JPH02268884A - Method for purifying sewage of river, seashore, pool or the like - Google Patents

Method for purifying sewage of river, seashore, pool or the like

Info

Publication number
JPH02268884A
JPH02268884A JP8929589A JP8929589A JPH02268884A JP H02268884 A JPH02268884 A JP H02268884A JP 8929589 A JP8929589 A JP 8929589A JP 8929589 A JP8929589 A JP 8929589A JP H02268884 A JPH02268884 A JP H02268884A
Authority
JP
Japan
Prior art keywords
sewage
air
rivers
dried
neutralization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8929589A
Other languages
Japanese (ja)
Inventor
Sadako Ueda
上田 貞子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREEN KARUCHIYAA KK
Original Assignee
GREEN KARUCHIYAA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN KARUCHIYAA KK filed Critical GREEN KARUCHIYAA KK
Priority to JP8929589A priority Critical patent/JPH02268884A/en
Publication of JPH02268884A publication Critical patent/JPH02268884A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To obtain the sewage purifying method excellent in capacity, profitability and industrialization by mixing a processing material consisting essentially of the natural fossil shells refined to specified grain size into sewage to adsorb and flocculate the materials in the sewage and further applying ion exchange and neutralization to purify the sewage. CONSTITUTION:The natural fossil shells contg. various nekton, plankton, algae and seaweeds consisting of calcareous materials, silicates, etc., are crushed into a small-grain or coarse-sand crude ore. The crude ore is air-dried, then dried at 120-450 deg.C with hot air through a rotary kiln A and a cooler B, refined and granulated. The grains are further air-classified into the grains having 0.1-50mum diameter through a ball mill C and a cyclone D. The obtained processing material is mixed into the sewage of rivers, seashore, pool, etc., and then ion exchange and neutralization are applied to purify the sewage. As a result, the sewage purifying method excellent in capacity, profitability, industrialization, etc., is obtained.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、河川、海岸、プール等の汚水な浄化処理する
方法に関するものである。 〔従来の技術1 従来の河川、海岸、プール等の汚水を浄化する方法とし
ては、古くから化学薬品等を使用する。いわゆる化学浄
化方式によらしめているのが一般的であった。ところが
、工場廃水等のタレ流しが公害問題として社会的にクロ
ーズアップされてきた最近においては、これらの汚水の
処理方法にも天然物質を利用されるようになってきた1
例えば、沖縄諸島や徳之島地方で産出されるサンゴ化石
石灰岩とか、北海道や無音半島地方に埋没している天然
の貝化石などを用いて工場廃水や下水等に含まれている
諸種の有害物質を除去する方法などが開発されてきた。 特に、特開昭51−141457号(貝化石を使用して
水質の改良をする方法)に開示されているように「天然
の貝化石を荒い砂状程度に粉砕した後、分子構造を崩す
ことのないよう熱処理を行なって、一定の有効径内に含
有する結晶水を除去し、さらに200メツシュ以上の微
粉末状に加工した製品を、改良(処理)の対象となる水
中に散布するとともに、必要に応じて塩化第二鉄もしく
は塩酸を投入することにより、吸着およびイオン交換と
物理的、化学的作用が並行して促進されると同時に凝集
沈殿が急速に行なわれ、飲料水をはじめ糖分、沈殿質、
堆積物の廃液あるいは工場廃水に含まれているリグニン
、血液、印刷インク、塗料、切削油、ガソリン、軽油、
灯油、重油、水銀、シアン、カドミウム、クローム、鉛
、銅、鉄、PCB、食用油、洗剤、泌尿等の有害物質の
単体若しくは混合状態を短時間に改良(処理)シ、かつ
、臭気をも除去するため、処理後の上澄水がミネラル化
するために飲料水としての再利用までを可能とすると共
に、沈殿物は、ただの土としての投棄を可能とならしむ
ることを特徴とする貝化石を使用して水質の改良をする
方法、」(特許請求の範囲)がある、この従来方法では
、貝化石の成分とその精製方法によっては、良好な効果
が得られず実用性に乏しかった。又、塩化第二銅や塩酸
を混入するために貝化石の主成分が破壊されてしまい種
々の問題点が生じていた。 また、従来の天然貝化石の精製加工方法は。 石灰や砂粒等の製法を採用しているのが一般的である。 すなわち、あらかじめ荒くたきした粗鉱の貝化石を、従
来から石灰や砂粒の製造用に多用されている熱風乾燥機
により熱風乾燥させると共に鉄粉や銅粉の製造用に多用
されている金属粉末装置を用いて粉末状に粉砕してM製
加工する方法が一般的である。この従来方法によると、
それぞれの装置や機械器具が、それぞれの目的のために
製作されているために、多くの成分を含有している貝化
石の製法には適さず、その商品価値を低下させていた。 また、製法がいたって原始的でしかも保存管理がシステ
ム化できないために長期保存に適さず、それがために企
業化が困難とされていた。など多くの問題点が生じてい
た。 しかし、これらの方法はいずれも化学的あるいは学術的
に未開拓の分野が多いばかりか、その使用方法ないしは
具体的な処理方法などに至っては未解決の分野が多く、
いまだその実施化および企業化が図れないまま今日に至
っている〔発明が解決しようとする課題1 かかる課題を解決するには、天然貝化石でも水質改良に
適した成分を含有している貝化石を使用することと、こ
の適した貝化石を水質改良の処理物質として使用できる
程度の微小径に精製加工する必要があり、ここに本発明
が解決しようとする課題がある。特に、従来の化学物質
を用いて処理していたものを天然物質を用いて処理しよ
うとするところに本発明の最大課題を有する。 〔課題を解決するための手段J 本発明は、上記の如き課題を解決するために開発したも
のであって、石灰質や珪酸等からなる各種ネクトン、プ
ラクトン、藻類、海草類の成分を含有する天然の貝化石
を小粒若しくは荒い砂状の粗鉱に破砕して天然乾燥させ
ると共に120℃乃至450℃程度に熱風乾燥させて粉
粒状に精製し、更にエアー分級させて、おおむね0.1
0μmから50.00μm位の粒径に精製した処理物質
を主成分とし、該処理物質を河川、海岸、プール等の汚
水に混入して汚水の物質を有効的に吸着、凝集ならさし
め、更にイオン交換及び中和作用により、汚水を浄化な
らしめたことを特徴とする排水の浄化処理方法にある。 [作  用] 本発明者は、長年下水等の汚水浄化方法について研究を
重ねている間に、石川県、富山県地方のいわゆる無音半
島の一体に埋没している天然の貝化石が水質改良に適す
ることを発見すると共に、その技術開発に成功した。つ
なわち、この地方に埋没している貝化石には、主として
炭酸カルシウムと二酸化炭素が含有されておりこれが排
水などに含まれている有害物質との中和作用などによっ
て吸着、凝集の特性を生み、更にイオン交換特性などに
よって中性の工業用水や飲料水として再利用できること
が、多くの実験結果によって判明したからである。この
ような特性を有する貝化石は、現在では油含半島地方し
か埋没しておらず、その試掘調査によれば、この構成物
が主として動物の生理作用の結果形成されたものであり
、これらの遺骸が海中でもって機械的に分級淘汰されて
海底に沈殿されたものであると言われている。特に、本
発明に使用した天然の貝化石は、富山県地方に埋没して
いる貝化石の鉱脈から採掘したものを用いた。この地方
に埋没されている貝化石は、主として動物の生理作用の
結果形成されたものであり、これらの遺骸が海中でもっ
て機械的に分級淘汰されて海底に沈積されたものである
といわれている。すなわち、この貝化石は石灰質や珪酸
等からなる各種のネクトン(殻、魚¥R)、プラクトン
(微生物)、藻類、海草等が地殻の変動により生きたま
ま集中埋没されて堆積し。 約8千万年(新第三紀中新世)を経過された今日までに
、これらの魚介類や有機物が化石とならず、廃触溶性を
帯びた結晶体となったものであることが判明されたもの
である。このような成因から、その主成分である炭酸カ
ルシウムはタンパク質より分泌形成された極めて微粒な
ものの集合であって、しがもアラゴナイトC敗石)の形
をとっているために、カルサイト(分解石)によって形
成されているものに比べて、はるかに活性に富んでいる
ところにこの地方の貝化石の特徴がある。 前記、富山県地方の天然貝化石を粉末状に精製加工した
ものを財団法人日本肥糧検定協会で成分分析された結果
は、次のとおりである。 水     分 (H2O2 けい酸全14 (Si021 苦土全1:jl (llgol 石灰全量(Ca11 強熱減量 酸  化  鉄 (Fe2031 酸化   (A1203) 〔実施例] % 1.05 18.42 0.80 40.14 32.66 1.55 0.90 以下、図面に従って本発明の一実施例について説明する
。 第1図は、本発明の天然貝化石の精製加工方法の概要を
示したものである。まず、石灰質や珪酸等からなる各種
ネクトン、プラクトン、藻類、海草類の成分を含有する
天然の貝化石を堆積する鉱脈層から採掘し、小粒状若し
くは荒い砂状の粗鉱に破砕する。この粗破された貝化石
をロータリーキルンAとクーラBとを介して乾燥粉砕し
、更にボールミルCとサクロンDを介して粉末状に粉砕
して0.10μmから50.00μm位の粒径に微小精
製する1本実施例では、ロータリーキルンA、クーラB
、ボールミルCおよびサイクロンDからなる装置を用い
ているが、本加工工程により本発明の貝化石製品が得ら
れれば、いかなる装置を用いてもよい。 なお、本実施例で得られた粒度分布測定結果は次のとお
りであり、またそのデータ結果は第2図のグラフのとお
りである。 CH粒径(μm) 累積(%) 頻度 (%)1   
  0.17 2     0.24 3    0.34 4     0.43 5     0.66 6     1.01 7     1.69 8     2.63 9     3.73 In      5.27 11      ?、46 12    10.56 13    14.92 14    21.10 15    29.85 16    42.21 要約データ DV   O,3373 10%  1.01 50駕 5,13 0.1 0.3 0.5 1.3 4.9 10.1 18.0 28.7 39.8 51.1 66.0 79.0 88.3 97.0 100、口 100.0 0.1 0.2 0.2 0.8 3.6 5.2 7.9 1O17 11,1 11,3 14,9 13,0 9,3 8,7 3,0 0,0 90%  16.t。 MY    6.80 (:3   2.389 上記データーは、下記測定条件によって得られた測定値
である。 サンプル名(T D −1)  KArKASEKIロ
  ッ  ト  k(ID−2)      (B)計
測日時 01/10/86−16:20計測使用レンジ
  0.12−42.2RUN   No、、    
 l口0計測時間(秒) 60 DV・・・・・・無単位の試料投入量 MV・−・−・・堆積加重の平均温度 CS−・・・−・比表面積 なお1本発明の処理物質を用いた処理実験の結果は1次
のとおりである。 実m 工場団地より汚水処理場へ流入する汚水の処理実験 実験用水槽への未処理汚水投入量 11)ン (水深1m) 未処理汚水に含有する有害物質成分 ノルマルヘキサン フェノール シアン カドミウム 鉛 クローム 亜鉛 銅 マンガン 鉄 未処理汚水の臭気    あり 未処理汚水のPH55 未処理汚水のB OD    36 ppa+未処理汚
水の透視度   72III覆撹拌後のPH85 貝化石微粉末の投入量  20Kg 塩化第二鉄の投入量   4500cc貝化石微粉末お
よび塩化第二鉄投入後の撹拌時間          
5分間 攪拌停止後から凝集沈殿完了までの時間約60分 凝集沈殿完了後の上澄液PH72 凝集沈殿完了後のB OD  132 ppm凝集沈殿
完了後の透視度 40C1+m以上凝集沈殿完了後の上
澄液および汚泥内にいずれも検出含有する有害物質抽出
試験 凝集沈殿完了後の臭気  なし く参考) (1)処理完了後、水槽内を目視したところ、水深1メ
ートルの底に沈めた小石の点在を完全に確認出来た。 (2)なお凝集作用を急速に促進するために。 少量の塩化第二銅を注入した。 この実験結果から、流入時に検出された有害物質のほと
んど検出されない状態にまで処理され、しかもPHにつ
いては中性となり、更にBODの除去率は60%以上で
、透視度は72ミリメートルから400ミリメートル以
上に浄化処理された。 11」1以l 工業用水に含まれた赤錆の処理実験 実験用水槽への工業用水投入量 11)ン (水深1ml 処理実験におけるする有害物質の含有成分鉄(赤錆) 処理実験前におけるPH65 処理実験前における透視度 511I11貝化石微粉末
の投入量   20Kg 塩化第二鉄の投入量    4500cc貝化石微粉末
および塩化第二鉄投入後の撹拌時間         
  5分間 撹拌停止後から凝集沈殿完了までの時間約50分 凝集沈殿完了後の上澄液PH74 凝集沈殿完了後の透視度  400m+a以上(参考) +11処理完了後、水槽内を目視したところ、水深1メ
ートルの底の沈殿状態を観察できた。 (2)なお、凝集作用を急速に促進するために、少量の
塩化第二鉄を注入した。 この実験の結果から、透視度5ミリメートルの工業用水
を400ミリメートル以上に浄化処理することができ、
しかも処理後のPHは中性であった。 〔発明の効果」 本発明は、上記のように構成しであるので。 化学薬品を一切使用することなく、河川、海岸、プール
等の汚水を浄化することができ、しかも二次公害を未然
に防止できるばかりか、処理後の水はそれぞれに再利用
でき、また処理用物質が天然物であるから、処理能力性
、経済性、企業性等あらゆる面からみても、従来方法よ
りもはるかに優れている汚水の浄化処理方法といえる。 また1本発明は石灰質や珪酸等からなる各種ネクトン、
プラクトン、p11類、海草類の成分を含有する天然の
貝化石を小粒若しくは荒い砂状の粗鉱に破砕して天然乾
燥させると共に 120℃乃至450℃程度に熱風乾燥
させて粉粒状に精製し、更にエアー分級させて、おおむ
ね0.10μmから50.00μm位の粒径に精製した
構成になっているので、汚水浄化処理用の貝化石として
は最適な処理物質が得られる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for purifying sewage from rivers, beaches, swimming pools, etc. [Prior Art 1] Conventional methods for purifying sewage from rivers, beaches, pools, etc. have long used chemicals and the like. Generally, so-called chemical purification methods were used. However, in recent years, when flushing away drips from factory wastewater and other sources has come under public scrutiny as a pollution problem, natural substances have come to be used in the treatment of these sewage1.
For example, various harmful substances contained in factory wastewater and sewage are removed using coral fossil limestone produced in the Okinawa Islands and Tokunoshima region, and natural shell fossils buried in Hokkaido and the Muon Peninsula region. Methods have been developed to do so. In particular, as disclosed in JP-A No. 51-141457 (Method of Improving Water Quality Using Fossil Shells), ``After crushing natural shell fossils to a rough sand-like consistency, the molecular structure is broken down. Heat treatment is performed to remove crystallized water contained within a certain effective diameter, and the product is processed into a fine powder of 200 mesh or more, and the product is sprayed into the water to be improved (treated). By adding ferric chloride or hydrochloric acid as necessary, adsorption, ion exchange, and physical and chemical actions are promoted in parallel, and at the same time coagulation and precipitation occur rapidly, resulting in sugar content, including drinking water. sediment,
Lignin, blood, printing ink, paint, cutting oil, gasoline, diesel oil, etc. contained in sediment wastewater or factory wastewater,
Quickly improve (process) single or mixed states of harmful substances such as kerosene, heavy oil, mercury, cyanide, cadmium, chromium, lead, copper, iron, PCBs, cooking oil, detergents, urine, etc., and eliminate odors. In order to remove the supernatant water after treatment, the supernatant water becomes mineralized so that it can be reused as drinking water, and the precipitate can be disposed of as mere soil. "A method for improving water quality using fossils" (claims), but this conventional method did not have good effects and lacked practicality depending on the components of the fossil shells and the method of refining them. . In addition, the main components of shell fossils are destroyed due to the mixing of cupric chloride and hydrochloric acid, causing various problems. Also, what are the conventional refining and processing methods for natural shellfish fossils? It is common to use methods such as lime or sand grains. In other words, shell fossilized crude ore that has been roughly pounded in advance is dried with hot air using a hot air dryer, which has traditionally been used in the production of lime and sand grains, as well as metal powder equipment, which is often used in the production of iron powder and copper powder. A common method is to grind it into a powder using a powder and process it into M. According to this conventional method,
Because each device and mechanical device is manufactured for a specific purpose, it is not suitable for producing fossil shellfish, which contains many components, and reduces its commercial value. In addition, the manufacturing method was extremely primitive and storage management could not be systematized, making it unsuitable for long-term preservation, which made commercialization difficult. Many problems arose. However, not only are there many chemically and academically unexplored fields for all of these methods, but there are also many unresolved fields regarding their usage and specific processing methods.
Until now, it has not been possible to put it into practice or commercialize it [Problem to be solved by the invention 1] In order to solve this problem, it is necessary to use fossil shellfish, even natural shellfish fossils, which contain components suitable for improving water quality. In addition, it is necessary to refine and process this suitable shellfish fossil into a microscopic diameter that can be used as a treatment substance for water quality improvement, and this is the problem that the present invention aims to solve. In particular, the greatest problem of the present invention lies in the attempt to treat with natural substances what was conventionally treated with chemical substances. [Means for Solving the Problems J] The present invention was developed in order to solve the problems as described above. Shellfish fossils are crushed into small grains or coarse sand-like crude ore, dried naturally, and dried with hot air at a temperature of about 120°C to 450°C to refine them into powder, and further air classified to obtain approximately 0.1
The main component is a treated substance purified to a particle size of about 0 μm to 50.00 μm, and the treated substance is mixed into sewage from rivers, beaches, pools, etc. to effectively adsorb and coagulate substances in the sewage, and further A waste water purification method characterized in that waste water is purified by ion exchange and neutralization. [Function] While conducting research on methods for purifying sewage and other sewage for many years, the present inventor discovered that natural shellfish fossils buried in the so-called Muon Peninsula in the Ishikawa and Toyama prefectures can be used to improve water quality. He discovered that it was suitable and succeeded in developing the technology. In other words, the shellfish fossils buried in this region mainly contain calcium carbonate and carbon dioxide, which have adsorption and aggregation properties by neutralizing harmful substances contained in wastewater, etc. This is because many experimental results have shown that water can be recycled as neutral industrial water or drinking water due to its ion exchange properties. Fossil shells with these characteristics are currently buried only in the Oil-bearing Peninsula region, and according to the excavation survey, this composition was mainly formed as a result of the physiological actions of animals; It is said that the remains were mechanically sorted under the sea and then deposited on the ocean floor. In particular, the natural shell fossils used in the present invention were mined from fossil shell veins buried in the Toyama Prefecture region. The shellfish fossils buried in this region were mainly formed as a result of the physiological actions of animals, and it is said that these remains were mechanically sorted and sorted under the sea before being deposited on the ocean floor. There is. In other words, these fossil shells are made up of various nekton (shells, fish), placton (microorganisms), algae, seaweed, etc. made of calcareous or silicic acid, etc., which were buried alive and deposited due to the movement of the earth's crust. To date, approximately 80 million years have passed (Miocene Epoch of the Neogene period), it has become clear that these seafoods and organic matter have not become fossils, but have become crystals with tactile properties. It has been revealed. Due to these factors, calcium carbonate, its main component, is a collection of extremely fine particles secreted from proteins, and is in the form of aragonite C. A distinctive feature of shellfish fossils in this region is that they are much more active than those formed by stones. The results of the component analysis conducted by the Japan Fertilizer Inspection Association of the natural shellfish fossils from the Toyama Prefecture region refined into powder are as follows. Moisture (H2O2 Silicic acid total 14 (Si021 Magnesium total 1:jl (llgol) Total amount of lime (Ca11 Ignition loss Iron oxide (Fe2031 Oxidation (A1203) [Example] % 1.05 18.42 0.80 40. 14 32.66 1.55 0.90 An embodiment of the present invention will be described below with reference to the drawings. Fig. 1 shows an overview of the method for refining and processing natural shellfish fossils of the present invention. First, It is mined from the vein layer where natural shell fossils containing various nekton, plakton, algae, and seaweed components made of calcareous and silicic acid are deposited and crushed into small grains or coarse sandy coarse ore. One example in which fossil shells are dried and crushed through a rotary kiln A and a cooler B, and further crushed into powder through a ball mill C and a saclone D to be micro-refined to a particle size of about 0.10 μm to 50.00 μm. Now, rotary kiln A, cooler B
, a ball mill C, and a cyclone D are used, but any device may be used as long as the shellfish fossil product of the present invention can be obtained through this processing step. The particle size distribution measurement results obtained in this example are as follows, and the data results are as shown in the graph of FIG. CH particle size (μm) Cumulative (%) Frequency (%)1
0.17 2 0.24 3 0.34 4 0.43 5 0.66 6 1.01 7 1.69 8 2.63 9 3.73 In 5.27 11 ? , 46 12 10.56 13 14.92 14 21.10 15 29.85 16 42.21 Summary data DV O, 3373 10% 1.01 50 pieces 5,13 0.1 0.3 0.5 1.3 4.9 10.1 18.0 28.7 39.8 51.1 66.0 79.0 88.3 97.0 100, Mouth 100.0 0.1 0.2 0.2 0.8 3. 6 5.2 7.9 1O17 11.1 11.3 14.9 13.0 9.3 8.7 3.0 0.0 90% 16. t. MY 6.80 (:3 2.389 The above data are measured values obtained under the following measurement conditions. Sample name (TD-1) KArKASEKI lot k (ID-2) (B) Measurement date and time 01 /10/86-16:20 Measurement range 0.12-42.2 RUN No.
l Mouth 0 measurement time (seconds) 60 DV... Unitless sample input amount MV --- Average temperature of deposition weight CS --- Specific surface area One treatment substance of the present invention The results of the processing experiment using the following are as follows. Actual amount of untreated sewage input into the experimental water tank for treatment of sewage flowing into the sewage treatment plant from the factory complex 11) (Water depth: 1 m) Toxic substances contained in untreated sewage Normal hexane phenol cyan cadmium lead chromium zinc copper Odor of untreated sewage with manganese iron PH55 of untreated sewage B OD of untreated sewage 36 ppa + visibility of untreated sewage PH85 after 72III overturning stirring Amount of shellfish fossil fine powder input: 20Kg Amount of ferric chloride input: 4500cc Shellfish Stirring time after adding fossil fine powder and ferric chloride
Time from stopping stirring for 5 minutes to completion of coagulation and precipitation: Approximately 60 minutes Supernatant liquid after completion of coagulation and precipitation PH72 B OD after completion of coagulation and precipitation 132 ppm Transparency after completion of coagulation and precipitation 40C1+m or more Supernatant liquid after completion of coagulation and precipitation Extraction test of harmful substances detected and contained in sludge (Odor after completion of coagulation and sedimentation) I was able to confirm it completely. (2) Furthermore, in order to rapidly promote the aggregation effect. A small amount of cupric chloride was injected. The results of this experiment show that the harmful substances detected at the time of inflow have been treated to a state where they are almost undetectable, the pH is neutral, the BOD removal rate is over 60%, and the visibility has increased from 72 mm to over 400 mm. was purified. 11"1 Amount of industrial water input into the experiment water tank for treatment experiment of red rust contained in industrial water 11) (Water depth 1 ml) Ingredients of harmful substances in the treatment experiment Iron (red rust) PH65 before the treatment experiment Transparency before 511I11 Amount of shellfish fossil fine powder input: 20Kg Input amount of ferric chloride: 4500cc Stirring time after charging shellfish fossil fine powder and ferric chloride
Time from stopping stirring for 5 minutes to completion of coagulation and precipitation: Approximately 50 minutes Supernatant liquid after completion of coagulation and precipitation PH74 Transparency after completion of coagulation and precipitation 400m+a or more (reference) +11 After completion of treatment, visual inspection of the inside of the water tank revealed that the water depth was 1 We were able to observe the state of precipitation at the bottom of the meter. (2) A small amount of ferric chloride was injected to rapidly promote the flocculation effect. From the results of this experiment, industrial water with a transparency of 5 mm can be purified to a transparency of more than 400 mm.
Moreover, the pH after treatment was neutral. [Effects of the Invention] The present invention is configured as described above. It is possible to purify sewage from rivers, beaches, swimming pools, etc. without using any chemicals, and not only can secondary pollution be prevented, but the water after treatment can be reused and used for treatment. Since the substance is a natural product, it can be said that it is a method of purifying wastewater that is far superior to conventional methods from all aspects such as processing capacity, economy, and business efficiency. In addition, the present invention provides various nektons made of calcareous material, silicic acid, etc.
Natural shell fossils containing components of placton, P11, and seaweed are crushed into small grains or coarse sand-like coarse ore, dried naturally, and then dried with hot air at about 120°C to 450°C to be refined into powder. Since it is air classified and purified to a particle size of about 0.10 μm to 50.00 μm, the optimal treated material can be obtained as shellfish fossils for wastewater purification.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の天然貝化石を精製加工する方法の加工
工程を示した概要説明図、第2図は本発明の実施例で得
られた製品の測定値を示した分布グラフである。
FIG. 1 is a schematic explanatory diagram showing the processing steps of the method of refining and processing natural shellfish fossils of the present invention, and FIG. 2 is a distribution graph showing the measured values of products obtained in Examples of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)石灰質や珪酸等からなる各種ネクトン、プラクト
ン、藻類、海草類の成分を含有する天然の貝化石を小粒
若しくは荒い砂状の粗鉱に破砕して天然乾燥させると共
に120℃乃至450℃程度に熱風乾燥させて粉粒状に
精製し、更にエアー分級させて、おおむね0.10μm
から50.00μm位の粒径に精製した処理物質を主成
分とし、該処理物質を河川、海岸、プール等の汚水に混
入して汚水の物質を有効的に吸着、凝集ならさしめ、更
にイオン交換及び中和作用により、汚水を浄化ならしめ
たことを特徴とする河川、海岸、プール等の汚水浄化処
理方法。
(1) Natural shell fossils containing components of various nektons, plaktons, algae, and seaweeds made of calcareous and silicic acids are crushed into small grains or coarse sand-like coarse ore, dried naturally, and heated to about 120°C to 450°C. Dry with hot air to refine into powder, then air classify to approximately 0.10 μm.
The main component is a treated substance that has been purified to a particle size of about 50.00 μm, and the treated substance is mixed into sewage from rivers, beaches, pools, etc. to effectively adsorb and coagulate the substances in the sewage, and further ionize. A method for purifying sewage from rivers, beaches, pools, etc., which purifies sewage through exchange and neutralization.
JP8929589A 1989-04-07 1989-04-07 Method for purifying sewage of river, seashore, pool or the like Pending JPH02268884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8929589A JPH02268884A (en) 1989-04-07 1989-04-07 Method for purifying sewage of river, seashore, pool or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8929589A JPH02268884A (en) 1989-04-07 1989-04-07 Method for purifying sewage of river, seashore, pool or the like

Publications (1)

Publication Number Publication Date
JPH02268884A true JPH02268884A (en) 1990-11-02

Family

ID=13966689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8929589A Pending JPH02268884A (en) 1989-04-07 1989-04-07 Method for purifying sewage of river, seashore, pool or the like

Country Status (1)

Country Link
JP (1) JPH02268884A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100460A (en) * 1993-10-01 1995-04-18 Sadako Ueda Natural calcium-based purifying agent for polluted water and bottom of river and lake and so forth
GB2408008A (en) * 2003-11-14 2005-05-18 Jonah Chitolie Centrifugal separation of microfossils
CN100338098C (en) * 2005-11-29 2007-09-19 广东海洋大学 Water-saving method when processing Gracilaria to produce agar

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100460A (en) * 1993-10-01 1995-04-18 Sadako Ueda Natural calcium-based purifying agent for polluted water and bottom of river and lake and so forth
GB2408008A (en) * 2003-11-14 2005-05-18 Jonah Chitolie Centrifugal separation of microfossils
GB2408008B (en) * 2003-11-14 2007-01-31 Jonah Chitolie Extraction of microfossils
CN100338098C (en) * 2005-11-29 2007-09-19 广东海洋大学 Water-saving method when processing Gracilaria to produce agar

Similar Documents

Publication Publication Date Title
RU2239602C1 (en) Sea water desalting process
DE69517512T2 (en) NEW COMPOSITIONS AND WATER TREATMENT METHOD
US5645730A (en) Acid wastewater treatement
JP4297615B2 (en) High-speed coagulating sedimentation wastewater treatment method
JPS59500088A (en) Natural and industrial sludge decontamination methods
Morris et al. Preliminary appraisal of advanced waste treatment processes
CN100544817C (en) Remove the water treatment agent method for making and the water treatment agent of suspension, nitrogen, phosphorus and stench
CN108299573A (en) The method of comprehensive utilization of casing factory waste water
El Herradi et al. Treatment of oil mill wastewaters by infiltration-percolation on two types of filters based on soil, sand and fly ash
JPS59156499A (en) Coagulation of waste slime suspension
CN107055726A (en) A kind of composite flocculation agent and its preparation method and application
Ho Overcoming the salinity and sodicity of red mud for rehabilitation and reuse
BE1001695A7 (en) Method and apparatus for water treatment by donation proton.
JPH02268884A (en) Method for purifying sewage of river, seashore, pool or the like
JPH02268882A (en) Method for purifying waste water
JPS58216705A (en) Precipitating and floccuating agent for water treatment
US20050160779A1 (en) Fertilizer
JPH10277541A (en) Zeolite type water purifying agent
JPH02265685A (en) Quality improvement treatment of water and treating substance
RU2332363C2 (en) Method of processing of bottom sludgy sediments
JPH0415036B2 (en)
JPH10277307A (en) Adsorption flocculant and water treating method
Keefer et al. The Vacuum Filtration of Elutriated Sludge
Tuin et al. Extractive cleaning of heavy metal contaminated clay soils
JPH05305300A (en) Dehydrating agent for sludge