノンの収
率は大巾に低下した、また、精製に用いた溶剤の
回収および残査の処理等の煩雑な工程を必要とす
るので、経済的ではなく、3,3′−ジニトロベン
ゾフエノンの工業的な規模の製造法にな適さない
という欠点がある。さらに、3,3′−ジニトロベ
ンゾフエノンから3,3′−ジアミノベンゾフエノ
ンを製造するために、多量の濃塩酸中大過剰の塩
化第1スズにより還元を行なつている(L.H.
Klemmら、J.Org、Chem23 351(1958)。しかし
ながら、スズ化合物が高価なことと廃金属および
廃酸処理等の問題があり、工業的には経済性と環
境保護の点から極めて不利である。 本発明者らは、上記のような欠点のない、3,
3′−ジアミノベンゾフエノンの製造方法について
鋭意検討した。その結果、4−ハロゲノベンゾフ
エノンのニトロ化によつて容易に製造できる3,
3′−ジニトロ−4−ハロゲノベンゾフエノンを原
料とし、これを還元触媒および脱ハロゲン化水素
剤の存在下で接触還元、脱ハロゲン化させること
により、高収率で3,3′−ジアミノベンゾフエノ
ンを製造しうることを見出し、本発明の方法を完
成した。 すなわち、本発明の方法は一般式() (式中、Xはハロゲン原子を示す)で表わされる
ベンゾフエノン化合物を還元触媒および脱ハロゲ
ン化水素剤の存在下で接触還元、脱ハロゲン化さ
せることによつて、3,3′−ジアミノベンゾフエ
ノンを製造する方法である。 本発明の方法で使用する3,3′−ジニトロ−4
−ハロゲノベンゾフエノンは、4−ハロゲノベン
ゾフエノンのニトロ化により容易に製造される。 例えば、4−クロロベンゾフエノンを硝酸ナト
リウムと濃硫酸によつてニトロ化すると、3,
3′−ジニトロ−4−クロロベンゾフエノンが96〜
98%の収率で得られる〔G.S.Mironovら、J.Org、
Chem of USSR、8 1538(1972)〕。 しかしながら、3,3′−ジニトロ−4−ハロゲ
ノベンゾフエノンより3,3′−ジアミノベンゾフ
エノンを製造する方法については全く知られてお
らず、本願発明は3,3′−ジアミノベンゾフエノ
ンを工業的に製造しうる新規な方法である。 本発明の方法に使用する原料は、前記一般式
()で表わされる3,3′−ジニトロ−4−ハロ
ゲノベンゾフエノンであつて、一般式()にお
いて、Xが示すハロゲン原子が塩素、弗素、沃
素、臭素のいずれのものも用いられる。例えば、
3,3′−ジニトロ−4−クロロベンゾフエノン、
3,3′−ジニトロ−4−ブロモベンゾフエノン、
3,3′−ジニトロ−4−フルオロベンゾフエノ
ン、3,3′−ジニトロ−4−ヨードベンゾフエノ
ンがあげられる。なかでも、ハロゲンが塩素原子
であるものが工業的に有利に使用される。 本発明の方法で使用される還元触媒としては、
一般に接触還元に使用されている金属触媒、例え
ば、ニツケル、パラジウム、白金、ロジウム、ル
テニウム、コバルト、銅等を使用することができ
る。 工業的にはパラジウム触媒を使用するのが好ま
しい。これらの触媒は、金属の状態でも使用する
ことができるが、通常はカーボン、硫酸バリウ
ム、シリカゲル、アルミナ等の担体表面に付着さ
せて用いたり、また、ニツケル、コバルト、銅等
はラネー触媒として用いてもよい。触媒の使用量
は、原料の3,3′−ジニトロ−4−ハロゲノベン
ゾフエノンに対して、金属として0.01〜10重量%
の範囲であり、通常、金属の状態で使用する場合
は2〜8重量%、担体に付着させた場合では0.1
〜5重量%の範囲である。 本発明の方法に使用される脱ハロゲン化水素剤
としては、アルカリ金属またはアルカリ土類金属
の酸化物、水酸化物、炭酸塩、重炭酸塩、あるい
はアンモニアまたは通常の有機アミン類等であ
る。例えば、炭酸カルシウム、水酸化ナトリウ
ム、酸化マグネシウム、重炭酸アンモン、酸化カ
ルシウム、水酸化リチウム、水酸化バリウム、炭
酸カリウム、水酸化カリウム、アンモニア、トリ
エチルアミン、トリ−n−ブチルアミン、トリエ
タノールアミン、ピリジンおよびN−メチルモル
ホリンがあげられる。これら脱ハロゲン化水素剤
は必要により2種以上を混合してもよい。脱ハロ
ゲン化水素剤の使用量は原料の3,3′−ジニトロ
−4−ハロゲノベンゾフエノンに対して、通常、
0.5〜3倍モル、好ましくは1〜1.5倍モル使用す
る。 本発明の方法は、通常、反応溶媒を使用する。
反応溶媒としては、反応に不活性なものであれ
ば、特に限定されるものでなく、例えば、メタノ
ール、エタノール、イソプロピルアルコール等の
アルコール類、エチレングリコール、プロピレン
グリコール等のグリコール類、エーテル、ジオキ
サン、テトラヒドロフラン、メチルセロソルブ等
のエーテル類、ヘキサン、シクロヘキサン等の脂
肪族炭化水素類、ベンゼン、トルエン、キシレン
等の芳香族炭化水素類、酢酸エチル、酢酸ブチル
等のエステル類、ジクロロメタン、クロロホル
ム、四塩化炭素、1,2−ジクロロエタン、1,
1,2−トリクロロエタン、テトラクロロエタン
等のハロゲン化炭素類およびN,N−ジメチルホ
ルムアミド、ジメチルスルホキシド等が使用出来
る。なお、水と混和しない反応溶媒を使用した際
に、反応の進行が遅い場合は四級アンモニウム
塩、四級ホスホニウム塩のような一般に使用され
ている相間移動触媒を加えることによつて速める
ことが出来る。溶媒の使用量は、原料の3,3′−
ジニトロ−4−ハロゲノベンゾフエノンを懸濁さ
せるか、あるいは完全に溶解させるに足る量で十
分であり、特に限定されないが、通常、原料に対
して0.5〜10重量倍で十分である。 反応温度は、特に限定はない。一般的には20〜
200℃の範囲、特に20〜100℃が好ましい。また、
反応圧力は、通常、常圧〜50Kg/cm2・G程度であ
る。 本発明の方法の一般的な実施態様として、
3,3′−ジニトロ−4−ハロゲノベンゾフエノン
を溶媒に溶解または懸濁した状態下に、還元触媒
を添加し、ついで撹拌下、所定の温度で水素を導
入してニトロ基の還元を行なわしめた後、脱ハロ
ゲン化水素剤を加え、引き続き脱ハロゲン化反応
を行なうか、還元触媒の添加時に脱ハロゲン化
水素剤を加えついで撹拌下、所定の温度で水素を
導入してニトロ基の還元と脱ハロゲン化反応を同
時に行なう等の方法があげられる。いずれの場合
も反応は円滑に進行し、目的物の3,3′−ジアミ
ノベンゾフエノンが製造出来る。しかしながら原
料である3,3′−ジニトロ−4−ハロゲノベンゾ
フエノンの4位のハロゲン原子は求核性を有する
ために、条件によつては脱ハロゲン化水素剤との
副反応を起し、目的物の収率を低下させる場合が
あるので、の方法が好ましい。 反応の進行は理論量の水素吸収量によるか、あ
るいは薄層クロマトグラフイーにより追跡するこ
とが出来る。上記の方法によつて得られた反応液
を熱ロカ、または抽出等によつて触媒および無機
塩を除いたのち、必要に応じて濃縮を行ない3,
3′−ジアミノベンゾフエノンを結晶として析出さ
せる。また触媒および無機塩を除いた反応液に塩
化水素ガスを吹き込み、3,3′−ジアミノベンゾ
フエノンの塩酸塩として単離することも出来る。 本発明の方法は、3,3′−ジアミノベンゾフエ
ノンを高収率で安価に製造しうる方法であり、従
来法にともなう廃棄物による環境汚染の問題もな
く、また、単離した製品の純度も高く、煩雑な精
製工程を必要としない等、工業的な製造方法とし
て好適である。 以下、本発明を実施例により更に詳細に説明す
る。 実施例 1 温度計、撹拌器を備えたガラス製密閉容器に、
3,3′−ジニトロ−4−ブロモベンゾフエノン
105.3g(0.3モル)、5%パラジウム/活性炭触
媒(日本エンゲルハルド社)5gおよびジオキサ
ン300mlを装入し、70〜80℃の温度において、か
きまぜながら水素を導入すると約8時間40.5
(1.81モル)の水素を吸収した。次に、40%苛性
ソーダ−水溶液33g(0.33モル)を加えて、引き
続き70〜80℃の温度でかきまぜながら水素を導入
すると、3時間で7.2(0.32モル)吸収した。 同温度で反応溶液をロ過して触媒を除去し、放
冷すると3,3′−ジアミノベンゾフエノンが黄色
針状結晶として析出した。結晶をロ別、50%ジオ
キサン水溶液30mlで洗浄後、乾燥した。収量59.2
g(収率93%)融点149−150℃ 実施例 2〜7 原料の3,3′−ジニトロ−4−ハロゲノベンゾ
フエノンの種類、触媒の種類と使用量、溶媒の種
類と使用量、脱ハロゲン化水素剤の種類と使用
量、反応温度および圧力を表−1のように変えた
ほかは実施例1と同様に反応を行ない目的物を得
た。結果を表−1に示した。
The present invention relates to a novel method for producing 3,3'-diaminobenzophenone. For more details, see the general formula () 3,3'-diaminobenzophenone characterized by catalytic reduction and dehalogenation of a benzophenone compound represented by (wherein, X represents a halogen atom) in the presence of a reduction catalyst and a dehydrohalogenating agent. Relating to a manufacturing method. 3,3'-diaminobenzophenone is useful as a heat-resistant polymeric monomer, agricultural medicine, dye intermediate, etc., and is an important substance that is a raw material for heat-resistant polyamides and polyimide resins. Conventionally, 3,3'-diaminobenzophenone is produced by reducing 3,3'-dinitrobenzophenone obtained by nitrating benzophenone. In this method, the reaction product obtained by nitrating benzophenone is a mixture containing isomers, etc., and a large amount of solvent is used to isolate 3,3'-dinitrobenzophenone from the reaction product. , recrystallization purification must be repeated [E.
Barnatt et al., J.chem.Soc125 767 (1924)]. As a result, the yield of 3,3'-dinitrobenzophenone has decreased significantly, and it is not economical because it requires complicated steps such as recovering the solvent used for purification and disposing of the residue. , 3,3'-dinitrobenzophenone has the disadvantage of not being suitable for production on an industrial scale. Furthermore, in order to produce 3,3'-diaminobenzophenone from 3,3'-dinitrobenzophenone, reduction was carried out with a large excess of stannous chloride in a large amount of concentrated hydrochloric acid (LH
Klemm et al., J.Org, Chem23 351 (1958). However, there are problems such as the high cost of tin compounds and the treatment of waste metals and waste acids, making this method extremely disadvantageous from the viewpoint of economic efficiency and environmental protection. The present inventors have proposed 3.
A method for producing 3'-diaminobenzophenone was intensively investigated. As a result, 3, which can be easily produced by nitration of 4-halogenobenzophenone,
Using 3'-dinitro-4-halogenobenzophenone as a raw material, 3,3'-diaminobenzophenone is produced in high yield by catalytic reduction and dehalogenation in the presence of a reduction catalyst and a dehydrohalogenating agent. It was discovered that phenone can be produced, and the method of the present invention was completed. That is, the method of the present invention is based on the general formula () (wherein, X represents a halogen atom) is catalytically reduced and dehalogenated in the presence of a reduction catalyst and a dehydrohalogenating agent to produce 3,3'-diaminobenzophenone. This is a method of manufacturing. 3,3'-dinitro-4 used in the method of the invention
- Halogenobenzophenones are easily produced by nitration of 4-halogenobenzophenones. For example, when 4-chlorobenzophenone is nitrated with sodium nitrate and concentrated sulfuric acid, 3,
3'-dinitro-4-chlorobenzophenone is 96~
obtained with a yield of 98% [GSMironov et al., J.Org.
Chem of USSR, 8 1538 (1972)]. However, there is no known method for producing 3,3'-diaminobenzophenone from 3,3'-dinitro-4-halogenobenzophenone. This is a new method for industrially manufacturing. The raw material used in the method of the present invention is 3,3'-dinitro-4-halogenobenzophenone represented by the above general formula (), in which the halogen atom represented by X is chlorine, fluoride, etc. , iodine, and bromine can be used. for example,
3,3'-dinitro-4-chlorobenzophenone,
3,3'-dinitro-4-bromobenzophenone,
Examples include 3,3'-dinitro-4-fluorobenzophenone and 3,3'-dinitro-4-iodobenzophenone. Among these, those in which the halogen is a chlorine atom are industrially advantageously used. The reduction catalyst used in the method of the present invention includes:
Metal catalysts commonly used in catalytic reduction, such as nickel, palladium, platinum, rhodium, ruthenium, cobalt, copper, etc., can be used. Industrially it is preferred to use palladium catalysts. Although these catalysts can be used in the metal state, they are usually used by being attached to the surface of a carrier such as carbon, barium sulfate, silica gel, or alumina, and nickel, cobalt, copper, etc. are used as Raney catalysts. It's okay. The amount of catalyst used is 0.01 to 10% by weight of the metal based on the raw material 3,3'-dinitro-4-halogenobenzophenone.
It is usually in the range of 2 to 8% by weight when used as a metal, and 0.1% when attached to a carrier.
~5% by weight. The dehydrohalogenating agents used in the process of the invention include alkali metal or alkaline earth metal oxides, hydroxides, carbonates, bicarbonates, or ammonia or the usual organic amines. For example, calcium carbonate, sodium hydroxide, magnesium oxide, ammonium bicarbonate, calcium oxide, lithium hydroxide, barium hydroxide, potassium carbonate, potassium hydroxide, ammonia, triethylamine, tri-n-butylamine, triethanolamine, pyridine and N-methylmorpholine is mentioned. Two or more of these dehydrohalogenating agents may be mixed if necessary. The amount of the dehydrohalogenating agent used is usually the same amount as the raw material 3,3'-dinitro-4-halogenobenzophenone.
It is used in an amount of 0.5 to 3 times the mole, preferably 1 to 1.5 times the mole. The method of the invention typically uses a reaction solvent.
The reaction solvent is not particularly limited as long as it is inert to the reaction, and examples thereof include alcohols such as methanol, ethanol, and isopropyl alcohol, glycols such as ethylene glycol and propylene glycol, ether, dioxane, Ethers such as tetrahydrofuran and methyl cellosolve, aliphatic hydrocarbons such as hexane and cyclohexane, aromatic hydrocarbons such as benzene, toluene and xylene, esters such as ethyl acetate and butyl acetate, dichloromethane, chloroform, carbon tetrachloride , 1,2-dichloroethane, 1,
Halogenated carbons such as 1,2-trichloroethane and tetrachloroethane, N,N-dimethylformamide and dimethylsulfoxide can be used. If the reaction progresses slowly when using a reaction solvent that is immiscible with water, it can be accelerated by adding commonly used phase transfer catalysts such as quaternary ammonium salts and quaternary phosphonium salts. I can do it. The amount of solvent used is based on the 3,3'-
An amount sufficient to suspend or completely dissolve the dinitro-4-halogenobenzophenone is sufficient, and although not particularly limited, it is usually sufficient to use 0.5 to 10 times the weight of the raw material. The reaction temperature is not particularly limited. Generally 20~
A range of 200°C, especially 20-100°C is preferred. Also,
The reaction pressure is usually about normal pressure to 50 kg/cm 2 ·G. As a general embodiment of the method of the invention,
A reduction catalyst is added to a state in which 3,3'-dinitro-4-halogenobenzophenone is dissolved or suspended in a solvent, and then hydrogen is introduced at a predetermined temperature under stirring to reduce the nitro group. After cooling, add a dehydrohalogenation agent and continue the dehalogenation reaction, or add the dehydrohalogenation agent when adding the reduction catalyst and then introduce hydrogen at a predetermined temperature with stirring to reduce the nitro group. Examples of methods include performing a dehalogenation reaction and a dehalogenation reaction at the same time. In either case, the reaction proceeds smoothly and the desired product, 3,3'-diaminobenzophenone, can be produced. However, since the 4-position halogen atom of the raw material 3,3'-dinitro-4-halogenobenzophenone has nucleophilicity, it may cause a side reaction with the dehydrohalogenating agent depending on the conditions. The method is preferred because it may reduce the yield of the target product. The progress of the reaction can be followed by stoichiometric hydrogen uptake or by thin layer chromatography. After removing the catalyst and inorganic salt from the reaction solution obtained by the above method by heating, extraction, etc., the reaction solution is concentrated as necessary.
3'-diaminobenzophenone is precipitated as crystals. It is also possible to isolate 3,3'-diaminobenzophenone as a hydrochloride by blowing hydrogen chloride gas into the reaction solution from which the catalyst and inorganic salts have been removed. The method of the present invention enables the production of 3,3'-diaminobenzophenone in high yield and at low cost, without the problems of environmental pollution caused by wastes associated with conventional methods, and in addition, It is suitable as an industrial production method because it has high purity and does not require complicated purification steps. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 In a glass sealed container equipped with a thermometer and a stirrer,
3,3'-dinitro-4-bromobenzophenone
105.3g (0.3 mol), 5g of 5% palladium/activated carbon catalyst (Japan Engelhard Co., Ltd.) and 300ml of dioxane were charged, and hydrogen was introduced with stirring at a temperature of 70 to 80°C for about 8 hours 40.5
(1.81 mol) of hydrogen was absorbed. Next, 33 g (0.33 mol) of a 40% caustic soda aqueous solution was added, and hydrogen was introduced while stirring at a temperature of 70 to 80°C, and 7.2 (0.32 mol) was absorbed in 3 hours. The reaction solution was filtered at the same temperature to remove the catalyst, and when allowed to cool, 3,3'-diaminobenzophenone was precipitated as yellow needle-like crystals. The crystals were filtered, washed with 30 ml of 50% dioxane aqueous solution, and dried. Yield 59.2
g (Yield 93%) Melting point 149-150℃ Examples 2 to 7 Type of raw material 3,3'-dinitro-4-halogenobenzophenone, type and amount of catalyst used, type and amount of solvent used, removal The reaction was carried out in the same manner as in Example 1, except that the type and amount of the hydrogen halide agent, reaction temperature and pressure were changed as shown in Table 1 to obtain the desired product. The results are shown in Table-1.

【表】 実施例 8 温度計、撹拌器を備えたガラス製密閉容器に
3,3′−ジニトロ−4−クロロベンゾフエノン46
g(0.15モル)、パラジウムブラツク触媒1gお
よびベンゼン300mlを装入し、65〜70℃の温度に
おいてかきまぜながら水素を導入すると、約6時
間で20.2(0.9モル)の水素を吸収した。 次に、35%炭酸カリウム水溶液79g(0.2モル)
およびトリオクチルメチルアンモニウムクロリド
90%水溶液(東京化成試薬)3gを加えて、引き
続き65〜70℃の温度でかきまぜながら水素を導入
し、約3時間で3.4(0.15モル)吸収した。同
温度で反応溶液をロ過し、触媒を除去したのち、
ロ液の有機層を分液する。 その有機層に硫酸マグネシウムを加え脱水した
のち、乾燥塩化水素ガスを十分飽和となるまで吹
き込んだ。析出した結晶をロ別、ベンゼン50mlで
洗浄後、乾燥して3,3′−ジアミノベンゾフエノ
ン塩酸塩の結晶を得た。 収量31.9g(収率75%) 20%含水イソプロパノールより再結晶して淡黄
色針状結晶の純品を得た。融点267℃(分解) 元素分析 C H N Cl 計算値(%) 54.7 4.9 9.8 24.9 測定値(%) 54.0 5.2 9.6 24.7 実施例 9 3,3′−ジニトロ−4−クロロベンゾフエノン
46g(0.15モル)、酸化カルシウム11.2g(0.2モ
ル)、5%パラジウム/アルミナ触媒(日本エン
ゲルハルド社)1gおよび1,2−ジクロエタン
250mlをオートクレーブに装入する。30〜35℃の
温度範囲において、かきまぜながら水素を導入し
て、圧力を常時10Kg/cm2・Gに保ちつつ、7時間
反応を行なつた。反応終了後、反応混合物を70℃
に昇温し、熱ロカして触媒および無機塩を除去し
た。放冷することにより3,3′−ジアミノベンゾ
フエノンが黄色針状結晶として得られた。結晶を
ロ別、1,2−ジクロロエタン20mlで洗浄後、乾
燥した。 収量24.8g(収率78%)、融点149−150℃エタ
ノールから再結晶して黄色針状結晶の純品を得
た。融点150−151℃ 元素分析 C H N 計算値(%) 73.5 5.7 13.2 測定値(%) 72.9 6.2 13.1
[Table] Example 8 3,3'-dinitro-4-chlorobenzophenone 46 was placed in a glass sealed container equipped with a thermometer and a stirrer.
(0.15 mol), 1 g of palladium black catalyst and 300 ml of benzene were charged, and hydrogen was introduced with stirring at a temperature of 65 to 70°C, and 20.2 (0.9 mol) of hydrogen was absorbed in about 6 hours. Next, 79g (0.2mol) of 35% potassium carbonate aqueous solution
and trioctylmethylammonium chloride
3 g of a 90% aqueous solution (Tokyo Kasei Reagent) was added, and hydrogen was introduced while stirring at a temperature of 65 to 70°C, and 3.4 (0.15 mol) was absorbed in about 3 hours. After filtering the reaction solution at the same temperature to remove the catalyst,
Separate the organic layer of the filtrate. Magnesium sulfate was added to the organic layer for dehydration, and then dry hydrogen chloride gas was blown into the organic layer until it was fully saturated. The precipitated crystals were filtered, washed with 50 ml of benzene, and dried to obtain crystals of 3,3'-diaminobenzophenone hydrochloride. Yield: 31.9 g (yield: 75%) Recrystallization from 20% aqueous isopropanol gave pure pale yellow needle crystals. Melting point 267℃ (decomposition) Elemental analysis C H N Cl Calculated value (%) 54.7 4.9 9.8 24.9 Measured value (%) 54.0 5.2 9.6 24.7 Example 9 3,3'-dinitro-4-chlorobenzophenone
46 g (0.15 mol), 11.2 g (0.2 mol) of calcium oxide, 1 g of 5% palladium/alumina catalyst (Japan Engelhard Co., Ltd.) and 1,2-dichlorothane.
Charge 250ml to the autoclave. Hydrogen was introduced with stirring in a temperature range of 30 to 35°C, and the reaction was carried out for 7 hours while constantly maintaining the pressure at 10 kg/cm 2 ·G. After the reaction is complete, the reaction mixture is heated to 70°C.
The catalyst and inorganic salts were removed by raising the temperature to . By cooling, 3,3'-diaminobenzophenone was obtained as yellow needle-like crystals. The crystals were filtered, washed with 20 ml of 1,2-dichloroethane, and then dried. The yield was 24.8 g (yield 78%), and the product was recrystallized from ethanol with a melting point of 149-150°C to obtain pure yellow needle-like crystals. Melting point 150-151℃ Elemental analysis C H N Calculated value (%) 73.5 5.7 13.2 Measured value (%) 72.9 6.2 13.1

Claims (1)

【特許請求の範囲】 1 一般式() (式中、Xはハロゲン原子を示す)で表わされる
ベンゾフエノン化合物を還元触媒および脱ハロゲ
ン化水素剤の存在下に接触還元、脱ハロゲン化さ
せることを特徴とする3,3′−ジアミノベンゾフ
エノンの製造法。
[Claims] 1 General formula () 3,3'-diaminobenzophenone characterized by catalytically reducing and dehalogenating a benzophenone compound represented by (wherein, X represents a halogen atom) in the presence of a reduction catalyst and a dehydrohalogenating agent. manufacturing method.
JP57008829A 1982-01-12 1982-01-25 Preparation of 3,3'-diaminobenzophenone Granted JPS58126847A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP57008829A JPS58126847A (en) 1982-01-25 1982-01-25 Preparation of 3,3'-diaminobenzophenone
US06/454,973 US4556738A (en) 1982-01-12 1983-01-03 Process for preparation of 3,3'- or 3,4'-diamino benzophenone
NLAANVRAGE8300074,A NL189406C (en) 1982-01-12 1983-01-11 PROCESS FOR THE PREPARATION OF 3,3 'OR 3,4' DIAMINOBENZOPHENONE.
GB08300598A GB2116168B (en) 1982-01-12 1983-01-11 Process for preparing of 3,3'- or 3,4' -diamino benzophenone
KR1019830000075A KR860001857B1 (en) 1982-01-12 1983-01-11 Process for preparing of 3,3'-or 3,4'-diamino benzophenone
CA000419346A CA1182129A (en) 1982-01-12 1983-01-12 Process for preparation of 3,3'-or 3,4'- diaminobenzophenones
DE3300821A DE3300821C2 (en) 1982-01-12 1983-01-12 Process for the preparation of 3,3'- or 3,4'-diaminobenzophenone
FR8300403A FR2519631B1 (en) 1982-01-12 1983-01-12 PROCESS FOR THE PREPARATION OF 3,3'- OR 3,4'-DIAMINO BENZOPHENONE
CH137/83A CH655304A5 (en) 1982-01-12 1983-01-12 PROCESS FOR THE PREPARATION OF DIAMINO-3,3 'OR -3,4' BENZOPHENONE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008829A JPS58126847A (en) 1982-01-25 1982-01-25 Preparation of 3,3'-diaminobenzophenone

Publications (2)

Publication Number Publication Date
JPS58126847A JPS58126847A (en) 1983-07-28
JPH0415218B2 true JPH0415218B2 (en) 1992-03-17

Family

ID=11703674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008829A Granted JPS58126847A (en) 1982-01-12 1982-01-25 Preparation of 3,3'-diaminobenzophenone

Country Status (1)

Country Link
JP (1) JPS58126847A (en)

Also Published As

Publication number Publication date
JPS58126847A (en) 1983-07-28

Similar Documents

Publication Publication Date Title
US6452019B1 (en) Preparation of 4,5-diamino-1-(2′-hydroxyethyl)-pyrazole and acid addition salts thereof
JPH0481975B2 (en)
CN105315184A (en) Preparation method and intermediate of vortioxetine
JPS6121637B2 (en)
CN116514704A (en) Rafenacin intermediate and preparation method thereof
US3755449A (en) Process for producing aminodiphenyl ether derivatives
JPH0415218B2 (en)
JPH0217533B2 (en)
JP2835413B2 (en) Phenothiazine derivative and method for producing the same
EP0206635B1 (en) Preparation of 3-amino-4-hydroxybenzoic acids
JPH0415217B2 (en)
JP3193421B2 (en) Method for producing 2-amino-4-fluorobenzoic acid
JPH0419222B2 (en)
JPH0354095B2 (en)
JPH0345061B2 (en)
US4618714A (en) Process for preparation of 3,3'- or 3,4'-diaminobenzophenones
CN110878042B (en) Preparation method of N-substituent piperidine-3-ketone
JPH0345060B2 (en)
JPH0415220B2 (en)
KR860001857B1 (en) Process for preparing of 3,3'-or 3,4'-diamino benzophenone
JPH0354096B2 (en)
JPH0433781B2 (en)
JP3273671B2 (en) Method for producing 4,4 ""-dihydroxyquarterphenyl or derivative thereof
JPS6136244A (en) Production of 2,4,6-trifluorobenzoic acid
JP4956760B2 (en) Method for producing 3-bromobenzoic acid or alkyl ester thereof