JPH0415036B2 - - Google Patents

Info

Publication number
JPH0415036B2
JPH0415036B2 JP5188187A JP5188187A JPH0415036B2 JP H0415036 B2 JPH0415036 B2 JP H0415036B2 JP 5188187 A JP5188187 A JP 5188187A JP 5188187 A JP5188187 A JP 5188187A JP H0415036 B2 JPH0415036 B2 JP H0415036B2
Authority
JP
Japan
Prior art keywords
algae
water
blue
flocs
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5188187A
Other languages
Japanese (ja)
Other versions
JPS63218292A (en
Inventor
Hisashi Mori
Koichi Usui
Kunio Goto
Rikio Sugasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP5188187A priority Critical patent/JPS63218292A/en
Publication of JPS63218292A publication Critical patent/JPS63218292A/en
Publication of JPH0415036B2 publication Critical patent/JPH0415036B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、水中藻類の除去方法に関するもの
で、より詳細には、湖沼や貯水地等の閉鎖水域に
発生するアオコ等の藻類を、アオコ等の発生原因
となるリン分と共に有効に除去する方法に関す
る。 (従来の技術) 近年、琵琶湖、諏訪湖、霞ヶ浦等日本の代表的
湖にまでアオコが多量に発生するようになつてい
る。アオコの多量発生による悪影響は次の通りで
ある。 (1) 水域の美観を損う、 (2) 特異な臭気(腐臭)を発生する、 (3) 中・低層に動、植物を死滅させる、 (4) 浄化装置を損傷させる、 (5) 塩素殺菌による飲料水の悪化。 従来、湖沼等に発生するアオコを除去するに
は、(1)河川等からの導水による浄化、(2)流れをつ
くり流動化による浄化、(3)各種曝気方法による浄
化、(4)揚水しプラント処理による浄化、(5)回収に
よる浄化、等が行われている。 また、水田や小さな池等に対しては、藻類防除
剤を適用することも行われている。 (発明が解決しようとする問題点) しかしながら、従来の浄化法は未だアオコの除
去効果において十分満足のいくものではなく、ま
た処理が複雑であつたり、また処理コストが著し
く高くなるという欠点があつた。 藻類防除剤の施用は、アオコ等の除去にかなり
効果があるが、水柱の生物に対する悪影響がある
と共に、広面積の湖沼の対しては処理コストが莫
大なものとなつて到底実用化し得ない。 従つて、本発明の目的は、閉鎖水域に発生する
アオコ等の藻類を、アオコ等の発生原因となるリ
ン分と共に、有効に分離捕集し得る方法を提供す
るにある。 本発明の他の目的は、比較的安価に入手し得る
と共に、閉鎖水域に共存する他の生物の悪影響を
及ぼすことのない処理剤を使用し、アオコ等の藻
類を生きたままの凝集フロツクとして分離浮上さ
せ、この捕集を容易に行い得る方法を提供するに
ある。 (問題点を解決するための手段) 本発明によれば、粘土鉱物と粘土鉱物中の
Al2O3及びFe2O3成分当り10乃至90当量%の無機
酸との粉末状反応生成物から成る処理剤を藻類を
含有する水に添加し、該処理剤と藻類との凝集フ
ロツクを形成させて、これを浮上させ、この凝集
フロツクを分離除去することを特徴とする水中藻
類の除去方法が提供される。 (作用) 本発明は、粘土鉱物−無機酸反応生成物の粉末
は、水中に存在するアオコ等の藻類を有効に捕集
して、アオコ等を死滅させずに大形で且つ強固な
凝集フロツクを形成させ得ること、及びこの凝集
フロツクはアオコ自体が放出するガスにより水面
に浮上濃縮させ得ることの発見に基づくものであ
る。 水溶性アルミニウム塩が水中のアオコを凝集さ
せてフロツクを形成することは、本発明者等によ
り既に提案されている(特許出願中)が、本発明
で使用する粘土鉱物−無機酸反応生成物の粉末
は、前述した水溶性アルミニウム塩に比して、よ
り大形で且つ強固なアオコの凝集フロツクを形成
させ得ることが顕著な利点である。 このフロツクは、アオコ自体が放出するガスに
より水面に浮上するが、このフロツクの浮上は、
途中に浮遊する物質を捕捉し過するように進行
するので、フロツク浮上後の浄化水は極めて清澄
なものとなることが顕著な特徴である。 また、アオコは死滅すると悪臭を発生し、また
水に異味異臭を与えることが知られているが、本
発明によれば、アオコが生きた状態でフロツク化
し、浮上することから、悪臭を発生することがな
く、また水質も良好に維持され、湖沼等の水質浄
化、水質保全及び環境保全の点で優れた利点があ
る。 特に湖沼、貯水地等の水を飲料に用いる場合、
藻類による悪臭を低減するために多量の塩素を用
いなければならず、これによる発癌性(変異原
性)をもつトリハロメタンの生成が社会問題とな
つているが、本願の方法によりこの問題も抜本的
に解決される。 水面に浮上するアオコのフロツクは極めて濃密
で嵩の小さいものであり、その分離捕集も至つて
容易である。これは、前述した粘土鉱物−無機酸
反応生成物がアオコを強固に凝集フロツク化させ
ると共に、アオコ自体が気泡中のガスを放出し、
濃縮化されていることにもよるものと思われる。 更に、本発明で用いる粘土鉱物−無機酸反応物
は、水中に存在するリン分を固定する性質を有す
るので、アオコ及びその他の浮遊懸濁物質とアオ
コ自体が蓄積しているリン分及び水中に溶解して
存在するリン分等を同時に除去し、浄化するこが
できる。このため、本発明の処理を行えば、湖沼
等のアオコの発生原因をも解消することができ
る。 本発明に用いる処理剤は粘土鉱物と無機酸とを
反応させることにより得られる。粘土鉱物として
は、酸性白土、ベントナイト、サブベントナイ
ト、フーラスアース等のモンモリロナイト族粘土
鉱物、バイデライト、ノントロナイト、ボルコン
スコアイト、サボナイト、ソーコナイト等の他の
スメタイト族粘土鉱物、パイロフイライト等のパ
イロフイライト族粘土鉱物、カオリナイト、ハロ
イサイト、加水ハロイサイト等のカオリン粘土鉱
物等の任意の粘土鉱物を用いることができる。こ
れらの粘土鉱物の内でも、比表面積が50m2/g以
上の粘土鉱物、例えばスメクタイト族粘土鉱物、
特にモンモリロナイト族粘土鉱物が本発明の目的
に好適である。 上述した粘土鉱物の内、スメクタイト族粘土鉱
物は、2つのSiO4の四面体層がAlO6八面対層を
間に挟んでサンドイツチされた三層構造を基本と
し、この基本三層構造が更にC軸方向に多数積層
された構造を有しており、またカオリン族粘土鉱
物はSiO4四面体層とAlO6八面体層とから成る二
層構造を基本とする多数積層構造を有している。
これらの粘土鉱物の骨格の内、酸との反応に関与
するのはアルミナ成分及びアルミナ成分に置換し
た形で或いは層間に存在する塩基成分である。 無機酸としては、経済性及び取扱いの点で硫酸
が最も好適であるが、塩酸、リン酸、硝酸等の他
の鉱酸類を勿論使用可能であり、他にも粘土中の
アルミナ成分と反応可能な酸であれば任意の酸、
例えば上述した以外のリンや硫黄のオキシ酸類を
用いることができる。また、多塩基酸の場合に
も、部分中和された塩基性塩も使用可能である。
更に、粘土鉱物等を処理した時に副生する酸抽出
液、即ち該抽出液中の遊離酸を粘土類との反応に
再度利用してもよい。 本発明においては、無機酸を、粘土鉱物中の
Al2O3及びFe2O3成分当り10乃至90当量%、特に
20乃至80当量%の量で用いることも重要である。
即ち、上記量比よりも少ないときには、アオコに
対する凝集フロツク化傾向が不十分であり、また
上記量比よりも多くなると、粉末としての取扱い
が困難となり、価格も高くなる。 粘土鉱物と無機酸との反応は、粘土鉱物中に無
機酸を練り込み、必要により混練組成物を乾燥す
ることにより容易に行われる。反応を均質に行う
ためには、両者を水の存在下に行うのが望まし
く、この水分は酸の中に存在させても、また粘土
鉱物中に含有される水分を利用してもよい。 反応は室温で十分に進行するが、乾燥時の熱を
反応に利用することもできる。反応の進行に伴な
つて、無機酸のアルミニウム塩が生成し、これに
より粉末反応生成物の比表面積は一般に急激に低
下する。 アオコに対する凝集フロツク化性能や、処理水
のPHをあまり低下させないという見地からは、反
応生成物中の遊離酸量は、10%水懸濁液として
0.1規定NaOH水溶液で滴定して0.1g/100ml以
下であることが好ましい。 また、水中への分散性を高め、且つ形成される
アオコのフロツクを水面に有効に浮上させるとい
う見地からは反応生成物は可及的に微細であるこ
とが好ましく、200メツシユ(タイラー標準)通
過分が50重量%以上、特に60重量%以上含有する
粒度特性を有することが望ましい。 本発明の粉末状反応生成物がアオコの強固で大
形のフロツクを形成する理由は未だ十分に解明さ
れていないが、本発明者等はその理由を次のよう
に推定している。粘土鉱物がSiO4の四面体層と
AlO6八面体層とを備えていることは前述した通
りであるが、このAlO6八面体層が無機酸と反応
してその塩を形成しているが、SiO4の四面体層
はそのまま残存していると考えられる。これを水
中に投入すると、例えば式 Al3+→Al(OH)3 の加水分解反応を経てアオコの捕集が行われる
が、層状シリカを核として強固で大形のフロツク
が形成されると信じられる。 本発明の処理剤は、藻類含有水に対して、一般
に50乃至1000ppm、特に100乃至400ppmの量で添
加するのがよい。藻類含有水への添加は、粉末の
形で行うのがよい。 本発明の処理法は、アオコが発生した湖沼、
池、貯水池等の水面に対して直接行なう。この場
合アオコ含有水と処理剤とを撹拌混合することが
好ましい。この目的のためには水中撹拌機を使用
する。 アオコ含有水と前記処理剤とを混合すると、形
成されるアオコのフロツクは最初に沈降するか、
アオコ自体が発生するガスによつて浮遊する。ア
オコのフロツクの浮遊は、原水の温度等によつて
も相違するが、一般に添加後1乃至5分で開始さ
れる。また、水面に浮遊したアオコフロツクは、
添加後2〜3日迄は生存状態にあることが確認さ
れた。従つて、アオコフロツクの浮遊後、これが
生存している内に浄化水から分離し捕集するのが
よい。この分離捕集は、前者の場合、掻き取り、
吸い取り等で行うことができ、また後者の場合に
は、それ自体公知の浮上分離装置を適用すること
ができる。 本発明をアオコを例にとつて説明したが、ケイ
ソウ類や他のランソウ類を除去するのにも有効で
あることが理解されるべきである。 (発明の効果) 本発明によれば、比較的安価に入手でき且つ他
の生物に悪影響を及ぼさない処理剤を利用して、
アオコ等の藻類を生きたままの濃縮フロツクとし
て分離浮上させることができると共に、アオコ等
の発生原因となるリン分をも同時に除去でき、水
の浄化が極めて有効に行われるという利点があ
る。 (実施例) 実施例 1 原料酸性白土は下記に示す組成を有する新潟県
新発田市小戸産酸性白土を選んだ。酸性白土原料
は天然の状態では水分を約40重量パーセント含有
しており、その主成分は乾燥物基準重量%(110
℃乾燥)で、SiO273.0、Al2O314.1、Fe2O33.8、
MgO3.0、CaO1.2、灼熱減量5.9で比表面積100
m2/gであつた。 この酸性白土を110℃で乾燥後粉砕し、該酸性
白土の含有アルミナおよび酸化鉄の塩基性成分
(Al2O3、FeO3)の当量の60%に相当する濃硫酸
を加え、充分に混練し、造粒後乾燥し、粉砕して
水中藻類の除去剤サンプルAを得た。 そこでサンプルAの藻類防除効果を確認するた
め下記のような実験を行つた。 湖沼Aより水温15.5℃、PH9.73、濁度48.0なる
堀の水を採取し原水とた。 1000c.c.メスシリンダーに採取した原水1000c.c.を
入れサンプルA200mg及び400mgを添加し、5回振
倒撹拌した後、アオコのフロツク形成と浮上分離
する様子を観察した。 また実験終了後、濁度(T.V)、PH、全リン、
溶存態リンの各項目について分析し原水と比較し
た。結果を表−1に示す。 各測定項目は次の方法により行つた。 PH:ガラス電極法 濁度:吸光光度法 透視度:JIS K 0102 全リン:前処理:過硫酸分解法 分析方法:モリ
ブデン青法 溶存態リン:モリブデン青法
(Industrial Application Field) The present invention relates to a method for removing underwater algae. More specifically, the present invention relates to a method for removing algae in water, and more specifically, it removes algae such as blue-green algae that occurs in closed water bodies such as lakes and reservoirs. Concerning how to effectively remove it with time. (Prior Art) In recent years, large amounts of blue-green algae have been occurring in Japan's representative lakes such as Lake Biwa, Lake Suwa, and Lake Kasumigaura. The negative effects of large amounts of blue-green algae are as follows. (1) Detracts from the beauty of the water area, (2) Generates a peculiar odor (rotten odor), (3) Kills animals and plants in the middle and lower levels, (4) Damages purification equipment, (5) Chlorine Deterioration of drinking water due to sterilization. Traditionally, to remove blue-green algae that occurs in lakes and marshes, the following methods have been used: (1) Purification by introducing water from rivers, etc., (2) Purification by creating a flow and fluidization, (3) Purification by various aeration methods, and (4) Pumping water. Purification through plant treatment and (5) purification through recovery are being carried out. In addition, algae control agents are also applied to rice fields, small ponds, etc. (Problems to be Solved by the Invention) However, conventional purification methods are still not fully satisfactory in terms of their removal effect on algal blooms, and also have drawbacks such as complicated treatment and extremely high treatment costs. Ta. Application of algae control agents is quite effective in removing blue-green algae, etc., but it has an adverse effect on organisms in the water column, and the treatment costs are enormous for large areas of lakes and marshes, so it cannot be put to practical use. Therefore, an object of the present invention is to provide a method that can effectively separate and collect algae such as algal blooms that occur in closed water bodies, together with phosphorus that causes the occurrence of blue-green algae. Another object of the present invention is to treat algae such as blue-green algae as living flocs by using a treatment agent that is relatively inexpensive and does not have a negative effect on other organisms coexisting in closed water areas. The object of the present invention is to provide a method that allows easy separation and flotation and collection. (Means for solving the problem) According to the present invention, clay minerals and
A treatment agent consisting of a powdered reaction product of 10 to 90 equivalents of inorganic acid based on Al 2 O 3 and Fe 2 O 3 components is added to water containing algae, and flocs of the treatment agent and algae are removed. There is provided a method for removing underwater algae, which is characterized by forming flocs, floating the flocs, and separating and removing the flocs. (Function) The powder of the clay mineral-inorganic acid reaction product effectively collects algae such as blue-green algae existing in water, and forms large and strong flocs without killing the blue-green algae. This is based on the discovery that algal blooms can form flocs and that these flocs can float to the surface of the water and become concentrated due to the gases emitted by the algal blooms themselves. The present inventors have already proposed that a water-soluble aluminum salt aggregates algae in water to form a floc (patent pending), but the clay mineral-inorganic acid reaction product used in the present invention The powder has a significant advantage over the aforementioned water-soluble aluminum salts in that it can form larger and stronger flocs of algae. This floc rises to the surface of the water due to the gas released by the blue-green algae itself;
Since the process progresses by capturing and filtering out substances floating on the way, the remarkable feature is that the purified water after floating to the flocs becomes extremely clear. Furthermore, it is known that blue-green algae emit a bad odor when it dies, and also give off a strange odor to the water. According to the present invention, the algae, while still alive, turns into flocs and floats to the surface, producing a bad odor. Moreover, the water quality is maintained at a good level, and has excellent advantages in terms of water purification of lakes and marshes, water quality conservation, and environmental conservation. Especially when using water from lakes, reservoirs, etc. for drinking,
Large amounts of chlorine must be used to reduce the odor caused by algae, and the production of trihalomethanes, which are carcinogenic (mutagenic), has become a social problem, but the method of the present application can fundamentally solve this problem. resolved to. The flocs of blue-green algae floating on the surface of the water are extremely dense and small in volume, and it is very easy to separate and collect them. This is because the above-mentioned clay mineral-inorganic acid reaction product causes the blue-green algae to firmly aggregate into flocs, and the blue-green algae itself releases gas in its bubbles.
This is probably due to the fact that it is concentrated. Furthermore, the clay mineral-inorganic acid reaction product used in the present invention has the property of fixing phosphorus present in water, so it can fix algae and other suspended matter, as well as the phosphorus accumulated in the algae itself and the water. Dissolved phosphorus and other components can be removed and purified at the same time. Therefore, by carrying out the treatment of the present invention, it is possible to eliminate the causes of algal blooms in lakes and marshes. The processing agent used in the present invention is obtained by reacting a clay mineral with an inorganic acid. Examples of clay minerals include acid clay, bentonite, subbentonite, montmorillonite group clay minerals such as furous earth, other smetite group clay minerals such as beidellite, nontronite, volkonskoite, sabonite, and sauconite, and pyrophyllite such as pyrofluorite. Any clay mineral can be used, such as kaolin clay minerals such as light group clay minerals, kaolinite, halloysite, and hydrated halloysite. Among these clay minerals, clay minerals with a specific surface area of 50 m 2 /g or more, such as smectite group clay minerals,
In particular, montmorillonite group clay minerals are suitable for the purposes of the present invention. Among the above-mentioned clay minerals, smectite group clay minerals have a three-layer structure in which two SiO 4 tetrahedral layers are sandwiched with an AlO 6 octahedral layer in between, and this basic three-layer structure is further developed. It has a structure in which many layers are stacked in the C-axis direction, and kaolin group clay minerals have a multi-layer structure based on a two-layer structure consisting of a SiO 4 tetrahedral layer and an AlO 6 octahedral layer. .
Among the skeletons of these clay minerals, the alumina component and the base component present in a form substituted for the alumina component or between the layers are involved in the reaction with the acid. As the inorganic acid, sulfuric acid is most suitable from the point of view of economy and handling, but other mineral acids such as hydrochloric acid, phosphoric acid, and nitric acid can of course be used, and others can react with the alumina component in the clay. Any acid as long as it is
For example, phosphorus and sulfur oxyacids other than those mentioned above can be used. In the case of polybasic acids, partially neutralized basic salts can also be used.
Furthermore, the acid extract produced as a by-product when clay minerals and the like are treated, that is, the free acid in the extract, may be reused for the reaction with clays. In the present invention, the inorganic acid is
10 to 90 equivalent % based on Al 2 O 3 and Fe 2 O 3 components, especially
It is also important to use amounts of 20 to 80 equivalent %.
That is, when the amount is less than the above-mentioned ratio, the tendency to agglomerate and flocculate blue-green algae is insufficient, and when it is more than the above-mentioned ratio, it becomes difficult to handle as a powder and the price becomes high. The reaction between the clay mineral and the inorganic acid is easily carried out by kneading the inorganic acid into the clay mineral and, if necessary, drying the kneaded composition. In order to carry out the reaction homogeneously, it is desirable to carry out both in the presence of water, and this water may be present in the acid or water contained in the clay mineral may be used. The reaction proceeds satisfactorily at room temperature, but the heat during drying can also be used for the reaction. As the reaction progresses, an aluminum salt of the inorganic acid is formed, and as a result, the specific surface area of the powdered reaction product generally decreases rapidly. From the viewpoint of flocculation performance against blue-green algae and not significantly lowering the pH of the treated water, the amount of free acid in the reaction product should be determined as a 10% aqueous suspension.
It is preferably 0.1 g/100 ml or less when titrated with a 0.1N NaOH aqueous solution. In addition, from the standpoint of increasing dispersibility in water and effectively floating the formed blue-green algae flocs on the water surface, it is preferable that the reaction product be as fine as possible, and should pass 200 meshes (Tyler standard). It is desirable to have particle size characteristics such that the content is 50% by weight or more, particularly 60% by weight or more. Although the reason why the powdered reaction product of the present invention forms strong and large flocs of algae has not yet been fully elucidated, the present inventors speculate that the reason is as follows. Clay minerals form a tetrahedral layer of SiO 4
As mentioned above, this AlO 6 octahedral layer reacts with the inorganic acid to form its salt, but the SiO 4 tetrahedral layer remains as it is. it seems to do. When this is poured into water, algal blooms are collected through the hydrolysis reaction of the formula Al 3+ →Al(OH) 3 , but it is believed that strong, large flocs are formed with layered silica as the core. It will be done. The treatment agent of the present invention is preferably added to algae-containing water in an amount of generally 50 to 1000 ppm, particularly 100 to 400 ppm. Addition to algae-containing water is preferably carried out in powder form. The treatment method of the present invention is applied to lakes and marshes where algal blooms have occurred;
Perform directly on the water surface of a pond, reservoir, etc. In this case, it is preferable to stir and mix the blue-green algae-containing water and the treatment agent. A submersible stirrer is used for this purpose. When water containing blue-green algae and the treatment agent are mixed, the flocs of blue-green algae that are formed either settle first or
The algae itself becomes suspended due to the gas it produces. Although the floating of blue-green algae flocs varies depending on the temperature of the raw water and other factors, it generally starts 1 to 5 minutes after addition. In addition, blue-green algae floating on the water surface,
It was confirmed that the cells remained viable for 2 to 3 days after addition. Therefore, after floating the blue-green algae flocs, it is best to separate them from the purified water and collect them while they are still alive. In the former case, this separation collection involves scraping,
This can be carried out by suction or the like, and in the latter case, a flotation separation device known per se can be applied. Although the present invention has been described using algal blooms as an example, it should be understood that it is also effective for removing diatoms and other orchids. (Effects of the Invention) According to the present invention, by using a treatment agent that is available at a relatively low cost and does not have an adverse effect on other organisms,
This method has the advantage that algae such as blue-green algae can be separated and floated as living concentrated flocs, and phosphorus, which causes blue-green algae, can be removed at the same time, making water purification extremely effective. (Example) Example 1 As the raw acid clay, acid clay produced in Odo, Shibata City, Niigata Prefecture and having the composition shown below was selected. In its natural state, the acid clay raw material contains about 40% water by weight, and its main component is 110% by weight on a dry matter basis.
℃ dry), SiO 2 73.0, Al 2 O 3 14.1, Fe 2 O 3 3.8,
MgO3.0, CaO1.2, ignition loss 5.9, specific surface area 100
m 2 /g. This acid clay was dried at 110°C, then crushed, concentrated sulfuric acid equivalent to 60% of the equivalent of the basic components of alumina and iron oxide (Al 2 O 3 , FeO 3 ) contained in the acid clay was added, and thoroughly kneaded. After granulation, it was dried and pulverized to obtain sample A of the underwater algae remover. Therefore, in order to confirm the algae control effect of Sample A, the following experiment was conducted. Water from the moat with a temperature of 15.5℃, pH of 9.73, and turbidity of 48.0 was collected from Lake A and used as raw water. 1000 c.c. of the collected raw water was placed in a graduated cylinder, 200 mg and 400 mg of sample A were added, and after shaking and stirring 5 times, the formation of flocs and floating separation of blue-green algae was observed. After the experiment, turbidity (TV), PH, total phosphorus,
Each item of dissolved phosphorus was analyzed and compared with raw water. The results are shown in Table-1. Each measurement item was performed using the following method. PH: Glass electrode method Turbidity: Spectrophotometry Transparency: JIS K 0102 Total phosphorus: Pretreatment: Persulfuric acid decomposition method Analysis method: Molybdenum blue method Dissolved phosphorus: Molybdenum blue method

【表】 実施例 2 湖沼Bより水温14.6℃、濁度35.0、PH10.43なる
池の水を採取し原水とした。 実施例1と同様の方法にて行つた結果は表−2
に示す。 なお、比較試験試料として、硫酸溶液(0.1規
定濃縮)、硫酸バンド溶液(1%濃度)を選んだ
試料で同様の試験を行つた。
[Table] Example 2 Pond water with a temperature of 14.6°C, a turbidity of 35.0, and a pH of 10.43 was collected from Lake B and used as raw water. Table 2 shows the results obtained using the same method as in Example 1.
Shown below. A similar test was conducted using a sulfuric acid solution (0.1 normal concentration) and a sulfuric acid band solution (1% concentration) as comparative test samples.

【表】【table】

Claims (1)

【特許請求の範囲】 1 粘土鉱物と粘土鉱物中のAl2O3及びFe2O3
分当り10乃至90当量%の無機酸との粉末状反応生
成物から成る処理剤を藻類を含有する水に添加
し、該処理剤と藻類との凝集フロツクを形成させ
て、これを浮上させ、この凝集フロツクを除去す
ることを特徴とする水中藻類の除去方法。 2 該処理剤が200メツシユ通過分を50重量%以
上含有する粒度を有するものである特許請求の範
囲第1項記載の方法。 3 該処理剤が10%水懸濁液として、0.1規定水
酸化ナトリウム水溶液で測定して、0.1g/100ml
以下の遊離酸分を有する粉末状反応生成物から成
る特許請求の範囲第1項記載の方法。 4 処理剤を藻類含有水当り50乃至1000ppmの量
で添加する特許請求の範囲第1項記載の方法。
[Claims] 1. A treatment agent consisting of a powdered reaction product of a clay mineral and an inorganic acid of 10 to 90 equivalent % based on the Al 2 O 3 and Fe 2 O 3 components in the clay mineral is added to water containing algae. 1. A method for removing algae in water, which comprises: adding the treatment agent to the algae to form a coagulated floc of the algae, floating the floc, and removing the coagulated floc. 2. The method according to claim 1, wherein the processing agent has a particle size that contains 50% by weight or more of the amount passed through 200 meshes. 3 The processing agent is 0.1g/100ml as a 10% aqueous suspension, measured with a 0.1N aqueous sodium hydroxide solution.
A method according to claim 1, comprising a powdered reaction product having a free acid content of: 4. The method according to claim 1, wherein the treatment agent is added in an amount of 50 to 1000 ppm per algae-containing water.
JP5188187A 1987-03-09 1987-03-09 Process for removing algae in water Granted JPS63218292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5188187A JPS63218292A (en) 1987-03-09 1987-03-09 Process for removing algae in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5188187A JPS63218292A (en) 1987-03-09 1987-03-09 Process for removing algae in water

Publications (2)

Publication Number Publication Date
JPS63218292A JPS63218292A (en) 1988-09-12
JPH0415036B2 true JPH0415036B2 (en) 1992-03-16

Family

ID=12899222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5188187A Granted JPS63218292A (en) 1987-03-09 1987-03-09 Process for removing algae in water

Country Status (1)

Country Link
JP (1) JPS63218292A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126590A (en) * 1990-09-14 1992-04-27 Hitachi Kiden Kogyo Ltd Method for purifying water region
SE508128C2 (en) * 1995-01-24 1998-08-31 Kemira Kemi Ab Process for the preparation of solutions of aluminum salt
US5474703A (en) * 1995-02-27 1995-12-12 Warner-Lambert Company Flocculating agent containing aluminum and a polybasic carboxylic acid
GB9811362D0 (en) * 1998-05-28 1998-07-22 Pan Gang A method for simultaneously remediating marine pollution and reducing the atmospheric carbon dioxide
AUPQ761400A0 (en) * 2000-05-19 2000-06-15 Commonwealth Scientific And Industrial Research Organisation Removal of toxins from water
DE10334521A1 (en) * 2003-07-29 2005-02-24 P & W Invest Vermögensverwaltungsgesellschaft mbH Flocculant, process for its preparation and its use
CN106186227B (en) * 2016-08-31 2020-12-18 严建泗 Composition for inhibiting algae production

Also Published As

Publication number Publication date
JPS63218292A (en) 1988-09-12

Similar Documents

Publication Publication Date Title
EP1651324B1 (en) Alkaline aqueous flocculating agent, method for the production of an alkaline aqueous and a solid flocculating agent and their use.
EP0223860B1 (en) Germicidal and purifying agent for drinking water
Badalians Gholikandi et al. Natural zeolites application as sustainable adsorbent for heavy metals removal from drinking water
CN110790352A (en) Slurry for treating oxygen ion contamination in water
CZ2011502A3 (en) Adsorbents for removing arsenic and selenium from water
DE4400982C2 (en) Compositions for the treatment of waste water containing heavy metals
JPH0415036B2 (en)
KR100348771B1 (en) Method of producing an active inorganic material liquid from granite
JPH08206410A (en) Coagulant for water treatment
JPS6324486B2 (en)
JPWO2006082997A1 (en) Soluble COD component remover, water treatment method and water treatment apparatus
EP1666115B1 (en) Coagulant, process for producing the same, and method of coagulation with the coagulant
Zakaria et al. Lactic acid removal from wastewater by using different types of activated clay
JPH10277541A (en) Zeolite type water purifying agent
JPH0144363B2 (en)
CN108996636B (en) Preparation method of polysilicate magnetic bentonite flocculant
KR100361344B1 (en) Rfining method for loess
Drosdoff The separation and identification of the mineral constituents of colloidal clays
RO137649A2 (en) Process and adsorbent material for adsorption of organic pollutants from aqueous solutions
JPH02268884A (en) Method for purifying sewage of river, seashore, pool or the like
JPS63200805A (en) Sewage clarifier
KR100576731B1 (en) Method for preparing porous and alkaline hematite material and water treatment using the material
RU2049735C1 (en) Method for industrial sewage treatment
RU2255049C1 (en) Method for treatment of water from iron
CN1406878A (en) Water purifying agent